首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 954 毫秒
1.
Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin.  相似文献   

2.
Sphingolipids (SLs) play important roles in membrane structure and cell function. Here, we examine the SL requirements of various endocytic mechanisms using a mutant cell line and pharmacological inhibitors to disrupt SL biosynthesis. First, we demonstrated that in Chinese hamster ovary cells we could distinguish three distinct mechanisms of clathrin-independent endocytosis (caveolar, RhoA, and Cdc42 dependent) which differed in cargo, sensitivity to pharmacological agents, and dominant negative proteins. General depletion of SLs inhibited endocytosis by each clathrin-independent mechanism, whereas clathrin-dependent uptake was unaffected. Depletion of glycosphingolipids (GSLs; a subgroup of SLs) selectively blocked caveolar endocytosis and decreased caveolin-1 and caveolae at the plasma membrane. Caveolar endocytosis and PM caveolae could be restored in GSL-depleted cells by acute addition of exogenous GSLs. Disruption of RhoA- and Cdc42-regulated endocytosis by SL depletion was shown to be related to decreased targeting of these Rho proteins to the plasma membrane and could be partially restored by exogenous sphingomyelin but not GSLs. Both the in vivo membrane targeting and in vitro binding to artificial lipid vesicles of RhoA and Cdc42 were shown to be dependent upon sphingomyelin. These results provide the first evidence that SLs are differentially required for distinct mechanisms of clathrin-independent endocytosis.  相似文献   

3.
Glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) are present at the surface of living cells in cholesterol dependent nanoscale clusters. These clusters appear to act as sorting signals for the selective endocytosis of GPI-APs via a Cdc42-regulated, dynamin and clathrin-independent pinocytic pathway called the GPI-AP-enriched early endosomal compartments (GEECs) pathway. Here we show that endocytosis via the GEECs pathway is inhibited by mild depletion of cholesterol, perturbation of actin polymerization or overexpression of the Cdc42/Rac-interactive-binding (CRIB) motif of neural Wiskott-Aldrich syndrome protein (N-WASP). Consistent with the involvement of Cdc42-based actin nanomachinery, nascent endocytic vesicles containing cargo for the GEEC pathway co-localize with fluorescent protein-tagged isoforms of Cdc42, CRIB domain, N-WASP and actin; high-resolution electron microscopy on plasma membrane sheets reveals Cdc42-labelled regions rich in green fluorescent protein-GPI. Using total internal reflection fluorescence microscopy at the single-molecule scale, we find that mild cholesterol depletion alters the dynamics of actin polymerization at the cell surface by inhibiting Cdc42 activation and consequently its stabilization at the cell surface. These results suggest that endocytosis into GEECs occurs through a cholesterol-sensitive, Cdc42-based recruitment of the actin polymerization machinery.  相似文献   

4.
In eukaryotic cells, several pathways exist for the internalization of plasma membrane proteins and extracellular cargo molecules. These endocytic pathways can be divided into clathrin-dependent and clathrin-independent pathways. While clathrin-dependent pathways are known to be involved in a variety of cellular processes in plants, clathrin-independent pathways have so far only been identified in animal and yeast cells. Here we show that internalization of fluorescent glucose into BY-2 cells leads to accumulation of the sugar in compartments of the endocytic pathway. This endocytic uptake of glucose was not blocked by ikarugamycin, an inhibitor of clathrin-dependent endocytosis, suggesting a role for clathrin-independent endocytosis in glucose uptake. Investigations of fusion and fission of single vesicles by membrane capacitance measurements revealed stimulation of endocytic activity by extracellular glucose. Glucose-stimulated fission of vesicles was not affected by addition of ikarugamycin or blocking of clathrin coat formation by transient over-expression of HUB1 (the C-terminal part of the clathrin heavy chain). These data demonstrate that clathrin-independent endocytosis does occur in plant cells. This pathway may represent a common mechanism for the uptake of external nutrients.  相似文献   

