首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In hypertension, increased peripheral resistance maintains elevated levels of arterial blood pressure. The increase in peripheral resistance results, in part, from abnormal constrictor and dilator responses and vascular remodeling. In this review, we consider four cellular signaling pathways as possible explanations for these abnormal vascular responses: (1) augmented signaling via the epidermal growth factor receptor to cause remodeling of the cerebrovasculature; (2) reduced sphingolipid signaling leading to blunted vasodilation and increased smooth muscle proliferation; (3) increased signaling via Rho/Rho kinase leading to enhanced vasoconstriction, and (4) a relative state of microtubular depolymerization favoring vasoconstriction in hypertension. These novel cell signaling pathways provide new pharmacological targets to reduce total peripheral vascular resistance in hypertension.  相似文献   

2.
The contractile function of vascular smooth muscle cells within the media of resistance arterioles is tightly connected to the role of these blood vessels in the maintenance of blood pressure homeostasis. Thus, much effort has been made to understand the intracellular signaling pathways that control vascular smooth muscle cell contractility with the aim that this knowledge will provide important clues for reducing the impact of uncontrolled blood pressure in our society. A key set of surface receptors, the G-protein coupled receptors, has been widely associated with the regulation of vascular smooth muscle cell contractility. Indeed, many of the current treatments for hypertension involve selective inhibition of these receptors. More recently, we have begun to understand the cellular mechanisms whereby G-protein coupled pathways are connected to the contractile machinery of the vascular smooth muscle cells. What has emerged is a view where there are multiple intracellular control points for G-protein signaling that coordinate and focus the extracellular stimuli into meaningful physiologic responses. This work will examine some of the recent advances in our understanding of G-protein signaling and its regulation of contractile function in vascular smooth muscle cells.  相似文献   

3.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

4.
Rho signaling pathways in vascular smooth muscle cells are highly activated in hypertension, a condition associated with a variety of vascular diseases, including restenosis injury and atherosclerosis. In this review we suggest that inflammatory cytokines and agonists of G protein-coupled receptors that activate Rho are effective triggers of vascular disease. Accordingly, Rho kinase inhibitors and statins may have therapeutic potential for preventing vascular disease characterized by Rho-mediated cell proliferation and gene expression.  相似文献   

5.
Regulation of vascular smooth muscle cell contractile state is critical for the maintenance of blood vessel tone. Abnormal vascular smooth muscle cell contractility plays an important role in the pathogenesis of hypertension, blood vessel spasm, and atherosclerosis. Myosin phosphatase, the key enzyme controlling myosin light chain dephosphorylation, regulates smooth muscle cell contraction. Vasoconstrictor and vasodilator pathways inhibit and activate myosin phosphatase, respectively. G-protein-coupled receptor agonists can inhibit myosin phosphatase and cause smooth muscle cell contraction by activating RhoA/Rho kinase, whereas NO/cGMP can activate myosin phosphatase and cause smooth muscle cell relaxation by activation of cGMP-dependent protein kinase. We have used yeast two-hybrid screening to identify a 116-kDa human protein that interacts with both myosin phosphatase and RhoA. This myosin phosphatase-RhoA interacting protein, or M-RIP, is highly homologous to murine p116RIP3, is expressed in vascular smooth muscle, and is localized to actin myofilaments. M-RIP binds directly to the myosin binding subunit of myosin phosphatase in vivo in vascular smooth muscle cells by an interaction between coiled-coil and leucine zipper domains in the two proteins. An adjacent domain of M-RIP directly binds RhoA in a nucleotide-independent manner. M-RIP copurifies with RhoA and Rho kinase, colocalizes on actin stress fibers with RhoA and MBS, and is associated with Rho kinase activity in vascular smooth muscle cells. M-RIP can assemble a complex containing both RhoA and MBS, suggesting that M-RIP may play a role in myosin phosphatase regulation by RhoA.  相似文献   

