首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on homology, amino acids 326-336 (143-154 in chymotrypsin numbering) of factor X (fX) comprise a flexible surface loop, which is susceptible to self-proteolysis and influences substrate catalysis. To investigate the role of this autolysis loop in fX function, a recombinant variant with a new site for asparagine-linked glycosylation has been produced by changing glutamine 333 to asparagine. Q333N fX is activated normally by factor VIIa and tissue factor, factors IXa and VIIIa, and Russell's viper venom. Proteolysis of the loop is prevented by the mutation. Reactivity of the free enzyme toward substrates and inhibitors is attenuated 4-20-fold; relative to wild type fXa, Spectrozyme Xa(TM) hydrolysis is 25%, inhibition by antithrombin III and the tissue factor pathway inhibitor is approximately 20%, and prothrombin activation in the absence of the cofactor Va is only 5%. Surprisingly, activities of the variant and wild type enzymes are equivalent when part of the prothrombinase complex. N-Glycanase cleaves the new oligosaccharide from Q333N fXa leaving aspartic acid. Q333D fXa is approximately 1.6-fold more reactive with Spectrozyme Xa(TM), antithrombin III and tissue factor pathway inhibitor, and prothrombin than its glycosylated counterpart, Q333N fXa, but still quite abnormal relative to wild type fXa. Like Q333N fXa, Q333D fXa is fully functional as part of the prothrombinase complex. We conclude that Gln-333 is geographically close to a site of proteolytic degradation but not to activator, cofactor, or membrane binding sites. Mutation of Gln-333 impairs catalytic function, but given normal prothrombin activation by the complexed enzyme, the importance of Gln-333 for catalysis is not manifest in the prothrombinase assembly, suggesting a conformational change in complexed fXa.  相似文献   

2.
A study was made of the interaction between prothrombin and enzymes: blood plasma kallikrein and factors alpha-XIIa and beta-XIIa immobilized on enzacryl-AH. Kallikrein-induced prothrombin proteolysis was accompanied by a decrease in prothrombin activity, appearance of BAME-esterase and poor clotting activity. As a result of fractionation of products on the column with DEAE-Sephadex A-50, some fractions that have thrombin amidase activity (splitting of the substrate S-2238) and high antithrombin activity were obtained. Antithrombin activity manifested in the inhibition of fibrinmonomer aggregation during fibrin formation. During incubation with prothrombin, factors alpha-XIIa and beta-XIIa also stimulated the appearance of BAME-esterase activity. None of the immobilized enzymes activated factor X.  相似文献   

3.
The effect of tryptase purified from rat peritoneal mast cells on bovine prothrombin was examined. Tryptase activated prothrombin, as evidenced by the increase in thrombin activity with a synthetic substrate, t-butyloxy-carbonyl-Val-Pro-Agr-4-methylcoumaryl-7-amide. The apparent Km value toward bovine prothrombin and the kcat value were 2.3 μM and 46.3 s−1, respectively. Studies on the time course of prothrombin activation by tryptase and by activated factor X (Xa), and analysis of the activation products on sodium dodecyl sulfate gel electrophoresis showed that the process of activation of prothrombin by tryptase was similar to that by Xa except that an intermediate of 67,000 daltons was formed.  相似文献   