5.
The actin filament (F-actin) cytoskeleton associates dynamically with the plasma membrane and is thus ideally positioned to participate in endocytosis. Indeed, a wealth of genetic and biochemical evidence has confirmed that actin interacts with components of the endocytic machinery, although its precise function in endocytosis remains unclear. Here, we use 4D microscopy to visualize the contribution of actin during compensatory endocytosis in Xenopus laevis eggs. We show that the actin cytoskeleton maintains exocytosing cortical granules as discrete invaginated compartments, such that when actin is disrupted, they collapse into the plasma membrane. Invaginated, exocytosing cortical granule compartments are directly retrieved from the plasma membrane by F-actin coats that assemble on their surface. These dynamic F-actin coats seem to drive closure of the exocytic fusion pores and ultimately compress the cortical granule compartments. Active Cdc42 and N-WASP are recruited to exocytosing cortical granule membranes before F-actin coat assembly and coats assemble by Cdc42-dependent, de novo actin polymerization. Thus, F-actin may power fusion pore resealing and function in two novel endocytic capacities: the maintenance of invaginated compartments and the processing of endosomes.  相似文献   

6.
The vacuolating cytotoxin VacA is a major virulence factor of Helicobacter pylori, a bacterium responsible for gastroduodenal ulcers and cancer. VacA associates with lipid rafts, is endocytosed, and reaches the late endocytic compartment where it induces vacuolation. We have investigated the endocytic and intracellular trafficking pathways used by VacA, in HeLa and gastric AGS cells. We report here that VacA was first bound to plasma-membrane domains localized above F-actin structures that were controlled by the Rac1 GTPase. VacA was subsequently pinocytosed by a clathrin-independent mechanism into cell peripheral early endocytic compartments lacking caveolin 1, the Rab5 effector early endosomes antigen-1 (EEA1) and transferrin. These compartments took up fluid-phase (as evidenced by the accumulation of fluorescent dextran) and glycosylphosphatidylinositol-anchored proteins (GPI-APs). VacA pinocytosis was controlled by Cdc42 and did not require cellular tyrosine kinases, dynamin 2, ADP-ribosylating factor 6, or RhoA GTPase activities. VacA was subsequently routed to EEA1-sorting endosomes and then sorted to late endosomes. During all these different endocytic steps, VacA was continuously associated with detergent resistant membrane domains. From these results we propose that VacA might be a valuable probe to study raft-associated molecules, pinocytosed by a clathrin-independent mechanism, and routed to the degradative compartment.  相似文献   

7.
Previous studies provide evidence for an endocytic mechanism in mammalian cells that is distinct from both clathrin-coated pits and caveolae, and is not inhibited by overexpression of GTPase-null dynamin mutants. This mechanism, however, has been defined largely in these negative terms. We applied a ferro-fluid-based purification of endosomes to identify endosomal proteins. One of the proteins identified in this way was flotillin-1 (also called reggie-2). Here, we show that flotillin-1 resides in punctate structures within the plasma membrane and in a specific population of endocytic intermediates. These intermediates accumulate both glycosylphosphatidylinositol (GPI)-linked proteins and cholera toxin B subunit. Endocytosis in flotillin-1-containing intermediates is clathrin-independent. Total internal reflection microscopy and immuno-electron microscopy revealed that flotillin-1-containing regions of the plasma membrane seem to bud into the cell, and are distinct from clathrin-coated pits and caveolin-1-positive caveolae. Flotillin-1 small interfering RNA (siRNA) inhibited both clathrin-independent uptake of cholera toxin and endocytosis of a GPI-linked protein. We propose that flotillin-1 is one determinant of a clathrin-independent endocytic pathway in mammalian cells.  相似文献   

