首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic hypoxia causes pulmonary hypertension and right ventricular hypertrophy associated with pulmonary vascular remodeling. Because hypoxia might promote generation of oxidative stress in vivo, we hypothesized that oxidative stress may play a role in the hypoxia-induced cardiopulmonary changes and examined the effect of treatment with the antioxidant N-acetylcysteine (NAC) in rats. NAC reduced hypoxia-induced cardiopulmonary alterations at 3 wk of hypoxia. Lung phosphatidylcholine hydroperoxide (PCOOH) increased at days 1 and 7 of the hypoxic exposure, and NAC attenuated the increase in lung PCOOH. Lung xanthine oxidase (XO) activity was elevated from day 1 through day 21, especially during the initial 3 days of the hypoxic exposure. The XO inhibitor allopurinol significantly inhibited the hypoxia-induced increase in lung PCOOH and pulmonary hypertension, and allopurinol treatment only for the initial 3 days also reduced the hypoxia-induced right ventricular hypertrophy and pulmonary vascular thickening. These results suggest that oxidative stress produced by activated XO in the induction phase of hypoxic exposure contributes to the development of chronic hypoxic pulmonary hypertension.  相似文献   

2.
We examined whether xanthine oxidase (XO)-derived reactive oxygen species (ROS) contribute to the development of D-galactosamine (D-GaIN)-induced liver injury in rats. In rats treated with D-GaIN (500 mg/kg), liver injury appeared 6 h after treatment and developed until 24 h. Hepatic XO and myeloperoxidase activities increased 12 and 6 h, respectively, after D-GalN treatment and continued to increase until 24 h. D-GalN-treated rats had increased hepatic lipid peroxide (LPO) content and decreased hepatic reduced glutathione (GSH) and ascorbic acid contents and superoxide dismutase (SOD), catalase and Se-glutathione peroxidase (Se-GSHpx) activities at 24 h, but not 6 h, after treatment. Allopurinol (10, 25 or 50 mg/kg) administered at 6 h after D-GalN treatment attenuated not only the advanced liver injury and increased hepatic XO activity but also all other changes observed at 24 h after the treatment dose-dependently. These results suggest that XO-derived ROS contribute to the development of D-GaIN-induced liver injury in rats.  相似文献   

3.
Pulmonary hypertension (PHT) in neonates is often refractory to the current best therapy, inhaled nitric oxide (NO). The utility of a new class of pulmonary vasodilators, Rho-kinase (ROCK) inhibitors, has not been examined in neonatal animals. Our objective was to examine the activity and expression of RhoA/ROCK in normal and injured pulmonary arteries and to determine the short-term pulmonary hemodynamic (assessed by pulse wave Doppler) effects of ROCK inhibitors (15 mg/kg ip Y-27632 or 30 mg/kg ip fasudil) in two neonatal rat models of chronic PHT with pulmonary vascular remodeling (chronic hypoxia, 0.13 Fi(O(2)), or 1 mg.kg(-1).day(-1) ip chronic bleomycin for 14 days from birth). Activity of the RhoA/ROCK pathway and ROCK expression were increased in hypoxia- and bleomycin-induced PHT. In both models, severe PHT [characterized by raised pulmonary vascular resistance (PVR) and impaired right ventricular (RV) performance] did not respond acutely to inhaled NO (20 ppm for 15 min) or to a single bolus of a NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1; 2 mug/kg ip). In contrast, a single intraperitoneal bolus of either ROCK inhibitor (Y-27632 or fasudil) completely normalized PVR but had no acute effect on RV performance. ROCK-mediated vasoconstriction appears to play a key role in chronic PHT in our two neonatal rat models. Inhibitors of ROCK have potential as a testable therapy in neonates with PHT that is refractory to NO.  相似文献   

4.
5.
6.
Physiopathological discrepancies exist between the most widely used models of pulmonary hypertension (PH), namely monocrotaline- and hypoxia-induced PH. The development of a new model could help in the understanding of underlying mechanisms. Repeated alpha-naphthylthiourea (ANTU) injections (5 mg/kg weekly, 3 wk) induced pulmonary vascular remodeling, which was associated with development of PH and right ventricular hypertrophy. ANTU followed by granulocyte colony-stimulating factor (G-CSF; 25 microgram. kg(-1). day(-1) subcutaneously, 3 days/wk) induced higher pulmonary arterial pressures and right ventricular hypertrophy than ANTU alone. Lidocaine, which inhibits neutrophil functions, inhibited PH exacerbation by G-CSF. Endothelial nitric oxide synthase expression, measured to assess ANTU-related endothelial toxicity, decreased significantly in ANTU-treated rats and fell even more sharply when G-CSF was given. This occurred despite a significant increase in vascular endothelial cell growth factor expression in lung and right ventricle in rats given ANTU alone and even more in rats given ANTU plus G-CSF. Repeated ANTU administration induces PH with vascular remodeling that can be further aggravated by the neutrophil activator G-CSF.  相似文献   