6.
Nitric oxide (NO) inhibits vascular contraction by activating cGMP-dependent protein kinase I-alpha (PKGI-alpha), which causes dephosphorylation of myosin light chain (MLC) and vascular smooth muscle relaxation. Here we show that PKGI-alpha attenuates signaling by the thrombin receptor protease-activated receptor-1 (PAR-1) through direct activation of regulator of G-protein signaling-2 (RGS-2). NO donors and cGMP cause cGMP-mediated inhibition of PAR-1 and membrane localization of RGS-2. PKGI-alpha binds directly to and phosphorylates RGS-2, which significantly increases GTPase activity of G(q), terminating PAR-1 signaling. Disruption of the RGS-2-PKGI-alpha interaction reverses inhibition of PAR-1 signaling by nitrovasodilators and cGMP. Rgs2-/- mice develop marked hypertension, and their blood vessels show enhanced contraction and decreased cGMP-mediated relaxation. Thus, PKGI-alpha binds to, phosphorylates and activates RGS-2, attenuating receptor-mediated vascular contraction. Our study shows that RGS-2 is required for normal vascular function and blood pressure and is a new drug development target for hypertension.  相似文献   

7.
Vascular tone, an important determinant of systemic vascular resistance and thus blood pressure, is affected by vascular smooth muscle (VSM) contraction. Key signaling pathways for VSM contraction converge on phosphorylation of the regulatory light chain (RLC) of smooth muscle myosin. This phosphorylation is mediated by Ca(2+)/calmodulin-dependent myosin light chain kinase (MLCK) but Ca(2+)-independent kinases may also contribute, particularly in sustained contractions. Signaling through MLCK has been indirectly implicated in maintenance of basal blood pressure, whereas signaling through RhoA has been implicated in salt-induced hypertension. In this report, we analyzed mice with smooth muscle-specific knockout of MLCK. Mesenteric artery segments isolated from smooth muscle-specific MLCK knockout mice (MLCK(SMKO)) had a significantly reduced contractile response to KCl and vasoconstrictors. The kinase knockout also markedly reduced RLC phosphorylation and developed force. We suggest that MLCK and its phosphorylation of RLC are required for tonic VSM contraction. MLCK(SMKO) mice exhibit significantly lower basal blood pressure and weaker responses to vasopressors. The elevated blood pressure in salt-induced hypertension is reduced below normotensive levels after MLCK attenuation. These results suggest that MLCK is necessary for both physiological and pathological blood pressure. MLCK(SMKO) mice may be a useful model of vascular failure and hypotension.  相似文献   

8.
Hypertension, elevated arterial pressure, occurs as the consequence of increased peripheral resistance. G protein-coupled receptors (GPCRs) contribute to the regulation of vasodilator and vasoconstrictor responses, and their activity is regulated by a family of GPCR kinases (GRKs). GRK2 expression is increased in hypertension and this facilitates the development of the hypertensive state by increasing the desensitization of GPCRs important for vasodilation. We demonstrate here, that genetic knockdown of GRK2 using a small hairpin (sh) RNA results in altered vascular reactivity and the development of hypertension between 8–12 weeks of age in shGRK2 mice due to enhanced Gαq/11 signaling. Vascular smooth muscle cells (VSMCs) cultured from shGRK2 knockdown mice show increases in GPCR-mediated Gαs and Gαq/11 signaling, as the consequence of reduced GRK2-mediated desensitization. In addition, agonists and biased agonists exhibited age-dependent alterations in ERK1/2 and Akt signaling, as well as cell proliferation and migration responses in shGRK2 knockdown VSMCs when cultured from mice that are either 3 months or 6 months of age. Changes in angiotensin II-stimulated ERK1/2 phosphorylation are observed in VSMCs derived from 6-week-old shGRK2 mice prior to the development of the hypertensive phenotype. Thus, our findings indicate that the balance between mechanisms regulating vascular tone are shifted to favor vasoconstriction in the absence of GRK2 expression and that this leads to the age-dependent development of hypertension, as a consequence of global alterations in GPCR signaling. Consequently, therapeutic strategies that target GRK2 activity, not expression, may be more effective for the treatment of hypertension.  相似文献   

9.
10.
Hypertension is a cardiovascular disease associated with increased plasma catecholamines, overactivation of the sympathetic nervous system, and increased vascular tone and total peripheral resistance. A key regulator of sympathetic nervous system function is the alpha(1D)-adrenergic receptor (AR), which belongs to the adrenergic family of G-protein-coupled receptors (GPCRs). Endogenous catecholamines norepinephrine and epinephrine activate alpha(1D)-ARs on vascular smooth muscle to stimulate vasoconstriction, which increases total peripheral resistance and mean arterial pressure. Indeed, alpha(1D)-AR KO mice display a hypotensive phenotype and are resistant to salt-induced hypertension. Unfortunately, little information exists about how this important GPCR functions because of an inability to obtain functional expression in vitro. Here, we identified the dystrophin proteins, syntrophin, dystrobrevin, and utrophin as essential GPCR-interacting proteins for alpha(1D)-ARs. We found that dystrophins complex with alpha(1D)-AR both in vitro and in vivo to ensure proper functional expression. More importantly, we demonstrate that knock-out of multiple syntrophin isoforms results in the complete loss of alpha(1D)-AR function in mouse aortic smooth muscle cells and abrogation of alpha(1D)-AR-mediated increases in blood pressure. Our findings demonstrate that syntrophin and utrophin associate with alpha(1D)-ARs to create a functional signalosome, which is essential for alpha(1D)-AR regulation of vascular tone and blood pressure.  相似文献   