8.
Adeno-associated viruses (AAVs) are nonpathogenic, nonenveloped, single-stranded DNA viruses in development as gene therapy vectors. AAV internalization was postulated to proceed via a dynamin-dependent endocytic mechanism. Revisiting this, we find that infectious endocytosis of the prototypical AAV, AAV2, is independent of clathrin, caveolin, and dynamin. AAV2 infection is sensitive to EIPA, a fluid-phase uptake inhibitor, but is unaffected by Rac1 mutants or other macropinocytosis inhibitors. In contrast, AAV2 infection requires actin cytoskeleton remodeling and membrane cholesterol and is sensitive to inhibition of Cdc42, Arf1, and GRAF1, factors known to be involved in the formation of clathrin-independent carriers (CLIC). AAV2 virions are internalized in the detergent-resistant GPI-anchored-protein-enriched endosomal compartment (GEEC) and translocated to the Golgi apparatus, similarly to the CLIC/GEEC marker cholera toxin B. Our results indicate that-unlike the viral entry mechanisms described so far-AAV2 uses the pleiomorphic CLIC/GEEC pathway as its major endocytic infection route.  相似文献   

9.
Juvenile Batten disease (juvenile neuronal ceroid lipofuscinosis, JNCL) is a devastating neurodegenerative disease caused by mutations in CLN3, a protein of undefined function. Cell lines derived from patients or mice with CLN3 deficiency have impairments in actin-regulated processes such as endocytosis, autophagy, vesicular trafficking, and cell migration. Here we demonstrate the small GTPase Cdc42 is misregulated in the absence of CLN3, and thus may be a common link to multiple cellular defects. We discover that active Cdc42 (Cdc42-GTP) is elevated in endothelial cells from CLN3 deficient mouse brain, and correlates with enhanced PAK-1 phosphorylation, LIMK membrane recruitment, and altered actin-driven events. We also demonstrate dramatically reduced plasma membrane recruitment of the Cdc42 GTPase activating protein, ARHGAP21. In line with this, GTP-loaded ARF1, an effector of ARHGAP21 recruitment, is depressed. Together these data implicate misregulated ARF1-Cdc42 signaling as a central defect in JNCL cells, which in-turn impairs various cell functions. Furthermore our findings support concerted action of ARF1, ARHGAP21, and Cdc42 to regulate fluid phase endocytosis in mammalian cells. The ARF1-Cdc42 pathway presents a promising new avenue for JNCL therapeutic development.  相似文献   

10.
Developmental control of endocytosis in dendritic cells by Cdc42   总被引:25,自引:0,他引:25  
Dendritic cells (DCs) developmentally regulate antigen uptake by controlling their endocytic capacity. Immature DCs actively internalize antigen. However, mature DCs are poorly endocytic, functioning instead to present antigens to T cells. We have found that endocytic downregulation reflects a decrease in endocytic activity controlled by Rho family GTPases, especially Cdc42. Blocking Cdc42 function by Toxin B treatment or injection of dominant-negative inhibitors of Cdc42 abrogates endocytosis in immature DCs. In mature DCs, injection of constitutively active Cdc42 or microbial delivery of a Cdc42 nucleotide exchange factor reactivates endocytosis. DCs regulate endogenous levels of Cdc42-GTP with activated Cdc42 detectable only in immature cells. We conclude that DCs developmentally regulate endocytosis at least in part by controlling levels of activated Cdc42.  相似文献   

11.
Endocytosis of tyrosine kinase receptors can influence both the duration and the specificity of the signal emitted. We have investigated the mechanisms of internalization of fibroblast growth factor receptor 3 (FGFR3) and compared it to that of FGFR1 which is internalized predominantly through clathrin-mediated endocytosis. Interestingly, we observed that FGFR3 was internalized at a slower rate than FGFR1 indicating that it may use a different endocytic mechanism than FGFR1. Indeed, after depletion of cells for clathrin, internalization of FGFR3 was only partly inhibited while endocytosis of FGFR1 was almost completely abolished. Similarly, expression of dominant negative mutants of dynamin resulted in partial inhibition of the endocytosis of FGFR3 whereas internalization of FGFR1 was blocked. Interfering with proposed regulators of clathrin-independent endocytosis such as Arf6, flotillin 1 and 2 and Cdc42 did not affect the endocytosis of FGFR1 or FGFR3. Furthermore, depletion of clathrin decreased the degradation of FGFR1 resulting in sustained signalling. In the case of FGFR3, both the degradation and the signalling were only slightly affected by clathrin depletion. The data indicate that clathrin-mediated endocytosis is required for efficient internalization and downregulation of FGFR1 while FGFR3, however, is internalized by both clathrin-dependent and clathrin-independent mechanisms.  相似文献   

