首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutation of one of the cysteine residues in the redox active disulfide of thioredoxin reductase from Escherichia coli results in C135S with Cys138 remaining or C138S with Cys135 remaining. The expression system for the genes encoding thioredoxin reductase, wild-type enzyme, C135S, and C138S has been re-engineered to allow for greater yields of protein. Wild-type enzyme and C135S were found to be as previously reported, whereas discrepancies were detected in the characteristics of C138S. It was shown that the original C138S was a heterogeneous mixture containing C138S and wild-type enzyme and that enzyme obtained from the new expression system is the correct species. C138S obtained from the new expression system having 0.1% activity and 7% flavin fluorescence of wild-type enzyme was used in this study. Reductive titrations show that, as expected, only 1 mol of sodium dithionite/mol of FAD is required to reduce C138S. The remaining thiol in C135S and C138S has been reacted with 5,5'-dithiobis-(2-nitrobenzoic acid) to form mixed disulfides. The half time of the reaction was <5 s for Cys138 in C135S and approximately 300 s for Cys135 in C138S showing that Cys138 is much more reactive. The resulting mixed disulfides have been reacted with Cys32 in C35S mutant thioredoxin to form stable, covalent adducts C138S-C35S and C135S-C35S. The half times show that Cys138 is approximately fourfold more susceptible to attack by the nucleophile. These results suggest that Cys138 may be the thiol initiating dithiol-disulfide interchange between thioredoxin reductase and thioredoxin.  相似文献   

2.
Thioredoxin reductase is a flavoprotein which catalyzes the reduction of the small protein thioredoxin by NADPH. It contains a redox active disulfide and an FAD in each subunit of its dimeric structure. Each subunit is further divided into two domains, the FAD and the pyridine nucleotide binding domains. The orientation of the two domains determined from the crystal structure and the flow of electrons determined from mechanistic studies suggest that thioredoxin reductase requires a large conformational change to carry out catalysis (Williams CH Jr, 1995, FASEB J 9:1267-1276). The constituent amino acids of an ion pair, E48/R130, between the FAD and pyridine nucleotide binding domains, were mutagenized to cysteines to form E48C,R130C (CC mutant). Formation of a stable bridge between these cysteines was expected to restrict the enzyme largely in the conformation observed in the crystal structure. Crosslinking with the bifunctional reagent N,N,1,2 phenylenedimaleimide, spanning 4-9 A, resulted in a >95 % decrease in thioredoxin reductase and transhydrogenase activity. SDS-PAGE confirmed that the crosslink in the CC-mutant was intramolecular. Dithionite titration showed an uptake of electrons as in wild-type enzyme, but anaerobic reduction of the flavin with NADPH was found to be impaired. This indicates that the crosslinked enzyme is in the conformation where the flavin and the active site disulfide are in close proximity but the flavin and pyridinium rings are too far apart for effective electron transfer. The evidence is consistent with the hypothesis that thioredoxin reductase requires a conformational change to complete catalysis.  相似文献   

3.
The genes encoding thioredoxin and thioredoxin reductase of Clostridium litorale were cloned and sequenced. The thioredoxin reductase gene (trxB) encoded a protein of 33.9 kDa, and the deduced amino acid sequence showed 44% identity to the corresponding protein from Escherichia coli. The gene encoding thioredoxin (trxA) was located immediately downstream of trxB. TrxA and TrxB were each encoded by two gene copies, both copies presumably located on the chromosome. Like other thioredoxins from anaerobic, amino-acid-degrading bacteria investigated to date by N-terminal amino acid sequencing, thioredoxin from C. litorale exhibited characteristic deviations from the consensus sequence, e.g., GCVPC instead of WCGPC at the redox-active center. Using heterologous enzyme assays, neither thioredoxin nor thioredoxin reductase were interchangeable with the corresponding proteins of the thioredoxin system from E. coli. To elucidate the molecular basis of that incompatibility, Gly-31 in C. litorale thioredoxin was substituted with Trp (the W in the consensus sequence) by site-directed mutagenesis. The mutant protein was expressed in E. coli and was purified to homogeneity. Enzyme assays using the G31W thioredoxin revealed that Gly-31 was not responsible for the observed incompatibility with the E. coli thioredoxin reductase, but it was essential for activity of the thioredoxin system in C. litorale. Received: 19 September 1996 / Accepted: 21 May 1997  相似文献   