4.
Previous studies have shown that extrinsic pathway inhibitor (EPI) is an effective inhibitor of factor Xa alone or factor VIIa-tissue factor complex in the presence of factor Xa. Since tissue factor exposure is implicated in thrombogenesis, we hypothesized that EPI may be valuable in the treatment of some thromboembolic episodes. Furthermore, EPI may be an important factor in bleeding complications in hemophiliacs. In the present study, human EPI was expressed in baby hamster kidney cells using a mammalian expression vector. Transfected cells expressed 1-2 micrograms/ml of recombinant EPI (rEPI) which was purified to homogeneity by heparin-Sepharose chromatography, ion-exchange chromatography, and reverse phase high performance liquid chromatography. Purified rEPI exhibited a specific activity of 30,000 units/mg and migrated as a single band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with an apparent molecular weight of 42,000. In addition, the NH2-terminal sequence of rEPI was identical to that of HepG2 EPI and HeLa EPI. The ability of rEPI to inhibit factor X activation by a complex of factor VIIa-tissue factor was then examined in the presence and absence of plasma concentrations of human factors VIII and IX. Using relipidated human brain tissue factor apoprotein, rEPI inhibited the factor VIIa-mediated activation of factor X half-maximally at 2.5 and 1 nM in the presence and absence of factors VIII and IX, respectively. Using monolayers of a human bladder carcinoma cell line (J82) as the source of tissue factor, the activation of factor X by cell-bound factor VIIa was inhibited half-maximally by 5 nM rEPI in the presence of factors VIII and IX. The proteolytic activity of J82 cell-bound factor Xa toward prothrombin was inhibited half-maximally at approximately 5 nM rEPI, while the amidolytic activity of factor Xa in solution was inhibited by rEPI with a Ki of 130 pM. Recombinant EPI also inhibited the amidolytic activity of factor VIIa half-maximally at 10 nM rEPI in the presence of relipidated tissue factor apoprotein and calcium. These results indicate that, in the presence of plasma concentrations of factors VIII and IX, at least 10 times the plasma concentration of EPI is required to reduce factor VIIa-dependent factor X activation one order of magnitude in vitro. In the absence of functional factor VIII and IX, rEPI at plasma levels was a potent inhibitor of factor VIIa-mediated factor X activation, and this activity presumably accounts for the inability of hemophiliacs to initiate hemostasis via the extrinsic pathway.  相似文献   

5.
This study investigates the dynamics of zymogen activation when both extrinsic tenase and prothrombinase are assembled on an appropriate membrane. Although the activation of prothrombin by surface-localized prothrombinase is clearly mediated by flow-induced dilutional effects, we find that when factor X is activated in isolation by surface-localized extrinsic tenase, it exhibits characteristics of diffusion-mediated activation in which diffusion of substrate to the catalytically active region is rate-limiting. When prothrombin and factor X are activated coincident with each other, competition for available membrane binding sites masks the diffusion-limiting effects of factor X activation. To verify the role of membrane binding in the activation of factor X by extrinsic tenase under flow conditions, we demonstrate that bovine lactadherin competes for both factor X and Xa binding sites, limiting factor X activation and forcing the release of bound factor Xa from the membrane at a venous shear rate (100 s(-1)). Finally, we present steady-state models of prothrombin and factor X activation under flow showing that zymogen and enzyme membrane binding events further regulate the coagulation process in an open system representative of the vasculature geometry.  相似文献   

6.
The effect of a synthetic pentasaccharide that specifically causes the inactivation of factor Xa on the development of prothrombinase activity in human plasma was monitored using four triggers of coagulation: (a) human brain thromboplastin; (b) contact activation; (c) factor X activating enzyme complex; (d) prothrombin activating enzyme complex. Inhibition was similar with the triggers a, b and c. With prothrombinase (d), the inhibition strongly decreased with increasing amounts of factor Va present. This indicates that only free factor Xa is inhibited. Because both the intrinsic pathway (b) and the extrinsic pathway (a) are inhibited by the pentasaccharide, we conclude that free factor Xa plays a rate-limiting role in the pathways, so that there is no reason to postulate the existence of 'supercomplexes' consisting of factors IXa, VIIIa, X(a), Va and prothrombin adsorbed on the same phospholipid particle (intrinsic system) or factor VII(a), X(a), Va and prothrombin adsorbed on tissue thromboplastin (extrinsic system).  相似文献   

7.
The activation of prothrombin has been studied by using highly purified preparations of activated factor X1 and activated factor X2, factor V and prothrombin. The rate of prothrombin activation was followed using an esterase assay involving the conversion of N alpha-benzoylarginine ethyl ester (BAEE) by thrombin generated in the course of prothrombin activation. The rate of thrombin generation increased by about 26000-fold when factor V and phospholipid were added to prothrombin, factor Xa and calcium. A comparison of the rates of thrombin formation obtained with activated factor X1 and activated factor X2 showed that activated factor X1 had only 70% of the biological activity of activated factor X2. Attempts to explain the rate of prothrombin activation and the difference between the activity of activated factor X1 and activated factor X2 are discussed.  相似文献   