12.
Intersectin 1L is a scaffolding protein involved in endocytosis that also has guanine nucleotide exchange activity for Cdc42. In the context of the full-length protein, the catalytic exchange activity of the DH domain is repressed. Here we use biochemical methods to dissect the mechanism for this inhibition. We demonstrate that the intersectin 1L SH3 domains, which bind endocytic proteins, directly inhibit the activity of the DH domain in assays for both binding and exchange of Cdc42. This inhibitory mechanism seems to act through steric hindrance of Cdc42 binding by an intramolecular interaction between the intersectin 1L SH3 domain region and the adjacent DH domain. Surprisingly, the mode of SH3 domain binding is other than through the proline peptide binding pocket. The dual role of the SH3 domains in endocytosis and repression of exchange activity suggests that the intersectin 1L exchange activity is regulated by endocytosis. We show that the endocytic protein, dynamin, competes for binding to the SH3 domains with the neural Wiskott-Aldrich Syndrome protein, an actin filament nucleation protein that is a substrate for activated Cdc42. Swapping of SH3 domain binding partners might act as a switch controlling the actin nucleation activity of intersectin 1L.  相似文献   

13.
The rho GTPase-activating protein GTPase regulator associated with focal adhesion kinase-1 (GRAF1) remodels membranes into tubulovesicular clathrin-independent carriers (CLICs) mediating lipid-anchored receptor endocytosis. However, the cell biological functions of this highly prevalent endocytic pathway are unclear. In this article, we present biochemical and cell biological evidence that GRAF1 interacted with a network of endocytic and adhesion proteins and was found enriched at podosome-like adhesions and src-induced podosomes. We further demonstrate that these sites comprise microdomains of highly ordered lipid enriched in GRAF1 endocytic cargo. GRAF1 activity was upregulated in spreading cells and uptake via CLICs was concentrated at the leading edge of migrating cells. Depletion of GRAF1, which inhibits CLIC generation, resulted in profound defects in cell spreading and migration. We propose that GRAF1 remodels membrane microdomains at adhesion sites into endocytic carriers, facilitating membrane turnover during cell morphological changes.  相似文献   

14.
In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs) forms GEECs (GPI-AP enriched early endosomal compartments) via an Arf1- and Cdc42-mediated, dynamin independent mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes). Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A, implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion.  相似文献   

15.
In addition to endocytosing molecules via clathrin-coated pits, cells also internalize membrane and fluid by a clathrin-independent endocytic mechanism. In this article we search for the equivalent of clathrin-coated pits in clathrin-independent endocytosis, and discuss some pitfalls in the interpretation of electron micrographs. We also discuss how the early steps in clathrin-independent endocytosis might be analysed morphologically, and we argue that caveolae are not involved in clathrin-independent endocytosis.  相似文献   

16.
Clathrin‐Dependent or Not: Is It Still the Question?   总被引:6,自引:1,他引:6  
Whether the endocytic uptake of a given molecule is mediated through clathrin-coated pits or not is a classical criterion used to characterize its endocytic pathway(s). Hence, clathrin-dependent endocytosis has been associated with highly selective and efficient uptake, whereas clathrin-independent endocytosis appeared to be confined to bulk uptake of fluid-phase markers. This scholastic view has recently been challenged using newly developed molecular tools that allow for the first time a functional and mechanistic analysis of these less well-characterized clathrin-independent pathways, including caveolar uptake and macropinocytosis. Furthermore, several studies point to a critical role of lateral lipid asymmetry – lipid rafts/microdomains – in membrane sorting. We will discuss the potential role of these structures in endocytosis and the possibility that differential sorting at the plasma membrane predisposes the ensuing intracellular fate of a given molecule as well as its physiological function.  相似文献   

