首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompα) and the porin OmpB (or Ompβ). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant β-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had β-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.  相似文献   

2.
During growth with xylose or xylan as the source of carbon, xylanase production by Thermotoga maritima MSB8 was enhanced about 10-fold compared with growth with glucose or starch. Two extremely thermostable endoxylanases (1,4-(beta)-d-xylan-xylanohydrolase, EC 3.2.1.8), designated XynA and XynB, were identified and purified from cells of this organism. XynA and XynB occurred as proteins with apparent molecular masses of about 120 and 40 kDa, respectively, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Maximum activity at the optimal pH (pH 6.2 and pH 5.4 for XynA and XynB, respectively) was measured at about 92(deg)C for XynA (10-min assay) and at about 105(deg)C for XynB (5-min assay). XynB activity was stimulated twofold by the addition of 500 mM NaCl, while XynA displayed maximum activity without the addition of salt. Both xylanases were tolerant of relatively high salt concentrations. At 2 M (about 12% wt/vol) NaCl, XynA and XynB retained 49 and 65%, respectively, of their maximum activities. In contrast to XynB, XynA was able to adsorb to microcrystalline cellulose. Antibodies raised against a recombinant truncated XynA protein cross-reacted with XynB, indicating that the enzymes may have sequence or structural similarities. Part of the xylanase activity appeared to be associated with the outer membrane of T. maritima cells, since more than 40% of the total xylanase activity present in the crude cellular extract was found in the membrane fraction after high-speed centrifugation. Most of the membrane-bound activity appeared to be due to the 120-kDa xylanase XynA.  相似文献   

3.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

4.
Escherichia coli heat-stable enterotoxin Ip (STIp) is an extracellular toxin consisting of 18 amino acid residues that is synthesized as a precursor of pre (amino acid residues 1 to 19), pro (amino acid residues 20 to 54), and mature (amino acid residues 55 to 72) regions. The precursor synthesized in the cytoplasm is translocated across the inner membrane by the general export pathway consisting of Sec proteins. The pre region functions as a leader peptide and is cleaved during translocation. However, it remains unknown how the resulting peptide (pro-mature peptide) translocates across the outer membrane. In this study, we investigated the structure of the STIp that passes through the outer membrane to determine how it translocates through the outer membrane. The results showed that the pro region is cleaved in the periplasmic space. The generated peptide becomes the mature form of STIp, which happens to have disulfide bonds, which then passes through the outer membrane. We also showed that STIp with a carboxy-terminal peptide consisting of 3 amino acid residues passes through the outer membrane, whereas STIp with a peptide composed of 37 residues does not. Amino acid analysis of mutant STIp purified from culture supernatant revealed that the peptide composed of 37 amino acid residues was cleaved into fragments of 5 amino acid residues. In addition, analyses of STIps with a mutation at the cysteine residue and the dsbA mutant strain revealed that the formation of an intramolecular disulfide bond within STIp is not absolutely required for the mature region of STIp to pass through the outer membrane.  相似文献   

5.
Abstract A lysine-specific protease hydrolysing peptide bonds at the carboxyl side of lysine residues in Porphyromonas gingivalis was purified from culture supernatant by a combination of ion-exchange chromatography, gel filtration, and affinity chromatography. The molecular mass was 48 kDa and the p I value was 7.3. The enzyme hydrolysed the peptide bonds at the carboxyl side of lysine residues in synthetic substrates and natural proteins.  相似文献   

6.
A cDNA encoding LccIV, a previously uncharacterized laccase isozyme of the white-rot basidiomycete Trametes versicolor, was expressed in the methylotrophic yeast Pichia pastoris. The LccIV isozyme is not expressed by T. versicolor under normal culture conditions and the enzyme was, therefore, investigated to determine whether it had any unusual properties. The native signal peptide of LccIV directed efficient secretion and correct proteolytic processing of LccIV to the mature form, whereas, substitution with the Saccharomyces cerevisiae α-mating factor signal peptide led to retention of an additional tetrapeptide at the amino-terminus of the secreted enzyme and ∼25% lower specific activity in fermentor medium. Active LccIV was purified to homogeneity by sequential steps of ion-exchange, size-exclusion and hydrophobic interaction chromatography. The enzyme contains ∼25% N-linked glycans (∼40% total carbohydrate) and has an apparent molecular mass of ∼85 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and ∼100 kDa by size-exclusion chromatography, indicating a monomeric structure. A pH of 5.5 was optimal for oxidation of 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Thus, the LccIV isozyme appears to be similar in these respects to the laccase isozymes constitutively expressed by T. versicolor.  相似文献   