4.
The cDNA of human medium chain acyl-CoA dehydrogenase (MCADH) was modified by in vitro mutagenesis, and the sequence encoding the mature form of MCADH was introduced into an inducible expression plasmid. We observed synthesis of the protein in Escherichia coli cells transformed with this plasmid with measurable MCADH enzyme activity in cell extracts. Glutamic acid 376, which has been proposed by Powell and Thorpe (Powell, P. J., and Thorpe, J. (1988) Biochemistry 27, 8022-8028) as an essential residue and the proton-abstracting base at the active site of the enzyme, was mutated to glutamine. After expression in bacteria of this plasmid, the corresponding extracts show no detectable MCADH activity, although mutant MCADH-protein production was detected by protein immunoblots. The mature enzyme and the Gln376 mutant were purified to apparent homogeneity. The wild-type enzyme is a yellow protein due to the content of stoichiometric FAD and had a specific activity which is 50% of MCADH purified from pig kidney. The Gln376 mutant is devoid of activity (less than 0.02% that of wild type, expressed enzyme) and is green because of bound CoA persulfide. Properties of the mutant enzyme suggest that the Glu376----Gln change specifically affects substrate binding. These results prove that Glu376 plays an important role in the initial step of dehydrogenation catalysis.  相似文献   

5.
Human glutathione reductase (NADPH + GSSG + H+ in equilibrium with NADP+ + 2 GSH) is a suitable enzyme for correlating spectroscopic properties and chemical reactivities of protein-bound FAD analogues with structural data. FAD, the prosthetic group of the enzyme, was replaced by FAD analogues, which were modified at the positions 8, 1, 2, 4, 5 and 6, respectively, of the isoalloxazine ring. When compared with a value of 100% for native glutathione reductase, the specific activities of most enzyme species ranged from 40% to 17%, in the order of the prosthetic groups 8-mercapto-FAD greater than 8-azido-FAD = 8-F-FAD = 8-C1-FAD greater than 4-thio-FAD = 1-deaza-FAD greater than 2-thio-FAD. The enzymic activities indicate a correct orientation of the bound analogues. The enzyme species containing 5-deaza-FAD and 6-OH-FAD, respectively, had no more glutathione reductase activity than the FAD-free apoenzyme. 5-Deaza-FAD X glutathione reductase was crystallized for X-ray diffraction analysis. Detailed studies were focussed on position 8 of the flavin. 8-Cl-FAD X glutathione reductase and 8-F-FAD X glutathione reductase reacted only poorly with HS- to give 8-mercapto-FAD X glutathione reductase, which suggests that the region around Val61 hinders the halogen anion from leaving the tetrahedral intermediate. Other experiments showed that position 8 is accessible to certain solvent-borne reagents. 8-Mercapto-FAD X glutathione reductase, for instance, reacted readily and stoichiometrically with the thiol reagent methylmethanethiosulfonate. 8-Mercapto-FAD X glutathione reductase does not exhibit a long wavelength charge transfer absorption band upon reduction, as it is the case for the 2-electron-reduced FAD-containing enzyme. This behaviour indicates that the charge transfer interaction between flavin and the thiolate of Cys63 in the native enzyme is not per se essential for catalysis. The absorption spectrum of the blue anionic 8-mercapto-FAD bound to glutathione reductase suggests that the protein concurs to the stabilization of a negative charge in the pyrimidine subnucleus. In light of the protein structure this effect is attributed to the dipole moment of alpha-helix 338-354 which starts out close to the N(1)/C(2)/O(2 alpha) region of the flavin. 1-Deaza-FAD binds as tightly as FAD to the apoenzyme. The resulting holoenzyme was found to be enzymically active but structurally unstable. In this respect 1-deaza-FAD . glutathione reductase mimics the properties of the enzyme species found in inborn glutathione reductase deficiency.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The binding characteristics of flavin adenine dinucleotide (FAD) to apoenzyme preparations obtained from native and intramolecularly crosslinked glucose oxidase were determined and compared. The dissociation constants Kdiss as well as rates of recombination of FAD with the two apoenzyme preparations, were independently evaluated from fluorescence quenching of either the tryptophans of FAD. The Kdiss values thus obtained were <10?19M for native glucose oxidase and 4 ± 1 × 10?7M for the crosslinked enzyme. The recombination of apo glucose oxidase with FAD, which is presumably diffusion controlled, is followed by an apparent first order decrease in fluorescence intensity of both the protein tryptophans and FAD, with a rate constant around 0.2 min?1. This could be related to conformational changes which occur immediately after binding of FAD to the apoenzyme, an interpretation which is supported by the markedly different results obtained in the analogous experiments with the crosslinked enzyme. A model for the conformational characteristics of glucose oxidase, based on this study, is proposed.  相似文献   

