首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
mRNA选择性剪接的分子机制   总被引:5,自引:0,他引:5  
章国卫  宋怀东  陈竺 《遗传学报》2004,31(1):102-107
真核细胞mRNA前体经过剪接成为成熟的mRNA,而mRNA前体的选择性剪接极大地增加了蛋白质的多样性和基因表达的复杂程度,剪接位点的识别可以以跨越内含子的机制(内含子限定)或跨越外显子的机制(外显子限定)进行。选择性剪接有多种剪接形式:选择不同的剪接位点,选择不同的剪接末端,外显子的不同组合及内含子的剪接与否等。选择性剪接过程受到许多顺式元件和反式因子的调控,并与基本剪接过程紧密联系,剪接体中的一些剪接因子也参与了对选择性剪接的调控。选择性剪接也是1个伴随转录发生的过程,不同的启动子可调控产生不同的剪接产物。mRNA的选择性剪接机制多种多样,已发现RNA编辑和反式剪接也可参与选择性剪接过程。  相似文献   

3.
We have recently identified an intronic polymorphic CA-repeat region in the human endothelial nitric oxide synthase (eNOS) gene as an important determinant of the splicing efficiency, requiring specific binding of hnRNP L. Here, we analyzed the position requirements of this CA-repeat element, which revealed its potential role in alternative splicing. In addition, we defined the RNA binding specificity of hnRNP L by SELEX: not only regular CA repeats are recognized with high affinity but also certain CA-rich clusters. Therefore, we have systematically searched the human genome databases for CA-repeat and CA-rich elements associated with alternative 5' splice sites (5'ss), followed by minigene transfection assays. Surprisingly, in several specific human genes that we tested, intronic CA RNA elements could function either as splicing enhancers or silencers, depending on their proximity to the alternative 5'ss. HnRNP L was detected specifically bound to these diverse CA elements. These data demonstrated that intronic CA sequences constitute novel and widespread regulatory elements of alternative splicing.  相似文献   

4.
Bioinformatics of alternative splicing and its regulation   总被引:3,自引:0,他引:3  
The sequencing of the human genome and ensuing wave of data generation have brought new light upon the extent and importance of alternative splicing as an RNA regulatory mechanism. Alternative splicing could potentially explain the complexity of protein repertoire during evolution, and defects in the splicing mechanism are responsible for diseases as complex as cancer. Among the challenges that rise in light of these discoveries are cataloguing splice variation in the human and other eukaryotic genomes, and identifying and characterizing the splicing regulatory elements that control their expression. Bioinformatics efforts tackling these two questions are just at the beginning. This article is a survey of these methods.  相似文献   

5.
In eukaryotes, most protein-coding genes contain introns which are removed by precursor messenger RNA (pre-mRNA) splicing. Alternative splicing is a process by which multiple messenger RNAs (mRNAs) are generated from a single pre-mRNA, resulting in functionally distinct proteins. Recent genome-wide analyses of alternative splicing indicated that in higher eukaryotes alternative splicing is an important mechanism that generates proteomic complexity and regulates gene expression. Mis-regulation of splicing causes a wide range of human diseases. This review describes the current understanding of pre-mRNA splicing and the mechanisms that regulate mammalian pre-mRNA splicing. It also discusses emerging directions in the field of alternative splicing. Supported by the Program of “one Hundred Talented people” of the Chinese Academy of Sciences.  相似文献   

6.
SR蛋白家族在RNA剪接中的调控作用   总被引:1,自引:0,他引:1  
SR蛋白家族成员都具有一个富含丝氨酸/精氨酸(S/R)重复序列的RS结构域,在RNA剪接体的组装和选择性剪接的调控过程中具有重要的作用。绝大多数SR蛋白是生存的必需因子,通过其RS结构域和特有的其他结构域,实现与前体mRNA的特异性序列或其他剪接因子的相互作用,协同完成剪接位点的正确选择或促进剪接体的形成。深入研究SR蛋白家族在RNA选择性剪接中的调控机制,可以促进以疾病治疗或害虫防治为目的的应用研究。该文总结了SR蛋白家族在基础研究和应用方面的进展。  相似文献   