7.
RhoA GTPase mediates a variety of cellular responses, including activation of the contractile apparatus, growth, and gene expression. Acute hypoxia activates RhoA and, in turn, its downstream effector, Rho-kinase, and previous studies in rats have suggested a role for Rho/Rho-kinase signaling in both acute and chronically hypoxic pulmonary vasoconstriction. We therefore hypothesized that activation of Rho/Rho-kinase in the pulmonary circulation of mice contributes to acute hypoxic pulmonary vasoconstriction and chronic hypoxia-induced pulmonary hypertension and vascular remodeling. In isolated, salt solution-perfused mouse lungs, acute administration of the Rho-kinase inhibitor Y-27632 (1 x 10(-5) M) attenuated hypoxic vasoconstriction as well as that due to angiotensin II and KCl. Chronic treatment with Y-27632 (30 mg x kg(-1) x day(-1)) via subcutaneous osmotic pump decreased right ventricular systolic pressure, right ventricular hypertrophy, and neomuscularization of the distal pulmonary vasculature in mice exposed to hypobaric hypoxia for 14 days. Analysis of a small number of proximal pulmonary arteries suggested that Y-27632 treatment reduced the level of phospho-CPI-17, a Rho-kinase target, in hypoxic lungs. We also found that endothelial nitric oxide synthase protein in hypoxic lungs was augmented by Y-27632, suggesting that enhanced nitric oxide production might have played a role in the Y-27632-induced attenuation of chronically hypoxic pulmonary hypertension. In conclusion, Rho/Rho-kinase activation is important in the effects of both acute and chronic hypoxia on the pulmonary circulation of mice, possibly by contributing to both vasoconstriction and vascular remodeling.  相似文献   

8.
Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation, arrested lung growth, and pulmonary hypertension (PHT), as observed in human infants with severe bronchopulmonary dysplasia. Inhalation of CO(2) (therapeutic hypercapnia) has been described to limit cytokine production and to have anti-inflammatory effects on the injured lung; we therefore hypothesized that therapeutic hypercapnia would prevent bleomycin-induced lung injury. Spontaneously breathing rat pups were treated with bleomycin (1 mg/kg/d ip) or saline vehicle from postnatal days 1-14 while being continuously exposed to 5% CO(2) (Pa(CO(2)) elevated by 15-20 mmHg), 7% CO(2) (Pa(CO(2)) elevated by 35 mmHg), or normocapnia. Bleomycin-treated animals exposed to 7%, but not 5%, CO(2), had significantly attenuated lung tissue macrophage influx and PHT, as evidenced by normalized pulmonary vascular resistance and right ventricular systolic function, decreased right ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. The level of CO(2) neither prevented increased tissue neutrophil influx nor led to improvements in decreased lung weight, septal thinning, impaired alveolarization, or decreased numbers of peripheral arteries. Bleomycin led to increased expression and content of lung tumor necrosis factor (TNF)-α, which was found to colocalize with tissue macrophages and to be attenuated by exposure to 7% CO(2). Inhibition of TNF-α signaling with the soluble TNF-2 receptor etanercept (0.4 mg/kg ip from days 1-14 on alternate days) prevented bleomycin-induced PHT without decreasing tissue macrophages and, similar to CO(2), had no effect on arrested alveolar development. Our findings are consistent with a preventive effect of therapeutic hypercapnia with 7% CO(2) on bleomycin-induced PHT via attenuation of macrophage-derived TNF-α. Neither tissue macrophages nor TNF-α appeared to contribute to arrested lung development induced by bleomycin. That 7% CO(2) normalized pulmonary vascular resistance and right ventricular function without improving inhibited airway and vascular development suggests that vascular hypoplasia does not contribute significantly to functional changes of PHT in this model.  相似文献   