8.
Summary Human embryonic kidney cells (293) were transfected with a construct containing human factor X cDNA and selected for G418 resistance. The level of expression of recombinant factor X in serum-free medium was 4 to 5 g/ml. Purified recombinant factor X had a molecular size identical to that of normal plasma factor X. Amino-terminal sequencing revealed normal processing cleavages. The -carboxy Glu and -OH Asp content of the recombinant factor X was close to 90% of the expected levels of these post-translational residues. The specific activity of recombinant factor X was about 95% of that of plasma factor X in three plasma-based clotting assays. This report demonstrates that 293 cells can produce a high level of biologically active factor X and describes a visual criterion for verifying the transfection process.Abbreviations FX factor X - rFX recombinant factor X - DMEM Dulbecco's modified Eagle's medium - RVV-X Russell's viper venom - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis - Gla -carboxy glutamic acid  相似文献   

9.
Camire RM  Larson PJ  Stafford DW  High KA 《Biochemistry》2000,39(46):14322-14329
Factor Xa is the serine protease component of prothrombinase, the enzymatic complex responsible for thrombin generation. Production of recombinant factor X/Xa has proven to be difficult because of inefficient gamma-carboxylation, a critical post-translational modification. The affinities of the vitamin K-dependent propeptides for the gamma-carboxylase vary over 2 logs, with the propeptide of factor X having the highest affinity followed by the propeptides of factor VII, protein S, factor IX, protein C, and prothrombin [Stanley, T. B. (1999) J. Biol. Chem. 274, 16940-16944]. On the basis of this observation, it was hypothesized that exchanging the propeptide of factor X with one that binds the gamma-carboxylase with a reduced affinity would enhance gamma-carboxylation by allowing greater substrate turnover. A chimeric cDNA consisting of the human prothrombin signal sequence and propeptide followed by mature human factor X was generated and stably transfected into HEK 293 cells, and modified factor X was purified from conditioned medium. The results indicate that on average 85% of the total factor X produced with the prothrombin propeptide was fully gamma-carboxylated, representing a substantial improvement over a system that employs the native factor X propeptide, with which on average only 32% of the protein is fully gamma-carboxylated. These results indicate that the affinity of the gamma-carboxylase for the propeptide greatly influences the extent of gamma-carboxylation. It was also observed that regardless of which propeptide sequence is directing gamma-carboxylation (factor X or prothrombin), two pools of factor X are secreted; one is uncarboxylated and a second is fully gamma-carboxylated, supporting the notion that the gamma-carboxylase is a processive enzyme.  相似文献   

10.
Autoactivation of human recombinant coagulation factor VII   总被引:3,自引:0,他引:3  
Single-chain human recombinant factor VII produced by transfected baby hamster kidney cells was purified to homogeneity in the presence of benzamidine. The amidolytic activity of single-chain recombinant factor VII with a peptidylnitroanilide substrate, methoxycarbonyl-D-cyclohexanylglycyl-L-arginine-p-nitroanilide, was less than 1% of that obtained with factor VIIa. Purified single-chain recombinant factor VII spontaneously activated in the absence of inhibitor. The activation reaction was enhanced by at least 2 orders of magnitude in the presence of a positively charged surface, provided either as an anion-exchange matrix or as poly(D-lysine). The progress curve for factor VIIa generation was sigmoidal. Benzamidine inhibits recombinant factor VIIa activity and factor VII activation with identical inhibition constants (Ki) of 11 mM. In contrast, benzamidine inhibition of bovine factor Xa and bovine factor IIa was observed at Ki values equal to 0.3 and 0.5 mM, respectively. Bovine factors Xa and IIa are known activators of factor VII and the most likely contaminants of our recombinant factor VII preparations. Single-chain recombinant factor VII purified from cells cultured in the absence of bovine serum activated at the same rate as factor VII from cells cultured in the presence of bovine serum. This also excluded the possibility that the activation reaction was caused by contaminating bovine proteases. On the basis of these observations, we propose that factor VII is autoactivated in vitro in the presence of a positively charged surface.  相似文献   