7.
A previous report dealt with the cloning in Escherichia coli and sequencing of both the cDNA and genomic DNA encoding a highly active xylanase (XynA) of Aureobasidium pullulans (X.-L. Li and L. G. Ljungdahl, Appl. Environ. Microbiol. 60:3160-3166, 1994). Now we show that the gene was expressed in Saccharomyces cerevisiae under the GAL1 promoter in pYES2 and that its product was secreted into the culture medium. S. cerevisiae clone pCE4 with the whole open reading frame of xynA, including the part coding for the signal peptide, had xylanase activity levels of 6.7 U ml-1 in the cell-associated fraction and 26.2 U ml-1 in the culture medium 4 h after galactose induction. Two protein bands with sizes of 25 and 27 kDa and N-terminal amino acid sequences identical to that of APX-II accounted for 82% of the total proteins in the culture medium of pCE4. These proteins were recognized by anti-APX-II antibody. The results suggest that the XynA signal peptide supported the posttranslational processing of xynA product and the efficient secretion of the active xylanase from S. cerevisiae. Clones pCE3 and pGE3 with inserts of cDNA and genomic DNA, respectively, containing only the mature enzyme region attached by a Met codon had low levels of xylanase activity in the cell-associated fractions (1.6 U ml-1) but no activity in the culture media. No xylanase activity was detected in clone pGE4, which was the same as pCE4, except that pGE4 had a 59-bp intron in the signal peptide region. A comparison of the A. pullulans and S. cerevisiae signal peptides demonstrated that the XynA signal peptide was at least three times more efficient than those of S. cerevisiae invertase or mating alpha-factor pheromone in secreting the heterologous xylanase from S. cerevisiae cells.  相似文献   

8.
The amino-terminal region of a 70 kDa mitochondrial outer membrane protein of yeast and the presequence of cytochrome c1, an inner membrane protein exposed to the intermembrane space, are thought to be responsible for localizing the proteins in their final destinations after synthesis in the cytosol. Gene fusion experiments were used to identify signals that are responsible for protein sorting between the outer and inner mitochondrial membranes. The submitochondrial localization of cytochrome c1 whose presequence was replaced by the amino-terminal region of the 70 kDa mitochondrial outer membrane protein has been investigated. We have also used an in vivo complementation assay to determine whether or not a 70k-cyt c1 fusion protein is functional. Both the first half and all of the presequence of cytochrome c1 can be replaced by the amino-terminal 12 or 29 residues of the 70 kDa protein for transport to the inner membrane and functional assembly into succinate-cytochrome c reductase. However, replacements by the amino-terminal 61 residues of the 70 kDa protein result in exclusive localization of the fusion proteins to the outer membrane, and the fusions cannot be assembled into the enzyme complex. These data indicate that a mitochondrial targeting signal alone is sufficient to direct cytochrome c1 of mature size to the inner membrane.  相似文献   

9.
The hyperthermophilic bacterium Thermotoga maritima is capable of gaining metabolic energy utilizing xylan. XynA, one of the corresponding hydrolases required for its degradation, is a 120-kDa endo-1,4-D-xylanase exhibiting high intrinsic stability and a temperature optimum approximately 90 degrees C. Sequence alignments with other xylanases suggest the enzyme to consist of five domains. The C-terminal part of XynA was previously shown to be responsible for cellulose binding (Winterhalter C, Heinrich P, Candussio A, Wich G, Liebl W. 1995. Identification of a novel cellulose-binding domain within the multi-domain 120 kDa Xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol Microbiol 15:431-444). In order to characterize the domain organization and the stability of XynA and its C-terminal cellulose-binding domain (CBD), the two separate proteins were expressed in Escherichia coli. CBD, because of its instability in its ligand-free form, was expressed as a glutathione S-transferase fusion protein with a specific thrombin cleavage site as linker. XynA and CBD were compared regarding their hydrodynamic and spectral properties. As taken from analytical ultracentrifugation and gel permeation chromatography, both are monomers with 116 and 22 kDa molecular masses, respectively. In the presence of glucose as a ligand, CBD shows high intrinsic stability. Denaturation/renaturation experiments with isolated CBD yield > 80% renaturation, indicating that the domain folds independently. Making use of fluorescence emission and far-UV circular dichroism in order to characterize protein stability, guanidine-induced unfolding of XynA leads to biphasic transitions, with half-concentrations c1/2 (GdmCl) approximately 4 M and > 5 M, in accordance with the extreme thermal stability. At acid pH, XynA exhibits increased stability, indicated by a shift of the second guanidine-transition from 5 to 7 M GdmCl. This can be tentatively attributed to the cellulose-binding domain. Differences in the transition profiles monitored by fluorescence emission and dichroic absorption indicate multi-state behavior of XynA. In the case of CBD, a temperature-induced increase in negative ellipticity at 217 nm is caused by alterations in the environment of aromatic residues that contribute to the far-UV CD in the native state.  相似文献   