9.
10.
The selective serotonin re-uptake inhibitor fluoxetine has been shown to protect against monocrotaline (MCT)-induced pulmonary hypertension in rats. To investigate the possible role of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in mediating this protective effect, MCT-treated rats were administered fluoxetine by gavage, at doses of 2?mg/kg body mass or 10?mg/kg once daily for 3 weeks. Changes in pulmonary hemodynamic parameters, pulmonary artery morphologies, and expressions of HIF-1α and VEGF were assessed. Fluoxetine at the 10?mg/kg dose, but not at the 2?mg/kg dose, attenuated the effects of MCT on pulmonary artery pressure, right ventricle index, and medial wall thickness. In addition, 10?mg/kg fluoxetine mitigated the MCT-induced up-regulation of HIF-1α and VEGF protein and reactive oxygen species (ROS) in the lungs. This dosage also decreased pERK1/2 levels and inhibited proliferation of pulmonary arterial smooth muscle cells in MCT-treated rats. In conclusion, fluoxetine can protect against MCT-induced pulmonary arterial remodeling, which linked to reduced ROS generation and decreased HIF-1α and VEGF protein levels via the ERK1/2 phosphorylation pathway.  相似文献   

11.
Chronic hypoxia induces lung vascular remodeling, which results in pulmonary hypertension. We hypothesized that a previously found increase in collagenolytic activity of matrix metalloproteinases during hypoxia promotes pulmonary vascular remodeling and hypertension. To test this hypothesis, we exposed rats to hypoxia (fraction of inspired oxygen = 0.1, 3 wk) and treated them with a metalloproteinase inhibitor, Batimastat (30 mg/kg body wt, daily ip injection). Hypoxia-induced increases in concentration of collagen breakdown products and in collagenolytic activity in pulmonary vessels were inhibited by Batimastat, attesting to the effectiveness of Batimastat administration. Batimastat markedly reduced hypoxic pulmonary hypertension: pulmonary arterial blood pressure was 32 +/- 3 mmHg in hypoxic controls, 24 +/- 1 mmHg in Batimastat-treated hypoxic rats, and 16 +/- 1 mmHg in normoxic controls. Right ventricular hypertrophy and muscularization of peripheral lung vessels were also diminished. Batimastat had no influence on systemic arterial pressure or cardiac output and was without any effect in rats kept in normoxia. We conclude that stimulation of collagenolytic activity in chronic hypoxia is a substantial causative factor in the pathogenesis of pulmonary vascular remodeling and hypertension.  相似文献   

12.
miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling   总被引:2,自引:0,他引:2  
Chronic hypoxia causes pulmonary vascular remodeling leading to pulmonary hypertension (PH) and right ventricle (RV) hypertrophy. Aberrant expression of microRNA (miRNA) is closely associated with a number of pathophysiologic processes. However, the role of miRNAs in chronic hypoxia-induced pulmonary vascular remodeling and PH has not been well characterized. In this study, we found increased expression of miR-21 in distal small arteries in the lungs of hypoxia-exposed mice. Putative miR-21 targets, including bone morphogenetic protein receptor (BMPR2), WWP1, SATB1, and YOD1, were downregulated in the lungs of hypoxia-exposed mice and in human pulmonary artery smooth muscle cells (PASMCs) overexpressing miR-21. We found that sequestration of miR-21, either before or after hypoxia exposure, diminished chronic hypoxia-induced PH and attenuated hypoxia-induced pulmonary vascular remodeling, likely through relieving the suppressed expression of miR-21 targets in the lungs of hypoxia-exposed mice. Overexpression of miR-21 enhanced, whereas downregulation of miR-21 diminished, the proliferation of human PASMCs in vitro and the expression of cell proliferation associated proteins, such as proliferating cell nuclear antigen, cyclin D1, and Bcl-xL. Our data suggest that miR-21 plays an important role in the pathogenesis of chronic hypoxia-induced pulmonary vascular remodeling and also suggest that miR-21 is a potential target for novel therapeutics to treat chronic hypoxia associated pulmonary diseases.  相似文献   

13.
Enhanced proliferation of pulmonary arterial vascular smooth muscle cells (PASMCs) is a key pathological component of vascular remodeling in hypoxia-induced pulmonary hypertension (HPH). Mammalian targeting of rapamycin (mTOR) signaling has been shown to play a role in protein translation and participate in the progression of pulmonary hypertension. Eukaryotic translation initiation factor-2α (eIF2α) is a key factor in regulation of cell growth and cell cycle, but its role in mTOR signaling and PASMCs proliferation remains unknown. Pulmonary hypertension (PH) rat model was established by hypoxia. Rapamycin was used to treat rats as an mTOR inhibitor. Proliferation of primarily cultured rat PASMCs was induced by hypoxia, rapamycin and siRNA of mTOR and eIF2α were used in loss-of-function studies. The expression and activation of eIF2α, mTOR and c-myc were analyzed. Results showed that mTOR/eIF2α signaling was significantly activated in pulmonary arteries from hypoxia exposed rats and PASMCs cultured under hypoxia condition. Treatment with mTOR inhibitor for 21 days attenuated vascular remodeling, suppressed mTOR and eIF2α activation, inhibited c-myc expression in HPH rats. In hypoxia-induced PASMCs, rapamycin and knockdown of mTOR and eIF2α by siRNA significantly abolished proliferation and increased c-myc expression. These results suggest a critical role of the mTOR/eIF2αpathway in hypoxic vascular remodeling and PASMCs proliferation of HPH.  相似文献   

