共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Izumi M Yokoi M Nishikawa NS Miyazawa H Sugino A Yamagishi M Yamaguchi M Matsukage A Yatagai F Hanaoka F 《Biochimica et biophysica acta》2000,1492(2-3):341-352
5.
6.
Mahabub Alam Hiroki Shima Yoshitaka Matsuo Nguyen Chi Long Mitsuyo Matsumoto Yusho Ishii Nichika Sato Takato Sugiyama Risa Nobuta Satoshi Hashimoto Liang Liu Mika K. Kaneko Yukinari Kato Toshifumi Inada Kazuhiko Igarashi 《The Journal of biological chemistry》2022,298(7)
Methionine adenosyltransferase (MAT) catalyzes the synthesis of S-adenosylmethionine (SAM). As the sole methyl-donor for methylation of DNA, RNA, and proteins, SAM levels affect gene expression by changing methylation patterns. Expression of MAT2A, the catalytic subunit of isozyme MAT2, is positively correlated with proliferation of cancer cells; however, how MAT2A promotes cell proliferation is largely unknown. Given that the protein synthesis is induced in proliferating cells and that RNA and protein components of translation machinery are methylated, we tested here whether MAT2 and SAM are coupled with protein synthesis. By measuring ongoing protein translation via puromycin labeling, we revealed that MAT2A depletion or chemical inhibition reduced protein synthesis in HeLa and Hepa1 cells. Furthermore, overexpression of MAT2A enhanced protein synthesis, indicating that SAM is limiting under normal culture conditions. In addition, MAT2 inhibition did not accompany reduction in mechanistic target of rapamycin complex 1 activity but nevertheless reduced polysome formation. Polysome-bound RNA sequencing revealed that MAT2 inhibition decreased translation efficiency of some fraction of mRNAs. MAT2A was also found to interact with the proteins involved in rRNA processing and ribosome biogenesis; depletion or inhibition of MAT2 reduced 18S rRNA processing. Finally, quantitative mass spectrometry revealed that some translation factors were dynamically methylated in response to the activity of MAT2A. These observations suggest that cells possess an mTOR-independent regulatory mechanism that tunes translation in response to the levels of SAM. Such a system may acclimate cells for survival when SAM synthesis is reduced, whereas it may support proliferation when SAM is sufficient. 相似文献
7.
Halim AB LeGros L Chamberlin ME Geller A Kotb M 《The Journal of biological chemistry》2001,276(13):9784-9791
8.
9.
10.
11.
12.
13.
Dominant inheritance of isolated hypermethioninemia is associated with a mutation in the human methionine adenosyltransferase 1A gene. 总被引:1,自引:0,他引:1 下载免费PDF全文
M E Chamberlin T Ubagai S H Mudd H L Levy J Y Chou 《American journal of human genetics》1997,60(3):540-546
Methionine adenosyltransferase (MAT) I/III deficiency, characterized by isolated persistent hypermethioninemia, is caused by mutations in the MAT1A gene encoding MAT(alpha)1, the subunit of major hepatic enzymes MAT I ([alpha1]4) and III([alpha1]2). We have characterized 10 MAT1A mutations in MAT I/III-deficient individuals and shown that the associated hypermethioninemic phenotype was inherited as an autosomal recessive trait. However, dominant inheritance of hypermethioninemia, also hypothesized to be caused by MAT I/III deficiency, has been reported in two families. Here we show that the only mutation uncovered in one of these families, G, is a G-->A transition at nt 791 in exon VII of one MAT1A allele that converts an arginine at position 264 to a histidine (R264H). This single allelic R264H mutation was subsequently identified in two hypermethioninemic individuals in an additional family, C. Family C members were also found to inherit hypermethioninemia in a dominant fashion, and the available affected members analyzed carried the single allelic R264H mutation. Substitution of R-264 with histidine (R264H, the naturally occurring mutant), leucine (R264L), aspartic acid (R264D), or glutamic acid (R264E) greatly reduced MAT activity and severely impaired the ability of the MAT(alpha)1 subunits to form homodimers essential for optimal catalytic activity. On the other hand, when lysine was substituted for R-264 (R264K), the mutant alpha1 subunit was able to form dimers that retain significant MAT activity, suggesting that amino acid 264 is involved in intersubunit salt-bridge formation. Cotransfection studies show that R264/R264H MAT(alpha)1 heterodimers are enzymatically inactive, thus providing an explanation for the R264H-mediated dominant inheritance of hypermethioninemia. 相似文献
14.
Torre L López-Rodas G Latasa MU Carretero MV Boukaba A Rodríguez JL Franco L Mato JM Avila MA 《The international journal of biochemistry & cell biology》2000,32(4):397-404
Methionine adenosyltransferase (MAT) catalyzes the biosynthesis of S-adenosylmethionine (AdoMet). In mammals MAT activity derives from two separate genes which display a tissue-specific pattern of expression. While MAT1A is expressed only in the adult liver, MAT2A is expressed in non-hepatic tissues. The mechanisms behind the selective expression of these two genes are not fully understood. In the present report we have evaluated MAT1A and MAT2A methylation in liver and in other tissues, such as kidney, by methylation-sensitive restriction enzyme digestion of genomic DNA. Our data indicate that MAT1A is hypomethylated in liver and hypermethylated in non-expressing tissues. The opposite situation is found for MAT2A. Additionally, histones associated to MAT1A and MAT2A genes showed enhanced levels of acetylation in expressing tissues (two-fold for MAT1A and 3.5-fold for MAT2A liver and kidney respectively). These observations support a role for chromatin structure and its modification in the tissue-specific expression of both MAT genes. 相似文献
15.
16.
17.
18.
19.
20.