10.
Proenzyme dipeptidyl peptidase I (DPP I) of Schistosoma japonicum was expressed in a baculovirus expression system utilizing Trichoplusia ni BTI-5B1-4 (High Five) strain host insect cells. The recombinant enzyme was purified from cell culture supernatants by affinity chromatography on nickel-nitriloacetic acid resin, exploiting a polyhistidine tag fused to the COOH-terminus of the recombinant protease. The purified recombinant enzyme resolved in reducing SDS-PAGE gels as three forms, of 55, 39, and 38 kDa, all of which were reactive with antiserum raised against bacterially expressed S. japonicum DPP I. NH(2)-terminal sequence analysis of the 55-kDa polypeptide revealed that it corresponded to residues -180 to -175, NH(2)-SRXKXK, of the proregion peptide of S. japonicum DPP I. The 39- and 38-kDa polypeptides shared the NH(2)-terminal sequence, LDXNQLY, corresponding to residues -73 to -67 of the proregion peptide and thus were generated by removal of 126 residues from the NH(2)-terminus of the proenzyme. Following activation for 24 h at pH 7.0, 37 degrees C under reducing conditions, the recombinant enzyme exhibited exopeptidase activity against synthetic peptidyl substrates diagnostic of DPP I. Specificity constants (k(cat)/K(m)) for the recombinant protease for the substrates H-Gly-Arg-NHMec and H-Gly-Phe-NHMec were found to be 14.4 and 10.7 mM(-)1 s(-1), respectively, at pH 7.0. Approximately 1 mg of affinity-purified schistosome DPP I was obtained per liter of insect cell culture supernatant, representing approximately 2 x 10(9) High Five cells.  相似文献   

11.
We have examined the structural requirements at the NH2-terminal region of the lipoprotein for its assembly in the outer membrane of Escherichia coli by constructing a hybrid protein consisting of an NH2-terminal portion of the prolipoprotein, consisting of the signal peptide and 9 amino acid residues of lipoprotein, and the entire beta-lactamase sequence. The results from this study indicate that the hybrid protein is modified with glyceride, processed in a globomycin-sensitive step, and localized in the outer membrane. The translocation of the hybrid protein across the cytoplasmic membrane occurs post-translationally and is inhibited by carbonyl cyanide m-chlorophenylhydrazone. Our results, therefore, indicate that the signal peptide and 9 amino acid residues of prolipoprotein are sufficient for its modification, processing, and localization in the outer membrane.  相似文献   

12.
Haemophilus influenzae elaborates a surface protein called Hap, which is associated with the capacity for intimate interaction with cultured epithelial cells. Expression of hap results in the production of three protein species: outer membrane proteins of approximately 155 kDa and 45 kDa and an extracellular protein of approximately 110 kDa. The 155 kDa protein corresponds to full-length mature Hap (without the signal sequence), and the 110 kDa extracellular protein represents the N-terminal portion of mature Hap (designated Haps). In the present study, we examined the mechanism of processing and secretion of Hap. Site-directed mutagenesis suggested that Hap is a serine protease that undergoes autoproteolytic cleavage to generate the 110 kDa extracellular protein and the 45 kDa outer membrane protein. Biochemical analysis confirmed this conclusion and established that cleavage occurs on the bacterial cell surface. Determination of N-terminal amino acid sequence and mutagenesis studies revealed that the 45 kDa protein corresponds to the C-terminal portion of Hap, starting at N1037. Analysis of the secondary structure of this protein (designated Hapβ) predicted formation of a β-barrel with an N-terminal transmembrane α-helix followed by 14 transmembrane β-strands. Additional analysis revealed that the final β-strand contains an amino acid motif common to other β-barrel outer membrane proteins. Upon deletion of this entire C-terminal consensus motif, Hap could no longer be detected in the outer membrane, and secretion of Haps was abolished. Deletion or complete alteration of the final three amino acid residues had a similar but less dramatic effect, suggesting that this terminal tripeptide is particularly important for outer membrane localization and/or stability of the protein. In contrast, isolated point mutations that disrupted the amphipathic nature of the consensus motif or eliminated the C-terminal tryptophan had no effect on outer membrane localization of Hap or secretion of Haps. These results provide insight into a growing family of Gram-negative bacterial exoproteins that are secreted by an IgA1 protease-like mechanism; in addition, they contribute to a better understanding of the structural determinants of targeting of β-barrel proteins to the bacterial outer membrane.  相似文献   