11.
There is evidence that by catalyzing thrombin inhibition, several glycosaminoglycans can inhibit the thrombin-mediated amplification reactions of coagulation and thereby delay prothrombin activation. The two amplification reactions can apparently be catalysed by endogenously generated factor Xa and thrombin. This study provides evidence which suggests that on a molar basis, an agent which can only catalyse thrombin inhibition is approximately 10 times more effective than an agent which can only catalyse factor Xa inhibition in their ability to inhibit intrinsic prothrombin activation. We determined the concentrations of each of heparin, dermatan sulfate and a pentasaccharide with high affinity for antithrombin III, to delay intrinsic prothrombin activation for at least 15s. Heparin catalyses both thrombin and factor Xa inhibition; dermatan sulfate catalyses only thrombin inhibition, while the pentasaccharide only catalyses factor Xa inhibition. Efficient prothrombin activation, which coincided with both factor X activation and factor V proteolysis, was first observed 45s after CaC12 was added to contact-activated plasma. Heparin (approximately 0.1 microM) prolonged by at least 30 s the time required for the activation of the three clotting factors to begin. The minimum concentrations of the pentasaccharide and dermatan sulfate to delay the activation of prothrombin, factors X and V were approximately 50 microM and approximately 5 microM, respectively. Thus, each anticoagulant could inhibit intrinsic prothrombin activation only when it inhibited activation of both factors X and V. A combination of approximately 5 microM pentasaccharide and approximately 0.05 microM dermatan sulfate similarly delayed the activation of all three clotting factors. Thus, while catalysis of thrombin inhibition is a more effective pathway than catalysis of factor Xa inhibition for delaying prothrombin activation, the simultaneous catalysis of thrombin and factor Xa inhibition can synergistically improve the ability of a sulfated polysaccharide to delay prothrombin activation.  相似文献   

12.
A membrane-associated prothrombin activator (MAPA) was found on various cultured cells derived from non-hematopoietic cells [Sekiya, F. et al. (1994) J. Biol. Chem. 269, 32441-32445]. In this study, we investigated the enzymatic properties of this enzyme using protease inhibitors. While the metalloproteinase inhibitor, o-phenanthroline, had no effect, some Kunitz type serine protease inhibitors attenuated MAPA activity. Recombinant tissue factor pathway inhibitor (rTFPI) also markedly reduced the activity (IC(50), 1. 3+/-0.6 x 10(-10) M). MAPA activity is, therefore, most likely to be due to factor Xa. We evaluated the effect of exogenous factor Xa on MAPA activity. Factor Xa-dependent prothrombin activation was observed on fibroblast cells (apparent K(d), 1.47+/-0.72 nM). Activation was also observed on glial and neuronal cells, which expressed MAPA activity. These results imply that membrane-bound factor Xa results in MAPA activity on these cells. Therefore, we considered the involvement of factor Va, a component of prothrombinase, in this activity. We examined whether or not the prothrombinase complex is assembled on these cells. Prothrombin was activated in a manner dependent on both exogenous factor Xa and factor Va (apparent K(d) of 0.51-1.81 nM for factor Va). These results indicate that the prothrombinase complex forms specifically on various extravascular cells. Although the prothrombinase complex can be assembled on monocytes and lymphocytes, it is not known why these cells can activate prothrombin specifically. These cells which have the capacity for prothrombin activator activity could also activate factor X; i.e. cells with factor X activation activity were able to convert prothrombin. These observations suggest that thrombin was generated via two procoagulant activities; factor X activation and subsequent prothrombinase complex formation on the surface of these cells. This mechanism may explain the various pathological states involving or resulting from extravascular thrombin and fibrin formation.  相似文献   

13.
Factor IXLong Beach has a single amino acid substitution at 397 (Ile to Thr) in the catalytic domain which results in severe hemophilia B. Recent investigations have shown that the substitution of threonine for isoleucine at 397 may affect a part of the macromolecular substrate binding site. Because threonine has a hydroxyl group in its side chain, it is possible that this hydroxyl group makes new hydrogen bonds and disturbs the substrate binding site. We used three techniques: molecular biology, which includes site-directed mutagenesis and recombinant protein expression in tissue culture; computer-aided kinetic data analysis; and molecular modeling to study this mutation site. We have produced two mutant factor IX molecules that have isoleucine 397 replaced by valine or threonine. Factor IXwild type and the two mutants (factor IXVal and factor IXThr) were expressed in human kidney cells and purified using a conformation-specific monoclonal antibody column. After the activation by factor XIa, these three molecules were able to bind p-aminobenzamidine and increase its fluorescence intensity in a similar manner. Factor IXVal and factor IXwild type had indistinguishable activities in an activated partial thromboplastin time (aPTT) assay and similar kinetic parameters with factor X as a substrate. Factor IXThr had only 5% clotting activity compared with normal factor IX, a slightly lower Km and significantly reduced kcat, using factor X as a substrate. We developed energy-refined (AMBER v.3.1) computer models of the three factor IX molecules based on previous work. Three factor IXa models (Ile, Val, or Thr at 397) with a fragment of the factor X activation site were used to predict the effect of the mutation at 397 and evaluate the significance of the new hydrogen bond thought to form between the side chain hydroxyl group of threonine 397 and the carbonyl oxygen of tryptophan 385. This new hydrogen bond would affect the position of an amide proton of adjacent glycine 386 which has been proposed to make a hydrogen bond with a backbone carbonyl oxygen of the P3 residue of factor X. In addition to the new hydrogen bond, there is significant movement in the side chain of tryptophan 385 between the factor IXawild type-factor X model and the factor IXaThr-factor X model that could interfere with substrate binding. This movement could be caused by the change in the molecular volume, the orientation of the side chain at 397, and the new hydrogen bond.  相似文献   

