首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IRAK-M is a negative regulator of Toll-like receptor signaling   总被引:62,自引:0,他引:62  
Toll-like receptors (TLRs) detect microorganisms and protect multicellular organisms from infection. TLRs transduce their signals through MyD88 and the serine/threonine kinase IRAK. The IRAK family consists of two active kinases, IRAK and IRAK-4, and two inactive kinases, IRAK-2 and IRAK-M. IRAK-M expression is restricted to monocytes/macrophages, whereas other IRAKs are ubiquitous. We show here that IRAK-M is induced upon TLR stimulation and negatively regulates TLR signaling. IRAK-M prevented dissociation of IRAK and IRAK-4 from MyD88 and formation of IRAK-TRAF6 complexes. IRAK-M(-/-) cells exhibited increased cytokine production upon TLR/IL-1 stimulation and bacterial challenge, and IRAK-M(-/-) mice showed increased inflammatory responses to bacterial infection. Endotoxin tolerance, a protection mechanism against endotoxin shock, was significantly reduced in IRAK-M(-/-) cells. Thus, IRAK-M regulates TLR signaling and innate immune homeostasis.  相似文献   

2.
Corticosteroids are effective anti-inflammatory therapies widely utilized in chronic respiratory diseases. But these medicines can lose their efficacy during respiratory infection resulting in disease exacerbation. Further in vitro research is required to understand how infection worsens lung function control in order to advance therapeutic options to treat infectious exacerbation in the future. In this study, we utilize a cellular model of bacterial exacerbation where we pretreat A549 lung epithelial cells with the synthetic bacterial lipoprotein Pam3CSK4 (a TLR2 ligand) to mimic bacterial infection and tumor necrosis factor α (TNFα) to simulate inflammation. Under these conditions, Pam3CSK4 induces corticosteroid insensitivity; demonstrated by substantially reduced ability of the corticosteroid dexamethasone to repress TNFα-induced interleukin 6 secretion. We then explored the molecular mechanism responsible and found that corticosteroid insensitivity induced by bacterial mimics was not due to altered translocation of the glucocorticoid receptor into the nucleus, nor an impact on the NF-κB pathway. Moreover, Pam3CSK4 did not affect corticosteroid-induced upregulation of anti-inflammatory MAPK deactivating phosphatase—MKP-1. However, Pam3CSK4 can induce oxidative stress and we show that a proportion of the MKP-1 produced in response to corticosteroid in the context of TLR2 ligation was rendered inactive by oxidation. Thus to combat inflammation in the context of bacterial exacerbation we sought to discover effective strategies that bypassed this road-block. We show for the first time that known (FTY720) and novel (theophylline) activators of the phosphatase PP2A can serve as non-steroidal anti-inflammatory alternatives and/or corticosteroid-sparing approaches in respiratory inflammation where corticosteroid insensitivity exists.  相似文献   

3.
白细胞介素1受体相关激酶(interleukin-1 receptor-associatd kinase,IRAK)家族被认为是TLR/IL-1R信号通路中重要的信号分子。迄今为止,已发现4个IRAK家族成员,其中IRAK-1和IRAK.4有激酶活性,IRAK-2和IRAK-M无激酶活性。最近的研究发现IRAK-M参与负性调控TLR信号通路和具有天然免疫的作用。本文就IRAK—M的结构特点及在TLR信号转导的分子机制和免疫耐受中的作用进行综述。  相似文献   

4.
The innate immune pathways induced by adjuvants required to increase adaptive responses to influenza subunit vaccines are not well characterized. We profiled different TLR-independent (MF59 and alum) and TLR-dependent (CpG, resiquimod, and Pam3CSK4) adjuvants for the ability to increase the immunogenicity to a trivalent influenza seasonal subunit vaccine and to tetanus toxoid (TT) in mouse. Although all adjuvants boosted the Ab responses to TT, only MF59 and Pam3CSK4 were able to enhance hemagglutinin Ab responses. To identify innate immune correlates of adjuvanticity to influenza subunit vaccine, we investigated the gene signatures induced by each adjuvant in vitro in splenocytes and in vivo in muscle and lymph nodes using DNA microarrays. We found that flu adjuvanticity correlates with the upregulation of proinflammatory genes and other genes involved in leukocyte transendothelial migration at the vaccine injection site. Confocal and FACS analysis confirmed that MF59 and Pam3CSK4 were the strongest inducers of blood cell recruitment in the muscle compared with the other adjuvants tested. Even though it has been proposed that IFN type I is required for adjuvanticity to influenza vaccines, we found that MF59 and Pam3CSK4 were not good inducers of IFN-related innate immunity pathways. By contrast, resiquimod failed to enhance the adaptive response to flu despite a strong activation of the IFN pathway in muscle and lymph nodes. By blocking IFN type I receptor through a mAb, we confirmed that the adjuvanticity of MF59 and Pam3CSK4 to a trivalent influenza vaccine and to TT is IFN independent.  相似文献   