7.
Mammalian thioredoxin reductase [EC 1.6.4.5], a homodimeric flavoprotein, has a marked similarity to glutathione reductase. The two cysteines in the N-terminal FAD domain (-Cys59-x-x-x-x-Cys64-) and histidine (His472) are conserved between them at corresponding positions, but the mammalian thioredoxin reductase contains a C-terminal extension of selenocysteine (Sec or U) at the penultimate position and a preceding cysteine (-Gly-Cys497-Sec498-Gly). Introduction of mutations into the cloned rat thioredoxin reductase gene revealed that residues Cys59, Cys64, His472, Cys497, and Sec498, as well as the sequence of Cys497 and Sec498 were essential for thioredoxin-reducing activity. To analyze the catalytic mechanism of the mammalian thioredoxin reductase, the wild-type, U498C, U498S, C59S, and C64S were overproduced in a baculovirus/insect cell system and purified. The wild-type thioredoxin reductase produced in this system, designated as WT, was found to lack the Sec residue and to terminate at Cys497. A Sec-containing thioredoxin reductase, which was purified from COS-1 cells transfected with the wild-type cDNA, was designated as SecWT and was used as an authentic enzyme. Among mutant enzymes, only U498C retained a slight thioredoxin-reducing activity at about three orders magnitude lower than SecWT. WT, U498C, and U498S showed some 5,5'-dithiobis(2-nitrobenzoic acid)-reducing activity and transhydrogenase activity, and C59S and C64S had substantially no such activities. These data and spectral analyses of these enzymes suggest that Cys59 and Cys64 at the N-terminus, in conjunction with His472, function as primary acceptors for electrons from NADPH via FAD, and that the electrons are then transferred to Cys497-Sec498 at the C-terminus for the reduction of oxidized thioredoxin in the mammalian thioredoxin reductase.  相似文献   

8.
The thioredoxin system consists of thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, which plays several key roles in maintaining the redox environment of the cell. In Acidithiobacillus ferrooxidans, thioredoxin system may play important functions in the activity regulation of periplasmic proteins and energy metabolism. Here, we cloned thioredoxin (trx) and thioredoxin reductase (trxR) genes from Acidithiobacillus ferrooxidans, and expressed the genes in Escherichia coli. His-Trx and His-TrxR were purified to homogeneity with one-step Ni-NTA affinity column chromatography. Site-directed mutagenesis results confirmed that Cys33, Cys36 of thioredoxin, and Cys142, Cys145 of thioredoxin reductase were active-site residues.  相似文献   