11.
Resistance arteries are able to adapt to physiological and pathophysiological stimuli to maintain adequate perfusion according to the metabolic demand of the tissue. Although vasomotor control allows rapid adaptation of lumen diameter, vascular remodeling constitutes an active process that occurs in response to long-term alterations of hemodynamic parameters. Unfortunately, this initially adaptive process contributes to the pathology of vascular diseases. Recent studies have demonstrated the participation of Rho protein signaling pathways in several cardiovascular pathologies including hypertension, coronary artery spasm, effort angina, atherosclerosis, and restenosis. Functional analyses have further revealed that RhoA-dependent pathways are involved in excessive contraction, migration, and proliferation associated with arterial diseases. The present review focuses on the role of Rho proteins, in particular RhoA, in vascular smooth muscle cells and the involvement of Rho-dependent signaling pathways in resistance artery remodeling, more particularly in relation to hypertension.  相似文献   

12.
More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.  相似文献   

13.
Hemoglobin has been studied and well characterized in red blood cells for over 100 years. However, new work has indicated that the hemoglobin α subunit (Hbα) is also found within the blood vessel wall, where it appears to localize at the myoendothelial junction (MEJ) and plays a role in regulating nitric oxide (NO) signaling between endothelium and smooth muscle. This discovery has created a new paradigm for the control of endothelial nitric oxide synthase activity, nitric oxide diffusion, and, ultimately, vascular tone and blood pressure. This review discusses the current knowledge of hemoglobin׳s properties as a gas exchange molecule in the bloodstream and extrapolates the properties of Hbα biology to the MEJ signaling domain. Specifically, we propose that Hbα is present at the MEJ to regulate NO release and diffusion in a restricted physical space, which would have powerful implications for the regulation of blood flow in peripheral resistance arteries.  相似文献   

14.
Heterotrimeric G proteins of the G(i), G(s), and G(q) family control a wide array of physiological functions primarily by regulating the activity of key intracellular second messenger-generating systems. alpha subunits of the G(12) family, Galpha(12) and Galpha(13), however, can promote cellular responses that are independent of conventional second messengers but that result from the activation of small GTP-binding proteins of the Rho family and their downstream targets. These findings led to the identification of a novel family of guanine-nucleotide exchange factors (GEFs) that provides a direct link between Galpha(12/13) and Rho stimulation. Recent observations suggest that many cellular responses elicited by Galpha(q) and its coupled receptors also require the functional activity of Rho. However, available evidence suggests that Galpha(q) may act on pathways downstream from Rho rather than by promoting Rho activation. These seemingly conflicting observations and the recent development of sensitive assays to assess the in vivo levels of active Rho prompted us to ask whether Galpha(q) and its coupled receptors can stimulate endogenous Rho. Here we show that the expression of activated forms of Galpha(q) and the stimulation of G(q)-coupled receptors or chimeric Galpha(q) molecules that respond to G(i)-linked receptors can promote a robust activation of endogenous Rho in HEK-293T cells. Interestingly, this response was not prevented by molecules interfering with the ability of Galpha(13) to stimulate its linked RhoGEFs, together suggesting the existence of a novel molecular mechanism by which Galpha(q) and the large family of G(q)-coupled receptors can regulate the activity of Rho and its downstream signaling pathways.  相似文献   