13.
The binding of salivary amylase to Streptococcus gordonii has previously been shown to involve a 20-kDa amylase-binding protein (AbpA). S. gordonii also releases an 82-kDa protein into the supernatant that binds amylase. To study this 82-kDa component, proteins were precipitated from bacterial culture supernatants by the addition of acetone or purified amylase. Precipitated proteins were separated by SDS-PAGE and transferred to a sequencing membrane. The P2 kDa band was then sequenced, yielding a 25 N-terminal amino acid sequence, CGFIFGRQLTADGSTMFGPTEDYP. Primers derived from this sequence were used in an inverse PCR strategy to clone the full-length gene from S. gordonii chromosomal DNA. An open reading frame of 1959 bp was noted that encoded a 652 amino acid protein having a predicted molecular mass of 80 kDa. The first 24 amino acid residues were consistent with a hydrophobic signal peptide, followed by a 25 amino acid N-terminal sequence that shared identity (24 of 25 residues) with the amino acid sequence of purified AbpB. The abpB gene from strains of S. gordonii was interrupted by allelic exchange with a 420-bp fragment of the abpB gene linked to an erythromycin cassette. The 82-kDa protein was not detected in supernatants from these mutants. These abpB mutants retained the ability to bind soluble amylase. Thus, AbpA, but not AbpB, appears sufficient to be the major receptor for amylase binding to the streptococcal surface. The role of AbpB in bacterial colonization remains to be elucidated.  相似文献   

14.
The gene for the Pseudomonas aeruginosa outer membrane lipoprotein I was isolated from a genomic library in the phage lambda EMBL3 vector and subsequently subcloned in the low copy-number, wide host-range plasmid vector, pKT240. The cloned gene was highly expressed, resulting in the production of a low molecular-weight protein (8 kD) that was found to be associated with the outer membrane. Sequence analysis showed an open reading frame of 83 amino acids with a putative N-terminal hydrophobic signal peptide of 19 residues immediately followed by the lipoprotein consensus sequence, GLY-CYS-SER-SER (residues 19-22). The predicted amino acid composition of the mature polypeptide and that of the purified lipoprotein I of P. aeruginosa (Mizuno and Kageyama, 1979) were identical. In contrast with other Gram-negative outer membrane lipoproteins, conformation predictions suggested that the mature protein was a single alpha helix.  相似文献   

15.
Cell surface-associated materials of Actinobacillus actinomycetemcomitans were extracted by a short incubation of the cell suspension in a Tris-buffered saline in the presence and absence of a restriction enzyme, EcoRI. The supernatants (which we termed EcoRI extract and surface extract, respectively) contained a number of extracellularly released proteins. Of these proteins, four major proteins were identified by N-terminal sequencing to be the 34 and 39 kDa outer membrane proteins, the GroEL-like protein, and a 47 kDa protein homologous to Haemophilus influenzae enolase. Enolase activity was found in the extracts and its relative amount of activity in the EcoRI extract from a culture of the mid-exponential growth phase was estimated as 5.7% of total enzyme activity. In contrast, the relative amount of activity of another cytosolic enzyme, lactate dehydrogenase, was extremely low in the extracts and also in the culture supernatant. These results suggest the external localization of enolase in this bacterium.  相似文献   