9.
We have identified and characterized a thermostable thioredoxin system in the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. The gene (Accession no. APE0641) of A. pernix encoding a 37 kDa protein contains a redox active site motif (CPHC) but its N-terminal extension region (about 200 residues) shows no homology within the genome database. A second gene (Accession no. APE1061) has high homology to thioredoxin reductase and encodes a 37 kDa protein with the active site motif (CSVC), and binding sites for FAD and NADPH. We cloned the two genes and expressed both proteins in E. coli. It was observed that the recombinant proteins could act as an NADPH-dependent protein disulfide reductase system in the insulin reduction. In addition, the APE0641 protein and thioredoxin reductase from E. coli could also catalyze the disulfide reduction. These indicated that APE1061 and APE0641 express thioredoxin (ApTrx) and thioredoxin reductase (ApTR) of A. pernix, respectively. ApTR is expressed as an active homodimeric flavoprotein in the E. coli system. The optimum temperature was above 90 degrees C, and the half-life of heat inactivation was about 4 min at 110 degrees C. The heat stability of ApTR was enhanced in the presence of excess FAD. ApTR could reduce both thioredoxins from A. pernix and E. coli and showed a similar molar specific activity for both proteins. The standard state redox potential of ApTrx was about -262 mV, which was slightly higher than that of Trx from E. coli (-270 mV). These results indicate that a lower redox potential of thioredoxin is not necessary for keeping catalytic disulfide bonds reduced and thereby coping with oxidative stress in an aerobic hyperthermophilic archaea. Furthermore, the thioredoxin system of aerobic hyperthermophilic archaea is biochemically close to that of the bacteria.  相似文献   

10.
Summary Lysine N6-hydroxylase was isolated as a soluble enzyme from the supernatant after ultrasonication ofEscherichia coli strain EN222 which contained the structural gene on a multicopy plasmid (as described by Engelbrecht and Braun in 1986). The apoenzyme prepared by dialysis was purified by ammonium sulfate precipitation and fast protein liquid chromatography using Superose 12 and Mono Q columns. The molecular mass as determined by gel filtration was 200 kDa and 50 kDa by SDS/polyacrylamide gel electrophoresis. The enzyme binds 0.79 molecule FAD/50 kDa. The activity of the enzyme is strictly dependent on NADPH. Its properties are similar to other flavoprotein monooxygenases of the EC group 1.14.13.  相似文献   

11.
用PCR方法从毕赤酵母(Pichia pastoris)基因组DNA扩增甲酸脱氢酶(FDH)基因,通过定点突变密码子TAG(649-651位碱基)为GAG,突变后的基因片段插入表达载体pET-22b( )构建质粒pET-FDH,转化E.coli BL21(DE3)。基因工程菌在IPTG诱导下高效表达可溶性的FDH融合蛋白,蛋白的表达量占基因工程菌株总蛋白的30%。工程菌破壁上清液采用一步亲和层析分离,得到比活力为6.45U/mg的重组FDH。  相似文献   

12.
Thioredoxin reductase and thioredoxin constitute the cellular thioredoxin system, which provides reducing equivalents to numerous intracellular target disulfides. Mammalian thioredoxin reductase contains the rare amino acid selenocysteine. Known as the "21st" amino acid, selenocysteine is inserted into proteins by recoding UGA stop codons. Some model eukaryotic organisms lack the ability to insert selenocysteine, and prokaryotes have a recoding apparatus different from that of eukaryotes, thus making heterologous expression of mammalian selenoproteins difficult. Here, we present a semisynthetic method for preparing mammalian thioredoxin reductase. This method produces the first 487 amino acids of mouse thioredoxin reductase-3 as an intein fusion protein in Escherichia coli cells. The missing C-terminal tripeptide containing selenocysteine is then ligated to the thioester-tagged protein by expressed protein ligation. The semisynthetic version of thioredoxin reductase that we produce in this manner has k(cat) values ranging from 1500 to 2220 min(-)(1) toward thioredoxin and has strong peroxidase activity, indicating a functional form of the enzyme. We produced the semisynthetic thioredoxin reductase with a total yield of 24 mg from 6 L of E. coli culture (4 mg/L). This method allows production of a fully functional, semisynthetic selenoenzyme that is amenable to structure-function studies. A second semisynthetic system is also reported that makes use of peptide complementation to produce a partially active enzyme. The results of our peptide complementation studies reveal that a tetrapeptide that cannot ligate to the enzyme (Ac-Gly-Cys-Sec-Gly) can form a noncovalent complex with the truncated enzyme to form a weak complex. This noncovalent peptide-enzyme complex has 350-500-fold lower activity than the semisynthetic enzyme produced by peptide ligation.  相似文献   