7.
β-site APP cleaving enzyme 1 (BACE1) is the transmembrane aspartyl protease that catalyzes the first cleavage step during proteolysis of the β-amyloid precursor protein, a process involved in the pathogenesis of Alzheimer disease. BACE1 pre-mRNA undergoes complex alternative splicing, and cis -acting elements important for its regulation have not been identified. We constructed and compared several BACE1 minigenes and found that BACE1 sequence from exon 3 through exon 5 was required for minigenes to undergo correct splicing. Minigene splicing was validated by showing specific splicing inhibition upon splice site mutation. Furthermore, we showed that mutation of the minigene at a predicted exonic splicing enhancer in exon 4 of BACE1 increased exon 4 skipping. Therefore, we have for the first time found evidence of a regulatory site involved in BACE1 alternative splicing, and these data indicate that minor sequence changes can dramatically alter BACE1 alternative splicing.  相似文献   

8.
Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5′ splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection.  相似文献   

9.
Use of minigene systems to dissect alternative splicing elements   总被引:4,自引:0,他引:4  
Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. The splicing efficiency of individual exons is determined by multiple features involving gene architecture, a variety of cis-acting elements within the exons and flanking introns, and interactions with components of the basal splicing machinery (called the spliceosome) and auxiliary regulatory factors which transiently co-assemble with the spliceosome. Both alternative and constitutive exons are recognized by multiple weak protein:RNA interactions and different exons differ in the interactions which are determinative for exon usage. Alternative exons are often regulated according to cell-specific patterns and regulation is mediated by specific sets of cis-acting elements and trans-acting factors. Transient expression of minigenes is a commonly used in vivo assay to identify the intrinsic features of a gene that control exon usage, identify specific cis-acting elements that control usage of constitutive and alternative exons, identify cis-acting elements that control cell-specific usage of alternative exons, and once regulatory elements have been identified, to identify the trans-acting factors that bind to these elements and modulate splicing. This chapter describes approaches and strategies for using minigenes to define the cis-acting elements that determine splice site usage and to identify and characterize the trans-acting factors that bind to these elements and regulate alternative splicing.  相似文献   

10.
Alternative mRNA splicing patterns are determined by the combinatorial control of regulator proteins and their target RNA sequences. We have recently characterized human hnRNP L as a global regulator of alternative splicing, binding to diverse C/A-rich elements. To systematically identify hnRNP L target genes on a genome-wide level, we have combined splice-sensitive microarray analysis and an RNAi-knockdown approach. As a result, we describe 11 target genes of hnRNP L that were validated by RT-PCR and that represent several new modes of hnRNP L-dependent splicing regulation, involving both activator and repressor functions: first, intron retention; second, inclusion or skipping of cassette-type exons; third, suppression of multiple exons; and fourth, alternative poly(A) site selection. In sum, this approach revealed a surprising diversity of splicing-regulatory processes as well as poly(A) site selection in which hnRNP L is involved.  相似文献   

11.
The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S.solfataricus endonuclease at 3.1 angstroms resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.  相似文献   

12.
We have previously reported that Bmdsx, a homologue of the sex-determining gene, doublesex (dsx), was found to be sex-specifically expressed in various tissues at larval, pupal, and adult stages in the silkworm, Bombyx mori, and was alternatively spliced to yield male- and female-specific mRNAs. To reveal sex-specific differences in splicing patterns of Bmdsx pre-mRNA, the genomic sequence was determined and compared with male- and female-specific Bmdsx cDNA sequences. The open reading frame (ORF) consisted of five exons. Exons 3 and 4 were specifically incorporated into the female type of Bmdsx mRNA. On the other hand, exon 2 was spliced to exon 5 to produce the male type mRNA of Bmdsx. As in the case of Drosophila dsx, the OD2 domain was separated by a female-specific intron into sex-independent and sex-dependent regions. Sex-specific splicing occurred in equivalent positions in the Drosophila dsx gene. However, unlike Drosophila dsx, the female-specific introns showed no weak 3′ splice sites, and the TRA/TRA-2 binding site related sequences were not found in the female-specific exon, nor even in any other regions of the Bmdsx gene. Moreover, an in vitro splicing reaction consisting of HeLa cell nuclear extracts showed that the female-type of Bmdsx mRNA represented the default splicing. These findings suggest that the structural features of the sex-specific splicing patterns of Bmdsx pre-mRNA are similar to those of Drosophila dsx but the regulation of sex-specific alternative splicing of Bmdsx pre-mRNA is different.  相似文献   