14.
Hyperlipidemia enhances xanthine oxidase (XO) activity. XO is an important source of reactive oxygen species (ROS). Since ROS are thought to promote atherosclerosis, we hypothesized that XO is involved in the development of atherosclerosis. ApoE(-/-) mice were fed a Western-type (WD) or control diet. In subgroups, tungsten (700 mg/L) was administered to inhibit XO. XO is a secreted enzyme which is formed in the liver as xanthine dehydrogenase (XDH) and binds to the vascular endothelium. High expression of XDH was found in the liver and WD increased liver XDH mRNA and XDH protein expression. WD induced the conversion of XDH to the radical-forming XO. Moreover, WD increased the hepatic expression of CD40, demonstrating activation of hepatic cells. Aortic tissue of ApoE(-/-) mice fed a WD for 6 months exhibited marked atherosclerosis, attenuated endothelium-dependent relaxation to acetylcholine, increased vascular oxidative stress, and mRNA expression of the chemokine KC. Tungsten treatment had no effect on plasma lipids but lowered the plasma XO activity. In animals fed a control diet, tungsten had no effect on radical formation, endothelial function, or atherosclerosis development. In mice fed a WD, however tungsten attenuated the vascular superoxide anion formation, prevented endothelial dysfunction, and attenuated KC mRNA expression. Most importantly, tungsten treatment largely prevented the development of atherosclerosis in the aorta of ApoE(-/-) mice on WD. Therefore, tungsten, potentially via the inhibition of XO, prevents the development of endothelial dysfunction and atherosclerosis in ApoE(-/-) mice on WD.  相似文献   

15.
16.
Acute hypoxia causes pulmonary vasoconstriction and coronary vasodilation. The divergent effects of hypoxia on pulmonary and coronary vascular smooth muscle cells suggest that the mechanisms involved in oxygen sensing and downstream effectors are different in these two types of cells. Since production of reactive oxygen species (ROS) is regulated by oxygen tension, ROS have been hypothesized to be a signaling mechanism in hypoxia-induced pulmonary vasoconstriction and vascular remodeling. Furthermore, an increased ROS production is also implicated in arteriosclerosis. In this study, we determined and compared the effects of hypoxia on ROS levels in human pulmonary arterial smooth muscle cells (PASMC) and coronary arterial smooth muscle cells (CASMC). Our results indicated that acute exposure to hypoxia (Po(2) = 25-30 mmHg for 5-10 min) significantly and rapidly decreased ROS levels in both PASMC and CASMC. However, chronic exposure to hypoxia (Po(2) = 30 mmHg for 48 h) markedly increased ROS levels in PASMC, but decreased ROS production in CASMC. Furthermore, chronic treatment with endothelin-1, a potent vasoconstrictor and mitogen, caused a significant increase in ROS production in both PASMC and CASMC. The inhibitory effect of acute hypoxia on ROS production in PASMC was also accelerated in cells chronically treated with endothelin-1. While the decreased ROS in PASMC and CASMC after acute exposure to hypoxia may reflect the lower level of oxygen substrate available for ROS production, the increased ROS production in PASMC during chronic hypoxia may reflect a pathophysiological response unique to the pulmonary vasculature that contributes to the development of pulmonary vascular remodeling in patients with hypoxia-associated pulmonary hypertension.  相似文献   