13.
The preparation of a reconstitutable apoprotein is widely recognized as an important tool for studying the interactions between protein and coenzyme and also for characterizing the coenzyme-binding site of the protein. Here is described the kinetic analysis of the reconstitution of Aerococcus viridans lactate oxidase apoenzyme with FMN and FAD in the presence of substrate. The reconstitution was followed by measuring the increase in catalytic capacity with time. Lactate oxidase activity was easily removed by obtaining its apoenzyme in an acidic saturated ammonium sulphate solution. When the apoenzyme was reconstituted by the addition of FMN or FAD, a marked lag period was observed, after which the system reached a steady state (linear rate). To explain the binding mechanism of the cofactors to the apoenzyme, a kinetic model is proposed, in which the constants, k3 and k-3, representing the interaction of apoenzyme with cofactor are considered slow and responsible for the lag in the expression of activity. The affinity of apoenzyme was 51-fold higher for FMN than FAD.  相似文献   

14.
15.
Messens J  Hayburn G  Desmyter A  Laus G  Wyns L 《Biochemistry》1999,38(51):16857-16865
Arsenate reductase (ArsC) encoded by Staphylococcus aureus arsenic-resistance plasmid pI258 reduces intracellular As(V) (arsenate) to the more toxic As(III) (arsenite), which is subsequently extruded from the cell. ArsC couples to thioredoxin, thioredoxin reductase, and NADPH to be enzymatically active. A novel purification method leads to high production levels of highly pure enzyme. A reverse phase method was introduced to systematically analyze and control the oxidation status of the enzyme. The essential cysteinyl residues and redox couple in arsenate reductase were identified by a combination of site-specific mutagenesis and endoprotease-digest mass spectroscopy analysis. The secondary structures, as determined with CD, of wild-type ArsC and its Cys mutants showed a relatively high helical content, independent of the redox status. Mutation of Cys 10, 82, and 89 led to redox-inactive enzymes. ArsC was oxidized in a single catalytic cycle and subsequently digested with endoproteinases ArgC, AspN, and GluC. From the peptide-mass profiles, cysteines 82 and 89 were identified as the redox couple of ArsC necessary to reduce arsenate to arsenite.  相似文献   

16.
The FAD1 gene of Saccharomyces cerevisiae has been selected from a genomic library on the basis of its ability to partially correct the respiratory defect of pet mutants previously assigned to complementation group G178. Mutants in this group display a reduced level of flavin adenine dinucleotide (FAD) and an increased level of flavin mononucleotide (FMN) in mitochondria. The restoration of respiratory capability by FAD1 is shown to be due to extragenic suppression. FAD1 codes for an essential yeast protein, since disruption of the gene induces a lethal phenotype. The FAD1 product has been inferred to be yeast FAD synthetase, an enzyme that adenylates FMN to FAD. This conclusion is based on the following evidence. S. cerevisiae transformed with FAD1 on a multicopy plasmid displays an increase in FAD synthetase activity. This is also true when the gene is expressed in Escherichia coli. Lastly, the FAD1 product exhibits low but significant primary sequence similarity to sulfate adenyltransferase, which catalyzes a transfer reaction analogous to that of FAD synthetase. The lower mitochondrial concentration of FAD in G178 mutants is proposed to be caused by an inefficient exchange of external FAD for internal FMN. This is supported by the absence of FAD synthetase activity in yeast mitochondria and the presence of both extramitochondrial and mitochondrial riboflavin kinase, the preceding enzyme in the biosynthetic pathway. A lesion in mitochondrial import of FAD would account for the higher concentration of mitochondrial FMN in the mutant if the transport is catalyzed by an exchange carrier. The ability of FAD1 to suppress impaired transport of FAD is explained by mislocalization of the synthetase in cells harboring multiple copies of the gene. This mechanism of suppression is supported by the presence of mitochondrial FAD synthetase activity in S. cerevisiae transformed with FAD1 on a high-copy-number plasmid but not in mitochondrial of a wild-type strain.  相似文献   