15.
Prolonged exposure to alveolar hypoxia induces physiological changes in the pulmonary vasculature that result in the development of pulmonary hypertension. A hallmark of hypoxic pulmonary hypertension is an increase in vasomotor tone. In vivo, pulmonary arterial smooth muscle cell contraction is influenced by vasoconstrictor and vasodilator factors secreted from the endothelium, lung parenchyma and in the circulation. During chronic hypoxia, production of vasoconstrictors such as endothelin-1 and angiotensin II is enhanced locally in the lung, while synthesis of vasodilators may be reduced. Altered reactivity to these vasoactive agonists is another physiological consequence of chronic exposure to hypoxia. Enhanced contraction in response to endothelin-1 and angiotensin II, as well as depressed vasodilation in response to endothelium-derived vasodilators, has been documented in models of hypoxic pulmonary hypertension. Chronic hypoxia may also have direct effects on pulmonary vascular smooth muscle cells, modulating receptor population, ion channel activity or signal transduction pathways. Following prolonged hypoxic exposure, pulmonary vascular smooth muscle exhibits alterations in K+ current, membrane depolarization, elevation in resting cytosolic calcium and changes in signal transduction pathways. These changes in the electrophysiological parameters of pulmonary vascular smooth muscle cells are likely associated with an increase in basal tone. Thus, hypoxia-induced modifications in pulmonary arterial myocyte function, changes in synthesis of vasoactive factors and altered vasoresponsiveness to these agents may shift the environment in the lung to one of contraction instead of relaxation, resulting in increased pulmonary vascular resistance and elevated pulmonary arterial pressure.  相似文献   

16.
RGS5 is a potent GTPase-activating protein for G(ialpha) and G(qalpha) that is expressed strongly in pericytes and is present in vascular smooth muscle cells. To study the role of RGS5 in blood vessel physiology, we generated Rgs5-deficient mice. The Rgs5(-/-) mice developed normally, without obvious defects in cardiovascular development or function. Surprisingly, Rgs5(-/-) mice had persistently low blood pressure, lower in female mice than in male mice, without concomitant cardiac dysfunction, and a lean body habitus. The examination of the major blood vessels revealed that the aortas of Rgs5(-/-) mice were dilated compared to those of control mice, without altered wall thickness. Isolated aortic smooth muscle cells from the Rgs5(-/-) mice exhibited exaggerated levels of phosphorylation of vasodilator-stimulated phosphoprotein and extracellular signal-regulated kinase in response to stimulation with either sodium nitroprusside or sphingosine 1-phosphate. The results of this study, along with those of previous studies demonstrating that RGS5 stability is under the control of nitric oxide via the N-end rule pathway, suggest that RGS5 may balance vascular tone by attenuating vasodilatory signaling in vivo in opposition to RGS2, another RGS (regulator of G protein signaling) family member known to inhibit G protein-coupled receptor-mediated vasoconstrictor signaling. Blocking the function or the expression of RGS5 may provide an alternative approach to treat hypertension.  相似文献   

17.
The pro-inflammatory cytokine IL-1beta contributes to the reduced contractile responses of gut smooth muscle observed in both animal colitis models and human inflammatory bowel diseases. However, the mechanisms are not well understood. The effects of IL-1beta on the signaling targets mediating acetylcholine (ACh)-induced initial and sustained contraction were examined using rabbit colonic circular muscle strips and cultured muscle cells. The contraction was assessed through cell length decrease, myosin light chain (MLC(20)) phosphorylation, and activation of PLC-beta and Rho kinase. Expression levels of the signaling targets were determined by Western blot analysis and real-time RT-PCR. Short interfering RNAs (siRNAs) for regulator of G protein signaling 4 (RGS4) were used to silence endogenous RGS4 in muscle strips or cultured muscle cells. IL-1beta treatment of muscle strips inhibited both initial and sustained contraction and MLC(20) phosphorylation in isolated muscle cells. IL-1beta treatment increased RGS4 expression but had no effect on muscarinic receptor binding or Galpha(q) expression. In contrast, IL-1beta decreased the expression and phosphorylation of CPI-17 but had no effect on RhoA expression or ACh-induced Rho kinase activity. Upregulation of RGS4 and downregulation of CPI-17 by IL-1beta in muscle strips were corroborated in cultured muscle cells. Knockdown of RGS4 by siRNA in both muscle strips and cultured muscle cells blocked the inhibitory effect of IL-1beta on initial contraction and PLC-beta activation, whereas overexpression of RGS4 inhibited PLC-beta activation. These data suggest that IL-1beta upregulates RGS4 expression, resulting in the inhibition of initial contraction and downregulation of CPI-17 expression during sustained contraction in colonic smooth muscle.  相似文献   