16.
Penicillum sp. 40, which can grow in an extremely acidic medium at pH 2.0 was screened from an acidic soil. This fungus produces xylanases when grown in a medium containing xylan as a sole carbon source. A major xylanase was purified from the culture supernatant of Penicillium sp. 40 and designated XynA. The molecular mass of XynA was estimated to be 25,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. XynA has an optimum pH at 2.0 and is stable in pH 2.0-5.0. Western blot analysis using anit-XynA antibody showed that XynA was induced by xylan and repressed by glucose. Also, its production was increased by an acidic medium. The gene encoding XynA (xynA) was isolated from the genomic library of Penicillium sp. 40. The structural part of xynA was found to be 721 bp. The nucleotide sequence of cDNA amplified by RT-PCR showed that the open reading frame of xynA was interrupted by a single intron which was 58 bp in size and encoded 221 amino acids. Direct N-terminal amino acid sequencing showed that the precursor of XynA had a signal peptide composed of 31 amino acids. The molecular mass caliculated from the deduced amino acid sequence of XynA is 20,713. This is lower than that estimated by gel electrophoresis, suggesting that XynA is a glycoprotein. The predicted amino acid sequence of XynA has strong similarity to other family xylanases from fungi.  相似文献   

17.
The human T cell Ag CD27 belongs to a recently defined family of cell surface receptors, including the nerve growth factor receptor, two distinct tumor necrosis factor receptors, and the B cell specific molecule CD40. On resting T cells, CD27 is a transmembrane homodimer with subunits of 50 to 55 kDa (p55). T cell activation via the TCR/CD3 complex causes a strong enhancement of p55 expression. Concomitantly, an alternative form of the CD27 molecule with a molecular mass of 28 to 32 kDa (p32) appears at the cell surface. With the use of ELISA, we here show that a soluble form of CD27 (sCD27) can be detected in the supernatant of T cells activated with anti-CD3 or combinations of anti-CD2 mAb. Moreover, sCD27 is found in both serum and urine from healthy donors. sCD27, purified from either culture supernatant or urine, has a molecular mass of 28 to 32 kDa and is, according to peptide mapping, structurally homologous to the p55 membrane form of CD27. Quantification of sCD27 levels may be used as a marker for T lymphocyte activation in vivo.  相似文献   

18.
A clone expressing xylanase activity in Escherichia coli has been selected from a genomic plasmid library of the thermophilic Bacillus strain D3. Subcloning from the 9-kb insert located the xylanase activity to a 2.7-kb HindII/BamHI fragment. The DNA sequence of this clone revealed an ORF of 367 codons encoding a single domain type-F or family 10 enzyme, which was designated as XynA. Purification of the enzyme following over-expression in E. coli produced an enzyme of 42 kDa with a temperature optimum of 75 degrees C which can efficiently bind and hydrolyse insoluble xylan. The pH optimum of the enzyme is 6.5, but it is active over a broad pH range. A homology model of the xylanase has been constructed which reveals a series of surface aromatic residues which form hydrophobic clusters. This unusual structural feature is strikingly similar to the situation observed in the structure determined for the type-G xylanase from the Bacillus D3 strain and may constitute a common evolutionary mechanism imposed on different structural frameworks by which these xylanases may bind potential substrates and exhibit thermostability.  相似文献   

19.
A cDNA was cloned coding for human placental 5'-nucleotidase. The 3547-bp cDNA contains an open reading frame that encodes a 574-residue polypeptide with calculated size of 63 375 Da. The NH2-terminal 26 residues comprise a signal peptide, which is followed by the NH2-terminal sequence of the purified protein. four potential N-linked glycosylation sites are found in the molecule, accounting for a larger mass of the mature form (71 kDa). The predicted structure contains a hydrophobic amino acid sequence at the COOH terminus, a possible signal for the post-translational modification by glycophospholipid. To confirm this possibility, we tried to isolate and characterize the membrane-anchoring domain of 5'-nucleotidase. BrCN-cleaved fragments of the protein were extracted with hexane and subjected to HPLC, resulting in purification of a single component of 2.3 kDa. Chemical analyses revealed that the purified fragment contains the tetradecapeptide Lys-Val-Ile-Tyr-Pro-Ala-Val-Glu-Gly-Arg-Ile-Lys-Phe-Ser, ethanolamine, glucosamine, mannose, inositol, palmitic acid, and stearic acid. The peptide sequence determined is identified at positions 510-523 in the primary structure deduced from the cDNA sequence, which predicts a further extension to position 548, containing the hydrophobic amino acid sequence. Thus, it is concluded that the mature 5'-nucleotidase lacks the predicted COOH-terminal peptide extension (524-548), which has been replaced by the glycophospholipid functioning as the membrane anchor of 5'-nucleotidase.  相似文献   

20.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号