17.
Autoflavinylation of apo6-hydroxy-D-nicotine oxidase   总被引:2,自引:0,他引:2  
6-Hydroxy-D-nicotine oxidase (6-HDNO) was expressed in Escherichia coli JM109 cells from the recombinant plasmid pAX-6-HDNO as a beta-galactosidase-6-HDNO fusion protein. Affinity chromatography of the fusion protein on p-aminobenzyl-1-thio-beta-galactopyranoside-agarose and subsequent digestion with protease Xa yielded highly purified apo6-HDNO. Incubation of the purified protein with [14C]FAD demonstrated that flavinylation of apo6-HDNO proceeds autocatalytically. Phosphorylated three-carbon compounds such as glycerol-3-P, which are known to stimulate the formation of the histidyl (N3)-(8 alpha) FAD between apo6-HDNO and FAD (Brandsch, R., and Bichler, V. (1989) Eur. J. Biochem. 182, 125-128), could be replaced in their action by high concentrations of glycerol (45%) or sucrose (20%). These substances apparently induced and stabilized a conformational state of the apoenzyme compatible with covalent attachment of FAD. In the absence of glycerol the apoenzyme readily lost the ability to form holoenzyme at temperatures above 30 degrees C. Holoenzyme formation protected the 6-HDNO polypeptide from this thermal denaturation. Autoflavinylation of 6-HDNO was inhibited by the sulfhydryl reagents dithionitrobenzoate or N-ethylmaleimide. Inhibition was prevented by mercaptoethanol or FAD, but not 6-hydroxy-D-nicotine, the substrate of the holoenzyme. A cysteine-thiol group may therefore be involved in reactions leading to the covalent attachment of FAD to apo6-HDNO. When flavinylation of apo6-HDNO proceeded under anaerobic conditions, the amount of incorporation of [14C]FAD into the polypeptide was indistinguishable from reactions performed in the presence of O2. None of the FAD-derivatives (8-demethyl-FAD, 8-chloro-FAD, and 5-deaza-FAD) could replace FAD in holoenzyme formation. The failure of covalent attachment of 5-deaza-FAD to apo6-HDNO is in agreement with the assumption that the quinone methide form of the isolloxazine ring is an intermediate in the flavinylation reaction.  相似文献   

18.
The oxidation-reduction midpoint potentials, Em, of the FAD and active site disulfide couples of Escherichia coli thioredoxin reductase have been determined from pH 5.5 to 8.5. The FAD and disulfide couples have similar Em values and thus a linked equilibrium of four microscopic enzyme oxidation-reduction states exists. The binding of phenylmercuric acetate to one enzyme form could be monitored which allowed solving the four microscopic Em values. The Em values at pH 7.0 and 12 degrees C of the four couples of thioredoxin reductase are: (S)2-enzyme-FAD/FADH2 = -0.243 V, (SH)2-enzyme-FAD/FADH2 = -0.260 V, (FAD)-enzyme-(S)2/(SH)2 = -0.254 V, and (FADH2)-enzyme-(S)2/(SH)2 = -0.271 V. Thus, at pH 7.0, the FAD and disulfide moieties have a 0.017-V negative interaction and Em values which are different by 0.011 V. The delta Em/delta pH of the FAD couples E2m and E3m are about 0.060 V/pH throughout the pH range studied, showing an approximately 2-proton stoichiometry of reduction of the enzyme FAD. The delta Em/delta pH of the disulfide couples E1m and E4m are about 0.052 V/pH from pH 5.5 to 8.5, showing an apparently nonintegral proton stoichiometry of reduction of 1.8 in this pH range. This proton stoichiometry suggests the presence of a base with an ionization behavior that is linked to the oxidation-reduction state of the disulfide. A novel method is presented for determining the pK values on oxidized and reduced enzyme which agrees with the less accurate classical method. The proton stoichiometry results are consistent with the presence of a thiol-base ion pair in which the pK of the base is elevated from 7.6 in disulfide containing enzyme to greater than 8.5 upon forming an ion pair with a thiol anion of pK 7.0 generated upon reduction of the disulfide. The fluorescence of the FAD in thioredoxin reductase decreases as the pH is lowered with a pK of 7.0, direct evidence for a base near the FAD probably distinct from the base interacting with the dithiol.  相似文献   