17.
There is current discussion whether reactive oxygen species are up- or downregulated in the pulmonary circulation during hypoxia, from which sources (i.e., mitochondria or NADPH oxidases) they are derived, and what the downstream targets of ROS are. We recently showed that the NADPH oxidase homolog NOX4 is upregulated in hypoxia-induced pulmonary hypertension in mice and contributes to the vascular remodeling in pulmonary hypertension. We here tested the hypothesis that NOX4 regulates K(v) channels via an increased ROS formation after prolonged hypoxia. We showed that (1) NOX4 is upregulated in hypoxia-induced pulmonary hypertension in rats and isolated rat pulmonary arterial smooth muscle cells (PASMC) after 3days of hypoxia, and (2) that NOX4 is a major contributor to increased reactive oxygen species (ROS) after hypoxia. Our data indicate colocalization of K(v)1.5 and NOX4 in isolated PASMC. The NADPH oxidase inhibitor and ROS scavenger apocynin as well as NOX4 siRNA reversed the hypoxia-induced decrease in K(v) current density whereas the protein levels of the channels remain unaffected by siNOX4 treatment. Determination of cysteine oxidation revealed increased NOX4-mediated K(v)1.5 channel oxidation. We conclude that sustained hypoxia decreases K(v) channel currents by a direct effect of a NOX4-derived increase in ROS.  相似文献   

18.
Chronic pulmonary hypertension in infancy and childhood is characterized by a fixed and progressive increase in pulmonary arterial pressure and resistance, pulmonary arterial remodeling, and right ventricular hypertrophy and systolic dysfunction. These abnormalities are replicated in neonatal rats chronically exposed to hypoxia from birth in which increased activity of Rho-kinase (ROCK) is critical to injury, as evidenced by preventive effects of ROCK inhibitors. Our objective in the present study was to examine the reversing effects of a late or rescue approach to treatment with a ROCK inhibitor on the pulmonary and cardiac manifestations of established chronic hypoxic pulmonary hypertension. Rat pups were exposed to air or hypoxia (13% O(2)) from postnatal day 1 and were treated with Y-27632 (15 mg/kg) or saline vehicle by twice daily subcutaneous injection commencing on day 14, for up to 7 days. Treatment with Y-27632 significantly attenuated right ventricular hypertrophy, reversed arterial wall remodeling, and completely normalized right ventricular systolic function in hypoxia-exposed animals. Reversal of arterial wall remodeling was accompanied by increased apoptosis and attenuated content of endothelin (ET)-1 and ET(A) receptors. Treatment of primary cultured juvenile rat pulmonary artery smooth muscle cells with Y-27632 attenuated serum-stimulated ROCK activity and proliferation and increased apoptosis. Smooth muscle apoptosis was also induced by short interfering RNA-mediated knockdown of ROCK-II, but not of ROCK-I. We conclude that sustained rescue treatment with a ROCK inhibitor reversed both the hemodynamic and structural abnormalities of chronic hypoxic pulmonary hypertension in juvenile rats and normalized right ventricular systolic function. Attenuated expression and activity of ET-1 and its A-type receptor on pulmonary arterial smooth muscle was a likely contributor to the stimulatory effects of ROCK inhibition on apoptosis. In addition, our data suggest that ROCK-II may be dominant in enhancing survival of pulmonary arterial smooth muscle.  相似文献   

19.
20.
Chen YF  Feng JA  Li P  Xing D  Ambalavanan N  Oparil S 《Life sciences》2006,79(14):1357-1365
Hypoxic stress upsets the balance in the normal relationships between mitogenic and growth inhibiting pathways in lung, resulting in pulmonary vascular remodeling characterized by hyperplasia of pulmonary arterial smooth muscle cells (PASMCs) and fibroblasts and enhanced deposition of extracellular matrix. Atrial natriuretic peptide (ANP) reduces pulmonary vascular resistance and attenuates hypoxia-induced pulmonary hypertension in vivo and PASMC proliferation and collagen synthesis in vitro. The current study utilized an ANP null mouse model (Nppa-/-) to test the hypothesis that ANP modulates the pulmonary vascular and alveolar remodeling response to normobaric hypoxic stress. Nine-10 wk old male ANP null (Nppa-/-) and wild type nontransgenic (NTG) mice were exposed to chronic hypoxia (10% O(2), 1 atm) or air for 6 wks. Measurement: pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial and alveolar remodeling were assessed. Hypoxia-induced pulmonary arterial hypertrophy and muscularization were significantly increased in Nppa-/- mice compared to NTG controls. Furthermore, the stimulatory effects of hypoxia on alveolar myofibroblast transformation (8.2 and 5.4 fold increases in Nppa-/- and NTG mice, respectively) and expression of extracellular matrix molecule (including osteopontin [OPN] and periostin [PN]) mRNA in whole lung were exaggerated in Nppa-/- mice compared to NTG controls. Combined with our previous finding that ANP signaling attenuates transforming growth factor (TGF)-beta-induced expression of OPN and PN in isolated PASMCs, the current study supports the hypothesis that endogenous ANP plays an important anti-fibrogenic role in the pulmonary vascular adaptation to chronic hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号