5.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

6.
We have reported that apoptotic β cells undergoing secondary necrosis, called "late apoptotic (LA) β cells," stimulated APCs and induced diabetogenic T cell priming through TLR2, which might be one of the initial events in autoimmune diabetes. Indeed, diabetogenic T cell priming and the development of autoimmune diabetes were significantly inhibited in TLR2-null NOD mice, suggesting the possibility that TLR2 blockade could be used to inhibit autoimmune diabetes. Because prolonged TLR stimulation can induce TLR tolerance, we investigated whether repeated TLR2 administration affects responses to LA β cells and inhibits autoimmune diabetes in NOD mice by inducing TLR2 tolerance. Treatment of primary peritoneal macrophages with a TLR2 agonist, Pam3CSK(4), suppressed cytokine release in response to LA insulinoma cells or further TLR2 stimulation. The expression of signal transducer IRAK-1 and -4 proteins was decreased by repeated TLR2 stimulation, whereas expression of IRAK-M, an inhibitory signal transducer, was enhanced. Chronic Pam3CSK(4) administration inhibited the development of diabetes in NOD mice. Diabetogenic T cell priming by dendritic cells and upregulation of costimulatory molecules on dendritic cells by in vitro stimulation were attenuated by Pam3CSK(4) administration in vivo. Pam3CSK(4) inhibited diabetes after adoptive transfer of diabetogenic T cells or recurrence of diabetes after islet transplantation by pre-existing sensitized T cells. These results showed that TLR2 tolerance can be achieved by prolonged treatment with TLR2 agonists, which could inhibit priming of naive T cells, as well as the activity of sensitized T cells. TLR2 modulation could be used as a novel therapeutic modality against autoimmune diabetes.  相似文献   

7.
Choi HJ  Kim MK  Ko JH  Lee HJ  Jeong HJ  Wee WR  Seong SY  Akira S 《Cytokine》2011,56(2):265-271
Keratocytes are the first component to contact ocular pathogens when the epithelial barrier breaks down and the emerging evidences indicated keratocytes appeared to be one of the corneal cellular immune components. Little is known about the role of Toll-like receptors (TLRs) in keratocytes, although it has been well documented that keratocytes constitutively express various TLRs including TLR2 and TLR4. In this in vitro study, the authors focused on the role of keratocytes in corneal innate immune system and cross-talk of keratocytes with resident antigen presenting cells (APCs), especially through TLR2 and TLR4. Primary cultivated keratocytes (corneal fibroblasts) from C57BL/6 mice per se actively secreted pro-inflammatory cytokines, especially interleukin (IL)-6, with a dose-dependent manner in response to Pam3CSK4 or lipopolysaccharide (LPS) challenge. With co-culture of corneal fibroblasts with APCs per se, secretion of IL-6 and tumor necrosis factor (TNF)-α was markedly increased and it was counterbalanced by concurrent increase in IL-10 and tumor growth factor-β1. After Pam3CSK4 or LPS stimulation, this cytokine balance was completely broken down by overwhelming amplification of IL-6 and TNF-α secretion, especially in co-culture of corneal fibroblasts with macrophages, rather than with dendritic cells. Using corneal fibroblasts from TLR2 or TLR4 knockout mice, we could find the reversal of Pam3CSK4 or LPS-responsive dose-dependent increment in IL-6 and TNF-α. These results implied that corneal fibroblasts and their TLRs could be key components for the ocular homeostasis and pathogen-associated ocular innate immunity.  相似文献   