18.
Dysfunction of calcium handling by smooth muscle in hypertension   总被引:5,自引:0,他引:5  
Dysfunction of ion handling, including binding and fluxes (passive and active transport) of physiologically important ions such as potassium, sodium, calcium, and magnesium, by vascular smooth muscle cell membranes has repeatedly been reported to be associated with the pathophysiology of hypertension. The specific purpose of this review is to summarize and evaluate the evidence for alterations of calcium ion (Ca2+) handling by vascular smooth muscle in various forms of hypertension in the animal model on the basis that regulation of cytoplasmic Ca2+ concentration is a complex and yet vitally important process for a normal function of vascular smooth muscle and that derangement of such a regulation may result in excessive retention of cytoplasmic Ca2+, contribute toward increase of total peripheral resistance, and ultimately lead to elevation of blood pressure. Emphasis is placed upon the consideration of the usefulness of the subcellular membrane fractionation technique in studies of binding and transport of Ca2+ by vascular and nonvascular smooth muscle membranes from genetic as well as experimental hypertensive rats. The limitations of the interpretation of data using such an approach are also considered. Decreased active transport of Ca2+ across isolated plasma membrane vesicles from large and small arteries occurs in several but not all forms of hypertension. This membrane abnormality also occurs in nonvascular smooth muscles and other tissues or cells not confined to the cardiovascular system in genetic hypertension, but not in experimental hypertension. A hypothesis of general membrane defects in spontaneous hypertension is proposed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Dysfunctional regulation of airway smooth muscle tone is a feature of obstructive airway diseases such as asthma and chronic obstructive pulmonary disease. Airway smooth muscle contraction is directly associated with changes in the phosphorylation of myosin light chain (MLC), which is increased by Rho and decreased by Rac. Although cyclic adenosine monophosphate (cAMP)‐elevating agents are believed to relieve bronchoconstriction mainly via activation of protein kinase A (PKA), here we addressed the role of the novel cAMP‐mediated exchange protein Epac in the regulation of airway smooth muscle tone. Isometric tension measurements showed that specific activation of Epac led to relaxation of guinea pig tracheal preparations pre‐contracted with methacholine, independently of PKA. In airway smooth muscle cells, Epac activation reduced methacholine‐induced MLC phosphorylation. Moreover, when Epac was stimulated, we observed a decreased methacholine‐induced RhoA activation, measured by both stress fibre formation and pull‐down assay whereas the same Epac activation prevented methacholine‐induced Rac1 inhibition measured by pull‐down assay. Epac‐driven inhibition of both methacholine‐induced muscle contraction by Toxin B‐1470, and MLC phosphorylation by the Rac1‐inhibitor NSC23766, were significantly attenuated, confirming the importance of Rac1 in Epac‐mediated relaxation. Importantly, human airway smooth muscle tissue also expresses Epac, and Epac activation both relaxed pre‐contracted human tracheal preparations and decreased MLC phosphorylation. Collectively, we show that activation of Epac relaxes airway smooth muscle by decreasing MLC phosphorylation by skewing the balance of RhoA/Rac1 activation towards Rac1. Therefore, activation of Epac may have therapeutical potential in the treatment of obstructive airway diseases.  相似文献   

20.
Intercellular communication among autonomic nerves, endothelial cells (ECs), and vascular smooth muscle cells (VSMCs) plays a central role in an uninterrupted regulation of blood flow through vascular contractile machinery. Impairment of this communication is linked to development of vascular diseases such as hypertension, cerebral/coronary vasospasms, aortic aneurism, and erectile dysfunction. Although the basic concept of the communication as a whole has been studied, the spatiotemporal correlation of ECs/VSMCs in tissues at the cellular level is unknown. Here, we show a unique VSMC response to ECs during contraction and relaxation of isolated aorta tissues through visualization of spatiotemporal activation patterns of smooth muscle myosin II. ECs in the intimal layer dictate the stimulus‐specific heterogeneous activation pattern of myosin II in VSMCs within distinct medial layers. Myosin light chain (MLC) phosphorylation (active form of myosin II) gradually increases towards outer layers (approximately threefold higher MLC phosphorylation at the outermost layer than that of the innermost layer), presumably by release of an intercellular messenger, nitric oxide (NO). Our study also demonstrates that the MLC phosphorylation at the outermost layer in spontaneously hypertensive rats (SHR) during NO‐induced relaxation is quite high and approximately 10‐fold higher than that of its counterpart, the Wister–Kyoto rats (WKY), suggesting that the distinct pattern of myosin II activation within tissues is important for vascular protection against elevated blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号