首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The requirements of purified rat Leydig cells for intra- and extra-cellular Ca2+ during steroidogenesis stimulated by LH (lutropin), cyclic AMP analogues and LHRH (luliberin) agonist were investigated. The intracellular Ca2+ concentrations ([Ca2+]i) were measured by using the fluorescent Ca2+ chelator quin-2. The basal [Ca2+]i was found to be 89.4 +/- 16.6 nM (mean +/- S.D., n = 25). LH, 8-bromo cyclic AMP and dibutyryl cyclic AMP increased [Ca2+]i, by 300-500 nM at the highest concentrations of each stimulator, whereas LHRH agonist only increased [Ca2+]i by a maximum of approx. 60 nM. Low concentrations of LH (less than 1 pg/ml) and all concentrations of LHRH agonist increased testosterone without detectable changes in cyclic AMP. With amounts of LH greater than 1 pg/ml, parallel increases in cyclic AMP and [Ca2+]i occurred. The steroidogenic effect of the LHRH agonist was highly dependent on extracellular Ca2+ concentration ([Ca2+]e), whereas LH effects were only decreased by 35% when [Ca2+]e was lowered from 2.5 nM to 1.1 microM. No increase in [Ca2+]i occurred with the LHRH agonist in the low-[Ca2+]e medium, whereas LH (100 ng/ml) gave an increase of 52 nM. It is concluded that [Ca2+]i can be modulated in rat Leydig cells by LH via mechanisms that are both independent of and dependent on cyclic AMP, whereas LHRH-agonist action on [Ca2+]i is independent of cyclic AMP. The evidence obtained suggests that, at sub-maximal rates of testosterone production, Ca2+, rather than cyclic AMP, is the second messenger, whereas for maximum steroidogenesis both Ca2+- and cyclic-AMP-dependent pathways may be involved.  相似文献   

2.
The effects of melatonin on pituitary adenylyl cyclase-activating polypeptide-induced increase of cyclic AMP and [Ca2+]i were studied in neonatal rat pituitary cells. The polypeptide increased cyclic AMP accumulation. In the presence of melatonin the increase of cyclic AMP was inhibited in a dose-dependent manner, the maximal inhibition was achieved with 1-10 nM melatonin. Pituitary adenylyl cyclase-activating polypeptide also increased [Ca2+]i in 30% of the pituitary cells and melatonin inhibited the effect. Most of the cells sensitive to adenylyl cyclase-activating polypeptide (77%) were also sensitive to GnRH, suggesting they are gonadotrophs. The remaining cells were not identified. The polypeptide-induced [Ca2+]i increase was inhibited in Ca2+-free medium in 2/3 of the cells indicating that Ca2+ influx was involved. To examine causal relationship between cyclic AMP and [Ca2+]i increase, we have studied the effect of adenylyl cyclase activation by forskolin on intracellular Ca2+ concentration. Forskolin had similar effects as adenylyl cyclase-activating polypeptide: it increased [Ca2+]i in the pituitary cells and the increase was dependent on presence of Ca2+ in the medium. Melatonin inhibited the forskolin induced [Ca2+]i increase. Our observations indicate that increase of cyclic AMP stimulates Ca2+ influx in the pituitary cells of neonatal rat and that this mechanism is involved in [Ca2+]i increase induced by the pituitary adenylyl cyclase-activating polypeptide. Because melatonin inhibits increase of cyclic AMP induced by pituitary adenylyl cyclase-activating polypeptide or forskolin, the inhibitory effect of melatonin on Ca2+-influx may be mediated by the decrease of cyclic AMP concentration. This mechanism of melatonin action has not been described previously. Because melatonin inhibits the polypeptide- or forskolin-induced [Ca2+]i also in the cells not sensitive to GnRH, melatonin receptors seem to be present on both gonadotrophs and non-gonadotrophic pituitary cells.  相似文献   