17.
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.  相似文献   

18.
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin- dependent but not clathrin-independent endocytosis, we have now traced the intracellular routing of these nonclathrin coated vesicles to see whether molecules internalized by clathrin-independent endocytosis are delivered to a unique compartment or whether they reach the same early and late endosomes as encountered by molecules internalized with high efficiency through clathrin-coated pits and vesicles. We find that Con A-gold internalized by clathrin-independent endocytosis is delivered to endosomes containing transferrin receptors. After incubation of K(+)- depleted cells with Con A-gold for 15 min, approximately 75% of Con A- gold in endosomes is colocalized with transferrin receptors. Endosomes containing only Con A-gold may be accounted for either by depletion of existing endosomes for transferrin receptors or by de novo generation of endosomes. Cationized gold and BSA-gold internalized in K(+)- depleted cells are also delivered to endosomes containing transferrin receptors. h-lamp-1-enriched compartments are only reached occasionally within 30 min in K(+)-depleted as well as in control cells. Thus, preendosomal vesicles generated by clathrin-independent endocytosis do not fuse to any marked degree with late endocytic compartments. These data show that in HEp-2 cells, molecules endocytosed without clathrin are delivered to the same endosomes as reached by transferrin receptors internalized through clathrin-coated pits.  相似文献   

19.
Clathrin-dependent endocytosis is a main entry mechanism for the glycolipid-binding Shiga toxin (Stx), although clathrin-independent pathways are also involved. Binding of Stx to its receptor Gb3 not only is essential for Stx retrograde transport to the endoplasmic reticulum and toxicity but also activates signaling through the tyrosine kinase Syk. We previously described that Syk activity is important for Stx entry, but it remained unclear how this kinase modulates endocytosis of Stx. Here we characterized the effects of Stx and Syk on clathrin-coated pit formation. We found that acute treatment with Stx results in an increase in the number of clathrin-coated profiles as determined by electron microscopy and on the number of structures containing the endocytic AP-2 adaptor at the plasma membrane determined by live-cell spinning disk confocal imaging. These responses to Stx require functional Syk activity. We propose that a signaling pathway mediated by Syk and modulated by Stx leads to an increased number of endocytic clathrin-coated structures, thus providing a possible mechanism by which Stx enhances its own endocytosis.  相似文献   

20.
Little is known about the molecular mechanism of recycling of intracellular receptors and lipid raft-associated proteins. Here, we have investigated the recycling pathway and internalization mechanism of a transmembrane, lipid raft-associated intracellular prohormone sorting receptor, carboxypeptidase E (CPE). CPE is found in the trans-Golgi network (TGN) and secretory granules of (neuro)endocrine cells. An extracellular domain of the IL2 receptor alpha-subunit (Tac) fused to the transmembrane domain and cytoplasmic tail of CPE (Tac-CPE25) was used as a marker to track recycling of CPE. We show in (neuro)endocrine cells, that upon stimulated secretory granule exocytosis, raft-associated Tac-CPE25 was rapidly internalized from the plasma membrane in a clathrin-independent manner into early endosomes and then transported through the endocytic recycling compartment to the TGN. A yeast two-hybrid screen and in vitro binding assay identified the CPE cytoplasmic tail sequence S472ETLNF477 as an interactor with active small GTPase ADP-ribosylation factor (ARF) 6, but not ARF1. Expression of a dominant negative, inactive ARF6 mutant blocked this recycling. Mutation of residues S472 or E473 to A in the cytoplasmic tail of CPE obliterated its binding to ARF6, and internalization from the plasma membrane of Tac-CPE25 mutated at S472 or E473 was significantly reduced. Thus, CPE recycles back to the TGN by a novel mechanism requiring ARF6 interaction and activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号