8.
Blood–brain barrier (BBB) destruction is associated with a variety of neurological diseases. Brain microvascular endothelial cells (BMECs) are the key constituent of BBB. Both matrix metalloproteinases-2/9 (MMP-2/9) and toll-like receptor-2 (TLR2) are coexpressed in BMECs and have been shown to play important roles in BBB breakdown. It is unknown whether TLR2 can regulate MMP-2/9 in BMECs. In this study, Pam3CSK4 was used to activate TLR2, and the expression of MMP-2/9 and tight junctions (TJs) in BBB was measured by quantitative real-time PCR and western blotting. Phosphoproteins were determined by western blotting. The inhibitors of mitogen-activated protein kinases (MAPKs) and NF-κB were used to identify the signaling pathways by which TLR2 regulates the expression of MMP-2/9 in BMECs. This study showed that Pam3CSK4 upregulated the mRNA and protein expression of MMP-9 and downregulated MMP-2 and TJ expression in BMECs simultaneously. Pam3CSK4 also induced the phosphorylation of MAPKs and NF-κB signaling pathways in BMECs. MMP-9 expression was found to decrease by pretreatment with inhibitors of ERK1/2 and JNK but not p38. However, the mRNA and protein expression of MMP-2 and MMP-9 increased after addition of a NF-κB inhibitor. Our results indicated that Pam3CSK4 was able to upregulate MMP-9 expression through ERK1/2 and JNK signaling pathways, but the NF-κB signaling pathway negatively regulated the effect of TLR2 on MMP-2 and MMP-9 expression in BMECs. The finding provides novel insight into the molecular mechanism of MMP-2/9 expression in BMECs.  相似文献   

9.
The spread of methicillin-resistant Staphylococcus aureus (MRSA) is a critical health issue that has drawn greater attention to the potential use of immunotherapy. Toll-like receptor 2 (TLR2), a pattern recognition receptor, is an essential component in host innate defense system against S. aureus infection. However, little is known about the innate immune response, specifically TLR2 activation, against MRSA infection. Here, we evaluate the protective effect and the mechanism of MRSA murine pneumonia after pretreatment with Pam3CSK4, a TLR2 agonist. We found that the MRSA-pneumonia mouse model, pretreated with Pam3CSK4, had reduced bacteria and mortality in comparison to control mice. As well, lower protein and mRNA levels of TNF-α, IL-1β and IL-6 were observed in lungs and bronchus of the Pam3CSK4 pretreatment group. Conversely, expression of anti-inflammatory cytokine IL-10, but not TGF-β, increased in Pam3CSK4-pretreated mice. Our additional studies showed that CXCL-2 and CXCL1, which are necessary for neutrophil recruitment, were less evident in the Pam3CSK4-pretreated group compared to control group, whereas the expression of Fcγ receptors (FcγⅠ/Ⅲ) and complement receptors (CR1/3) increased in murine lungs. Furthermore, we found that increased survival and improved bacterial clearance were not a result of higher levels of neutrophil infiltration, but rather a result of enhanced phagocytosis and bactericidal activity of neutrophils in vitro and in vivo as well as increased robust oxidative activity and release of lactoferrin. Our cumulative findings suggest that Pam3CSK4 could be a novel immunotherapeutic candidate against MRSA pneumonia.  相似文献   

10.
《Cellular signalling》2014,26(2):279-286
The specific TLR2/1 complex activator Pam3CSK4 has been shown to provoke prominent activation and aggregation of human non-nucleated platelets. As Pam3CSK4-evoked platelet activation does not employ the major signalling pathway established in nucleated immune cells, we investigated if the TLR2/1 complex on platelets may initiate signalling pathways known to be induced by physiological agonists such as collagen via GPVI or thrombin via PARs. We found that triggering TLR2/1 complex-signalling with Pam3CSK4, in common with that induced via GPVI, and in contrast to that provoked by PARs, involves tyrosine phosphorylation of the adaptor protein LAT as well as of PLCγ2 in a src- and Syk-dependent manner. In this respect, we provide evidence that Pam3CSK4 does not cross-activate GPVI.Further, by the use of platelets from a Glanzmann's thrombasthenia patient lacking β3, in contrast to findings in nucleated immune cells, we show that the initiation of platelet activation by Pam3CSK4 does not involve integrin β3 signalling; whereas the latter, subsequent to intermediate TXA2 synthesis and signalling, was found to be indispensable for proper dense granule secretion and full platelet aggregation. Together, our findings reveal that triggering the TLR2/1 complex with Pam3CSK4 initiates human platelet activation by engaging tyrosine kinases of the src family and Syk, the adaptor protein LAT, as well as the key mediator PLCγ2.  相似文献   