19.
Thioredoxin is a small oxidation-reduction (redox) mediator protein. Its reduction by NADPH is catalyzed by the flavoenzyme thioredoxin reductase. Site-directed mutagenesis has provided forms of the reductase in which Cys135 and Cys138 have each been changed to a serine residue (Prongay, A. J., Engelke, D. R., and Williams, C. H., Jr. (1989) J. Biol. Chem. 264, 2656-2664). Cys135 and Cys138 form the redox-active disulfide in the oxidized enzyme. The redox properties of the two altered forms of Escherichia coli thioredoxin reductase have been determined from pH 6.0 to 9.0. Photoreduction of TRR(Ser135,Cys138) produces the blue, neutral semiquinone species, which disproportionates (Kf = 0.73) to an apparent maximum of 29% of the total enzyme as the semiquinone. In contrast, the semiquinone formed on TRR(Cys135,Ser138) during a photoreductive titration does not disproportionate and 70% of the enzyme is stabilized as the semiquinione. Reductive titrations have demonstrated that 1 mol of sodium dithionite (2 electrons)/mol of FAD is required to fully reduce TRR(Ser135,Cys138) whereas 2 mol of dithionite/mol of FAD are required to fully reduce TRR(Cys135,Ser138). The oxidation-reduction midpoint potentials for the 1-electron and 2-electron reductions of TRR(Ser135,Cys138) have been determined by NADH/NAD+ titrations in the presence of a mediator, benzyl viologen. The midpoint potential for the 2-electron reduction of TRR(Ser135,Cys138) is -280 mV, at pH 7.0 and 20 degrees C. Thus, the redox potential is similar to that of the FAD/FADH2 couple in the dithiol form of wild type enzyme, -270 mV (corrected to 20 degrees C) (O'Donnell, M. E., and Williams, C. H., Jr. (1983) J. Biol. Chem. 258, 13795-13805). The delta Em/delta pH is -57.1 mV, which corresponds to a proton stoichiometry of 2 H+/2 e-.A maximum of 19% of the enzyme forms a stable semiquinone species during the titration, and the potentials for the oxidized enzyme/semiquinone couple, E2, and the semiquinone/reduced enzyme couple, E1, are -306 and -256 mV, respectively, at pH 7.0 and 20 degrees C. These studies provide evidence that the residue at position 138 exerts a greater effect on the FAD than does the residue at position 135.  相似文献   

20.
Comparison of the amino acid sequence of rat liver NADPH-cytochrome P-450 oxidoreductase with that of flavoproteins of known three-dimensional structure suggested that residues Tyr-140 and Tyr-178 are involved in binding of FMN to the protein. To test this hypothesis, NADPH-cytochrome P-450 oxidoreductase was expressed in Escherichia coli using the expression-secretion vector pIN-III-ompA3, and site-directed mutagenesis was employed to selectively alter these residues and demonstrate that they are major determinants of the FMN-binding site. Bacterial expression produced a membrane-bound 80-kDa protein containing 1 mol each of FMN and FAD per mol of enzyme, which reduced cytochrome c at a rate of 51.5 mumol/min/mg of protein and had absorption spectra and kinetic properties very similar to those of the rat liver enzyme. Replacement of Tyr-178 with aspartate abolished FMN binding and cytochrome c reductase activity. Incubation with FMN increased catalytic activity to a maximum of 8.6 mumol/min/mg of protein. Replacement of Tyr-140 with aspartate did not eliminate FMN binding, but reduced cytochrome c reductase activity about 5-fold, suggesting that FMN may be bound in a conformation which does not permit efficient electron transfer. Substitution of phenylalanine at either position 140 or 178 had no effect on FMN content or catalytic activity. The FAD level in the Asp-178 mutant was also decreased, suggesting that FAD binding is dependent upon FMN; FAD incorporation may occur co-translationally and require prior formation of an intact FMN domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号