3.
The generation of the two inositol trisphosphate (IP3) isomers, 1,4,5-IP3 and 1,3,4-IP3, and its relation to changes in the cytosolic free calcium concentration, [Ca2+]i, in response to the chemotactic peptide fMet-Leu-Phe was studied in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Stimulation by fMet-Leu-Phe within seconds transiently elevates 1,4,5-IP3 to peak values averaging 8-fold basal levels, and leads to a concomitant rise in [Ca2+]i and to degranulation. These responses are followed by a slower and more sustained rise in 1,3,4-IP3. Alterations in [Ca2+]i modulate differentially the generation of the two IP3 isomers. At [Ca2+]i lower than 30 nM, no IP3 is generated upon fMet-Leu-Phe stimulation. Working at normal resting [Ca2+]i, but preventing the fMet-Leu-Phe induced transient rise in [Ca2+]i (by prior depletion of intracellular Ca2+ stores and working in calcium-free medium) the fMet-Leu-Phe stimulation of 1,3,4-IP3 levels is attenuated, whereas the response of 1,4,5-IP3 is not significantly altered. Maintained elevation of [Ca2+]i to micromolar levels with the Ca2+ ionophore ionomycin generates enhanced 1,3,4-IP3 levels in the absence of fMet-Leu-Phe, whereas the fMet-Leu-Phe stimulation of 1,4,5-IP3 generation is markedly inhibited. Pertussis toxin selectively abolishes the fMet-Leu-Phe-induced IP3 production, whereas ionomycin stimulation of 1,3,4-IP3 generation is unaffected. These findings indicate that in intact cells: receptor-triggered phosphatidylinositol bisphosphate phosphodiesterase activation has a minimal Ca2+ requirement, but does not depend on a previous or concomitant rise in [Ca2+]i; Ca2+ elevations above micromolar levels decrease the fMet-Leu-Phe-induced generation of 1,4,5-IP3; and 1,3,4-IP3 generation is not directly linked to receptor activation and appears to result both from increased [Ca2+]i and 1,4,5-IP3 levels.  相似文献   

4.
The dynamics of changes in membrane potential, cytosolic free Ca2+, [Ca2+]i and immunoreactive insulin release were assessed in RINm5F cells. Membrane depolarization and a rise in [Ca2+]i preceded the stimulation of insulin release by D-glyceraldehyde. Forskolin, which raised the cellular cyclic AMP levels, stimulated insulin release without changing membrane potential or [Ca2+]i. It is concluded that cyclic AMP acts on insulin release not by mobilizing Ca2+ but by another, as yet undefined, mechanism.  相似文献   

5.
The signal transduction systems of the neuropeptide Y (NPY) Y1 receptor were studied in SK-N-MC human neuroblastoma cells. NPY induced an increase in intracellular calcium ion concentration ([Ca2+]i) and inhibition of forskolin-stimulated cyclic AMP accumulation, which were mediated through Y1 receptors. One-min preincubation of cells with phorbol 12-myristate 13-acetate (PMA) inhibited both signal transductions dose-dependently, but its effect on [Ca2+]i was about 100-fold more potent than that on cyclic AMP. PMA had no effect on [125I]BH-NPY binding in SK-N-MC cells and hardly inhibited the endothelin-1-induced increase in [Ca2+]i. Pertussis toxin also inhibited the NPY-induced [Ca2+]i increase 30-fold more effectively than the NPY-mediated inhibition of cyclic AMP accumulation. These results indicate that Y1 receptors in SK-N-MC cells couple to two signal transduction systems that have different sensitivities to phorbol ester and pertussis toxin treatments.  相似文献   

6.
Hepatocytes were isolated from rats and then loaded with the fluorescent Ca2+ indicator quin2. Glucagon caused a sustained increase (at least 5 min) in the fluorescence of the quin2-loaded cells; the increase was much greater than that observed with control, non-quin2-loaded, cells. These observations indicate that glucagon caused an increase in cytoplasmic free Ca2+ concentration [( Ca2+]c). The effects of glucagon were mimicked if forskolin (to activate adenylate cyclase), dibutyryl cyclic AMP or bromo cyclic AMP were added directly to the cells. Thus an increase in cyclic AMP concentration may mediate the effect of glucagon on [Ca2+]c. If 4 beta-phorbol 12-myristate 13-acetate (PMA; an activator of protein kinase C) was added to the cells before glucagon, the magnitude of the increase in [Ca2+]c was greatly diminished. If PMA was added after glucagon it caused a lowering of [Ca2+]c. These effects of PMA on the glucagon-induced increase in [Ca2+]c could not be mimicked if [Ca2+]c was increased by the Ca2+-ionophore ionomycin. Thus an event involved in the mechanism by which glucagon increases [Ca2+]c appears to be required for the action of PMA. If [Ca2+]c was increased by forskolin, dibutyryl cyclic AMP or bromo cyclic AMP, the effect of PMA on [Ca2+]c was similar to that observed when glucagon was used to elevate [Ca2+]c. When [Ca2+]c was raised by dibutyryl cyclic AMP the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine did not prevent the subsequent addition of PMA from causing [Ca2+]c to decrease. These observations suggest that PMA can inhibit the cyclic AMP-induced increase in [Ca2+]c independently of any changes in cyclic AMP concentration. Glucagon appears to increase [Ca2+]c by releasing intracellular stores of Ca2+ and stimulating net influx of Ca2+ into the cell; PMA greatly diminishes both of these effects.  相似文献   