11.
TLRs are primary sensors of both innate and adaptive immune systems, where they play a pivotal role in the response directed against structurally conserved components of pathogens. Synthetic bacterial lipopeptide Pam3CSK4 is a TLR2 agonist capable of modulating Th1 and Th2 responses. This study examines the therapeutic effect of Pam3CSK4 in established airway inflammation in a murine model of asthma. In mice previously sensitized and challenged with OVA, Pam3CSK4 given i.p. markedly reduced the total inflammatory cell infiltrate and eosinophilia in bronchoalveolar lavage fluid. Pam3CSK4 therapy was associated with a reduction in OVA-induced IL-4 and IL-5 secretion from thoracic lymph node culture, airways inflammation, bronchial hyperresponsiveness, and serum levels of IgE. Pam3CSK4 therapy was also associated with an increase in OVA-induced IFN-gamma, IL-12, and IL-10 production. However, the anti-inflammatory effect of Pam3CSK4 was independent of IL-10 or TGF-beta, but was critically dependent on IL-12, the production of which by dendritic cells was enhanced by Pam3CSK4 in vitro. Our results provide direct evidence that Pam3CSK4 could represent a novel therapeutic agent in allergic airways disease.  相似文献   

12.
Negative regulation of toll-like receptor-mediated signaling by Tollip.   总被引:29,自引:0,他引:29  
Toll-like receptor (TLR)-mediated recognition of pathogens represents one of the most important mechanisms of innate immunity and disease resistance. The adaptor protein Tollip was identified initially as an intermediate in interleukin (IL)-1 signaling. Here we report that Tollip also associates directly with TLR2 and TLR4 and plays an inhibitory role in TLR-mediated cell activation. Inhibition by Tollip is mediated through its ability to potently suppress the activity of IL-1 receptor-associated kinase (IRAK) after TLR activation. In addition, we show for the first time that Tollip is a bona fide substrate for IRAK and is phosphorylated by IRAK upon stimulation with lipopolysaccharide or IL-1. Negative regulation of TLR signaling by Tollip may therefore serve to limit the production of proinflammatory mediators during inflammation and infection.  相似文献   

13.
This study examined the effect of TLR2 activation by its specific ligand, Pam3CSK4, on cerebral ischemia/reperfusion (I/R) injury. Mice (n = 8/group) were treated with Pam3CSK4 1 h before cerebral ischemia (60 min), followed by reperfusion (24 h). Pam3CSK4 was also given to the mice (n = 8) 30 min after ischemia. Infarct size was determined by triphenyltetrazolium chloride staining. The morphology of neurons in brain sections was examined by Nissl staining. Pam3CSK4 administration significantly reduced infarct size by 55.9% (p < 0.01) compared with untreated I/R mice. Therapeutic treatment with Pam3CSK4 also significantly reduced infarct size by 55.8%. Morphologic examination showed that there was less neuronal damage in the hippocampus of Pam3CSK4-treated mice compared with untreated cerebral I/R mice. Pam3CSK4 treatment increased the levels of Hsp27, Hsp70, and Bcl2, and decreased Bax levels and NF-κB-binding activity in the brain tissues. Administration of Pam3CSK4 significantly increased the levels of phospho-Akt/Akt and phospho-GSK-3β/GSK-3β compared with untreated I/R mice. More significantly, either TLR2 deficiency or PI3K inhibition with LY29004 abolished the protection by Pam3CSK4. These data demonstrate that activation of TLR2 by its ligand prevents focal cerebral ischemic damage through a TLR2/PI3K/Akt-dependent mechanism. Of greater significance, these data indicate that therapy with a TLR2-specific agonist during cerebral ischemia is effective in reducing injury.  相似文献   

14.
A20 functions to terminate Toll-like receptor (TLR)-induced immune response, and play important roles in the induction of lipopolysacchride (LPS)-tolerance. However, the molecular mechanism for Pam3CSK4-tolerance is uncertain. Here we report that TLR1/2 ligand Pam3CSK4 induced tolerance in monocytic THP-1 cells. The pre-treatment of THP-1 cells with Pam3CSK4 down-regulated the induction of pro-inflammatory cytokines induced by Pam3CSK4 re-stimulation. Pam3CSK4 pre-treatment also down-regulated the signaling transduction of JNK, p38 and NF-κB induced by Pam3CSK4 re-stimulation. The activation of TLR1/2 induced a rapid and robust up-regulation of A20, suggesting that A20 may contribute to the induction of Pam3CSK4-tolerance. This hypothesis was proved by the observation that the over-expression of A20 by gene transfer down-regulated Pam3CSK4-induced inflammatory responses, and the down-regulation of A20 by RNA interference inhibited the induction of tolerance. Moreover, LPS induced a significant up-regulation of A20, which contributed to the induction of cross-tolerance between LPS and Pam3CSK4. A20 was also induced by the treatment of THP-1 cells with TNF-α and IL-1β. The pre-treatment with TNF-α and IL-1β partly down-regulated Pam3CSK4-induced activation of MAPKs. Furthermore, pharmacologic inhibition of GSK3 signaling down-regulated Pam3CSK4-induced A20 expression, up-regulated Pam3CSK4-induced inflammatory responses, and partly reversed Pam3CSK4 pre-treatment-induced tolerance, suggesting that GSK3 is involved in TLR1/2-induced tolerance by up-regulation of A20 expression. Taken together, these results indicated that A20 is a critical regulator for TLR1/2-induced pro-inflammatory responses.  相似文献   