13.
mRNA的可变剪接是指一个单一的mRNA前体(pre-mRNA)经过不同的剪接加工方式生成多种mRNA变异体(variants)的过程,这些变异体最终可以编码合成具有不同结构和功能的蛋白质。在过去的10多年中,大量数据表明,可变剪接是增加转录组和蛋白质组多样性的重要资源,也是调控哺乳动物细胞基因表达的重要步骤。可变剪接具有高度的组织与发育阶段特异性,并受到外界信号的控制。剪接调控的紊乱与疾病的发生发展密切相关。该文将对哺乳动物细胞mRNA剪接调控的分子机制进行阐述。  相似文献   

14.
基因选择性剪接的生物信息学研究概况   总被引:1,自引:1,他引:0  
林鲁萍  马飞  王义权 《遗传》2005,27(6):1001-1006
基因选择性剪接现象是真核生物基本而又重要的调控机制。由于基因的选择性剪接在形成生物复杂性和多样性上具有极其重要的作用,同时选择性剪接与许多人类疾病也密切相关。因此,研究基因选择性剪接是一项十分重要的工作。生物信息学作为一门新兴的学科在研究基因选择性剪接上起关键的作用,尤其在研究基因表达调控机制、选择性剪接基因预测以及选择性剪接基因进化上。本文综述了这方面的最新研究进展,为更深入了解真核生物基因的表达调控机理提供依据。  相似文献   

15.
16.
17.
可变剪接是生物重要的转录后修饰过程,是转录组和蛋白组多样性的重要来源.可变剪接参与了植物众多生理过程,包括植物昼夜节律、生长发育等,在植物响应生物和非生物胁迫过程中尤为普遍.近年来,可变剪接被认为是植物抵御病原菌侵染的重要调控机制.本文综述了可变剪接在植物免疫各个层面的调控作用,包括调节重要免疫受体、R基因、激素信号路...  相似文献   

18.
Purine-rich exonic splicing enhancers (ESEs) stimulate splicing of the adjacent introns with suboptimal splice sites. To elucidate the mechanism regarding ESEs, factors specifically associated with ESEs in HeLa cell nuclear extracts were previously investigated, and shown to include SR (serine/arginine-rich) proteins. However, factors associated with ESEs in vivo have not yet been explored. Here we show that a GAA repeat RNA sequence, a typical ESE, is associated in Xenopus oocyte nuclei with at least one SR protein, SF2/ASF, as was expected. Moreover, components of SF3a/b complexes, U2 snRNA, and U2AF(65) were also found to be associated with the ESE in the nucleus. Since SF3a/b complexes are the constituents of the 17S U2 snRNP, these results suggest that the 17S U2 snRNP is associated with the ESE in the nucleus, probably through bridging interactions of U2AF and SR proteins. The identified factors may represent a functional splicing enhancer complex in vivo.  相似文献   

19.
Mutually exclusive splicing of exons is a mechanism of functional gene and protein diversification with pivotal roles in organismal development and diseases such as Timothy syndrome, cardiomyopathy and cancer in humans. In order to obtain a first genomewide estimate of the extent and biological role of mutually exclusive splicing in humans, we predicted and subsequently validated mutually exclusive exons (MXEs) using 515 publically available RNA‐Seq datasets. Here, we provide evidence for the expression of over 855 MXEs, 42% of which represent novel exons, increasing the annotated human mutually exclusive exome more than fivefold. The data provide strong evidence for the existence of large and multi‐cluster MXEs in higher vertebrates and offer new insights into MXE evolution. More than 82% of the MXE clusters are conserved in mammals, and five clusters have homologous clusters in Drosophila. Finally, MXEs are significantly enriched in pathogenic mutations and their spatio‐temporal expression might predict human disease pathology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号