7.
The effect of neuropeptide Y (NPY) on cytosolic free Ca2+ concentration ([Ca2+]i) was studied in cultured smooth muscle cells from porcine aorta (PASMC) and compared with the effect of bradykinin (BK) and angiotensin II (ATII) on [Ca2+]i. All peptides induced dose-dependent and transient rises in [Ca2+]i which were not blocked by extracellular EGTA, but the NPY response was different from the others' as follows. First, the [Ca2+]i rise induced by NPY was not as rapid as that induced by BK or ATII. Second, pertussis toxin abolished the [Ca2+]i rise induced by NPY, but not by BK or ATII. Third, following initial treatment with BK, PASMC were able to respond to NPY, but not to ATII. Finally, BK and ATII, but not NPY, significantly increased inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) generation. Although NPY attenuated forskolin-induced accumulation of cyclic AMP, forskolin- and 3-isobutyl-1-methyl-xanthine-induced alterations in intracellular cyclic AMP did not affect the NPY-induced [Ca2+]i rise. These results suggest that NPY increases [Ca2+]i by a pertussis toxin-sensitive GTP binding protein-involved mechanism which is not mediated by the intracellular messengers such as Ins(1,4,5)P3 and cyclic AMP.  相似文献   

8.
A number of lines of evidence indicate that the Ca2+ and cyclic AMP signalling systems interact in NCB-20 cells. However, to date, the regulation of [Ca2+]i homeostasis has not been studied in this cell line. The present study aimed to clarify our understanding of [Ca2+]i homeostasis in these cells and to evaluate tools that manipulate [Ca2+]i, independently of protein kinase C effects. Bradykinin, by a B2-receptor, elevated [Ca2+]i by a pertussis-toxin-insensitive mechanism. The BK-stimulated [Ca2+]i rise originated from intracellular sources, without a contribution from Ca2+ entry mechanisms. The effect of BK was precluded by pretreatment with thapsigargin and ionomycin--compounds that elevated [Ca2+]i independent of phospholipase C activation. Both compounds, however, exerted effects in addition to stimulating release of Ca2+ from BK-sensitive stores; the BK-sensitive Ca2+ pool was a subset of the thapsigargin-sensitive pool; ionomycin strongly stimulates Ca2+ entry. Activation of protein kinases A and C attenuated the duration of the BK-induced rise in [Ca2+]i, without affecting the peak [Ca2+]i, suggesting interference with the BK response at a step downstream of the activation of phospholipase C. Application of these approaches should enhance the delineation of the consequences of Ca2+ mobilization on cyclic AMP accumulation.  相似文献   

9.
Glucagon increases the cytoplasmic free calcium concentration as measured by aequorin bioluminescence. It has been proposed by Wakelam et al. (Nature 323 (1986) 68-71) that low concentrations of glucagon mobilize calcium from an intracellular pool by causing polyphosphoinositide breakdown. To identify whether cyclic AMP mediates changes in the cytoplasmic free calcium concentration ([Ca2+]c) induced by glucagon, the effects of forskolin and exogenous cyclic AMP on [Ca2+]c were compared with that of glucagon in aequorin-loaded hepatocytes. Although the magnitudes of the [Ca2+]c responses to 250 microM forskolin and 1 mM 8-bromo cyclic AMP were identical to that of 5 nM glucagon, these two agents induced a more prolonged elevation of [Ca2+]c. Glucagon-induced elevation of [Ca2+]c was accompanied by a smaller increase in cyclic AMP than that induced by forskolin. When the cyclic AMP response to glucagon was potentiated by an inhibitor of phosphodiesterase, 3-isobutyl-1-methylxanthine, the glucagon-induced increase in [Ca2+]c was not affected. Conversely, when the cyclic AMP response to glucagon was reduced by pretreatment of the cells with angiotensin II, glucagon-induced changes in [Ca2+]c were rather enhanced. Furthermore, vasopressin potentiated glucagon-induced changes in [Ca2+]c despite the reduction of the cyclic AMP response to glucagon. In the presence of 1 microM extracellular calcium, angiotensin II did not enhance glucagon-induced changes in [Ca2+]c. These results suggest that at least part of the action of 5 nM glucagon on calcium mobilization is independent of cyclic AMP.  相似文献   