14.
We have determined the rate constants of inactivation of factor Xa and thrombin by antithrombin III/heparin during the process of prothrombin activation. The second-order rate constant of inhibition of factor Xa alone by antithrombin III as determined by using the synthetic peptide substrate S-2337 was found to be 1.1 X 10(6) M-1 min-1. Factor Xa in prothrombin activation mixtures that contained prothrombin, and either saturating amounts of factor Va or phospholipid (20 mol % dioleoylphosphatidylserine/80 mol % dioleoylphosphatidylcholine, 10 microM), was inhibited by antithrombin III with a second-order rate constant that was essentially the same: 1.2 X 10(6) M-1 min-1. When both factor Va and phospholipid were present during prothrombin activation, factor Xa inhibition by antithrombin III was reduced about 10-fold, with a second-order rate constant of 1.3 X 10(5) M-1 min-1. Factor Xa in the prothrombin activation mixture that contained both factor Va and phospholipid was even more protected from inhibition by the antithrombin III-heparin complex. The first-order rate constants of these reactions at 200 nM antithrombin III and normalized to heparin at 1 microgram/mL were 0.33 and 9.5 min-1 in the presence and absence of factor Va and phospholipid, respectively. When the prothrombin concentration was varied widely around the Km for prothrombin, this had no effect on the first-order rate constants of inhibition. It is our conclusion that factor Xa when acting in prothrombinase on prothrombin is profoundly protected from inhibition by antithrombin III in the absence as well as in the presence of heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Prothrombin, once converted to its enzymatically active form (i.e., thrombin), induces a broad spectrum of cellular responses in both vascular and avascular tissues. Bovine ovarian granulosa cells isolated from healthy follicles of various sizes contain both prothrombin mRNA and immunologically reactive prothrombin that appears to be identical to prothrombin in follicular fluid and plasma. When tissue factor, the primary physiological activator of thrombin generation in plasma, is used to initiate thrombin formation, the profile of prothrombin-to-thrombin conversion is similar in follicular fluid and plasma. The conclusion that biologically functional prothrombin is synthesized by granulosa cells is further supported by evidence that mRNA for gamma-glutamyl carboxylase, an enzyme essential for the vitamin K-dependent posttranslational modification of prothrombin, is expressed in granulosa cells in a manner similar to prothrombin mRNA. Thrombin's biological effects are mediated through selective proteolytic cleavage and activation of specific receptors. Bovine granulosa cells possess thrombin receptor (PAR-1) mRNA, and as seen with prothrombin mRNA and gamma-glutamyl carboxylase mRNA, cells isolated from small follicles possess more PAR-1 mRNA than cells from large follicles. Thrombin receptor expression by cells in close proximity to an active thrombin-generating system suggests that these factors may be important mediators of cellular function in the ovarian follicle.  相似文献   