15.
TLR-induced innate immunity and inflammation are mediated by signaling cascades leading to activation of the MAPK family of Ser/Thr protein kinases, including p38 MAPK, which controls cytokine release during innate and adoptive immune responses. Failure to terminate such inflammatory reactions may lead to detrimental systemic effects, including septic shock and autoimmunity. In this study, we provide genetic evidence of a critical and nonredundant role of MAPK phosphatase (MKP)-1 in the negative control of MAPK-regulated inflammatory reactions in vivo. MKP-1-/- mice are hyperresponsive to low-dose LPS-induced toxicity and exhibit significantly increased serum TNF-alpha, IL-6, IL-12, MCP-1, IFN-gamma, and IL-10 levels after systemic administration of LPS. Furthermore, absence of MKP-1 increases systemic levels of proinflammatory cytokines and exacerbates disease development in a mouse model of rheumatoid arthritis. When activated through TLR2, TLR3, TLR4, TLR5, and TLR9, bone marrow-derived MKP-1-/- macrophages exhibit increased cytokine production and elevated expression of the differentiation markers B7.2 (CD86) and CD40. MKP-1-deficient macrophages also show enhanced constitutive and TLR-induced activation of p38 MAPK. Based on these findings, we propose that MKP-1 is an essential component of the intracellular homeostasis that controls the threshold and magnitude of p38 MAPK activation in macrophages, and inflammatory conditions accentuate the significance of this regulatory function.  相似文献   

16.
Telocytes, newly discovered in the last decade, are interstitial cells found in numerous organs, with multiple proposed potential biological functions. Toll‐like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen‐associated molecular patterns (PAMPs). However, it is still unknown whether telocytes express these innate receptors. We sought to determine the expression and role of TLRs in telocytes. In our study, we primarily detected TLR1‐9 expression in telocytes. The proliferation, apoptosis and immunoregulatory activity of telocytes activated with or without TLR ligands were determined. Our results showed that purified telocytes expressed TLR2, TLR3 and TLR5. In particular, telocytes expressed high levels of TLR2 as observed using flow cytometry. When we stimulated telocytes with TLR2 or TLR3 agonists (Pam3CSK4, PolyI:C), iNOS expression was greatly increased after Pam3CSK4 treatment. Additionally, telocyte proliferation was reduced and cell apoptosis was increased after TLR agonist stimulation. A co‐culture experiment showed that supernatant from telocytes pretreated with Pam3CSK4 inhibited T cell activation much more than that from untreated telocytes and this effect was mediated by iNOS. Overall, our results demonstrated TLR expression on telocytes for the first time and provided evidence of an immunoregulatory role of telocytes, indicating their clinical potential.  相似文献   

17.
Chicken macrophages express several receptors for recognition of pathogens, including Toll-like receptors (TLRs). TLRs bind to pathogen-associated molecular patterns (PAMPs) derived from bacterial or viral pathogens leading to the activation of macrophages. Macrophages play a critical role in immunity against viruses, including influenza viruses. The present study was designed to test the hypothesis that treatment of chicken macrophages with TLR ligands reduces avian influenza replication. Furthermore, we sought to study the expression of some of the key mediators involved in the TLR-mediated antiviral responses of macrophages. Chicken macrophages were treated with the TLR2, 3, 4, 7 and 21 ligands, Pam3CSK4, poly(I:C), LPS, R848 and CpG ODN, respectively, at different doses and time points pre- and post-H4N6 avian influenza virus (AIV) infection. The results revealed that pre-treatment of macrophages with Pam3CSK4, LPS and CpG ODN reduced the replication of AIV in chicken macrophages. In addition, the relative expression of genes involved in inflammatory and antiviral responses were quantified at 3, 8 and 18 hours post-treatment with the TLR2, 4 and 21 ligands. Pam3CSK4, LPS and CpG ODN increased the expression of interleukin (IL)-1β, interferon (IFN)-γ, IFN-β and interferon regulatory factor (IFR) 7. The expression of these genes correlated with the reduction of viral replication in macrophages. These results shed light on the process of immunity to AIV in chickens.  相似文献   

18.
Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNF-α production, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号