16.
The minimum concentrations of heparin, dermatan sulfate, hirudin, and D-Phe-Pro-ArgCH2Cl required to delay the onset of prothrombin activation in contact-activated plasma also prolong the lag phases associated with both factor X and factor V activation. Heparin and dermatan sulfate prolong the lag phases associated with the activation of the three proteins by catalyzing the inhibition of endogenously generated thrombin. Thrombin usually activates factor V and factor VIII during coagulation. The smallest fragment of heparin able to catalyze thrombin inhibition by antithrombin III is an octadecasaccharide with high affinity for antithrombin III. In contrast, a dermatan sulfate hexasaccharide with high affinity for heparin cofactor II can catalyze thrombin inhibition by heparin cofactor II. A highly sulfated bis(lactobionic acid amide), LW10082 (Mr 2288), which catalyzes thrombin inhibition by heparin cofactor II and has both antithrombotic and anticoagulant activities, has been synthesized. In this study, we determined how the minimum concentration of LW10082 required to delay the onset of intrinsic prothrombin activation achieved this effect. We demonstrate that, like heparin and dermatan sulfate, LW10082 delays the onset of intrinsic prothrombin activation by prolonging the lag phase associated with both factor X and factor V activation. In addition, LW10082 is approximately 25% as effective as heparin and 10 times as effective as dermatan sulfate in its ability to delay the onset of prothrombin activation. The strong anticoagulant action of LW10082 is consistent with previous reports which show that the degree of sulfation is an important parameter for the catalytic effectiveness of sulfated polysaccharides on thrombin inhibition.  相似文献   

17.
Expression of the full set of human and mouse groups I, II, V, X, and XII secreted phospholipases A(2) (sPLA(2)s) in Escherichia coli and insect cells has provided pure recombinant enzymes for detailed comparative interfacial kinetic and binding studies. The set of mammalian sPLA(2)s display dramatically different sensitivity to dithiothreitol. The specific activity for the hydrolysis of vesicles of differing phospholipid composition by these enzymes varies by up to 4 orders of magnitude, and yet all enzymes display similar catalytic site specificity toward phospholipids with different polar head groups. Discrimination between sn-2 polyunsaturated versus saturated fatty acyl chains is <6-fold. These enzymes display apparent dissociation constants for activation by calcium in the 1-225 microm range, depending on the phospholipid substrate. Analysis of the inhibition by a set of 12 active site-directed, competitive inhibitors reveals a large variation in the potency among the mammalian sPLA(2)s, with Me-Indoxam being the most generally potent sPLA(2) inhibitor. A dramatic correlation exists between the ability of the sPLA(2)s to hydrolyze phosphatidylcholine-rich vesicles efficiently in vitro and the ability to release arachidonic acid when added exogenously to mammalian cells; the group V and X sPLA(2)s are uniquely efficient in this regard.  相似文献   

18.
19.
Human coagulation factor V is an integral component of the prothrombinase complex. Rapid activation of prothrombin is dependent on the interactions of this nonenzymatic cofactor with factor Xa and prothrombin in the presence of calcium ions and a phospholipid or platelet surface. Factor V is similar structurally and functionally to the homologous cofactor, factor VIII, which interacts with factor IXa to accelerate factor X activation in the presence of calcium and phospholipids. Both of these cofactors, when activated, possess homologous heavy and light chains. Binding to anionic phospholipids is mediated by the light chains of these two cofactors. In bovine factor Va, a phosphatidylserine-specific binding site has been localized to the amino-terminal A3 domain of the light chain. In human factor VIII, on the other hand, a region within the carboxyl-terminal C2 domain of the light chain has been shown to interact with anionic phospholipids. We have constructed a series of recombinant deletion mutants lacking domain-size fragments of the light chain of human factor V (rHFV). These mutants are expressed and secreted as single-chain proteins by COS cells. Thrombin and the factor V activator from Russell's viper venom process these deletion mutants as expected. The light chain deletion mutants possess essentially no procoagulant activity, nor are they activated by treatment with factor V activator from Russell's viper venom. Deletion of the second C-type domain results in essentially complete loss of phosphatidylserine-specific binding whereas the presence of the C2 domain alone (rHFV des-A3C1, which lacks the A3 and C1 domains of the light chain) results in significant phosphatidylserine-specific binding. The presence of the A3 domain alone (rHFV des-C1C2) does not mediate binding to immobilized phosphatidylserine. Increasing calcium ion concentrations result in decreased binding of recombinant human factor V and the mutant rHFV des-A3C1 to phosphatidylserine, similar to previous studies with purified plasma factor V and phospholipid vesicles. These results indicate that human factor V, similar to human factor VIII, possesses a phosphatidylserine-specific binding site within the C2 domain of the light chain.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号