10.
It has been proposed that cyclic AMP inhibits platelet reactivity: by preventing agonist-induced phosphoinositide hydrolysis and the resultant formation of 1,2-diacylglycerol and elevation of cytosolic free Ca2+ concentration [( Ca2+]i); by promoting Ca2+ sequestration and/or extrusion; and by suppressing reactions stimulated by (1,2-diacylglycerol-dependent) protein kinase C and/or Ca2+-calmodulin-dependent protein kinase. We used the adenylate cyclase stimulant prostaglandin D2 to compare the sensitivity to cyclic AMP of the transduction processes (phosphoinositide hydrolysis and elevation of [Ca2+]i) and functional responses (shape change, aggregation and ATP secretion) that are initiated after agonist-receptor combination on human platelets. Prostaglandin D2 elicited a concentration-dependent elevation of platelet cyclic AMP content and inhibited platelet-activating-factor(PAF)-induced ATP secretion [I50 (concn. causing 50% inhibition) approximately 2 nM], aggregation (I50 approximately 3 nM), shape change (I50 approximately 30 nM), elevation of [Ca2+]i (I50 approximately 30 nM) and phosphoinositide hydrolysis (I50 approximately 10 nM). A 2-fold increase in cyclic AMP content resulted in abolition of PAF-induced aggregation and ATP secretion, whereas maximal inhibition of shape change, phosphoinositide hydrolysis and elevation of [Ca2+]i required a greater than 10-fold elevation of the cyclic AMP content. This differential sensitivity of the various responses to inhibition by cyclic AMP suggests that the mechanisms underlying PAF-induced aggregation and ATP secretion differ from those underlying shape change. Thus a major component of the cyclic AMP-dependent inhibition of PAF-induced platelet aggregation and ATP secretion is mediated by suppression of certain components of the activation process that occur distal to the formation of DAG or elevation of [Ca2+]i.  相似文献   

11.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

12.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

13.
Inositol trisphosphate (InsP3) production and cytosolic free Ca2+ ([Ca2+]i) elevations induced by leukotriene B4 (LTB4)-receptor activation were studied in the human promyelocytic-leukaemia cell line HL60, induced to differentiate by retinoic acid. The myeloid-differentiated HL60 cells respond to LTB4 by raising their [Ca2+]i with a dose-response relationship similar to that shown by normal human neutrophils. The observations of the LTB4 transduction mechanism were compared with those of the transduction mechanism of the chemotactic peptide fMet-Leu-Phe in HL60 cells differentiated with dimethyl sulphoxide. Both LTB4 and fMet-Leu-Phe triggered a rapid (less than 5 s) elevation of [Ca2+]i, which occurred in parallel with the InsP3 production from myo-[3H]inositol-labelled cells. The threshold concentrations of the agonists, for InsP3 production, were found at 10(-9) M, a slightly higher concentration than that required to detect [Ca2+]i elevations. No significant changes were noted in the phosphoinositide levels upon stimulation with LTB4. Exposure to Bordetella pertussis toxin before LTB4 stimulation abolished both the increased formation of InsP3 and the rise of [Ca2+]i. LTB4 and fMet-Leu-Phe elicited elevations of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with no detectable lag time, followed by slower and more sustained inositol 1,3,4-trisphosphate elevations. Stimulation with various leukotriene analogues revealed a good correlation between both total InsP3 as well as Ins(1,4,5)P3 formation and elevations of [Ca2+]1. Thus LTB4 receptor activation results in an increased production of Ins(1,4,5)P3 via a transduction mechanism also involving a nucleotide regulatory protein, as previously described for the fMet-Leu-Phe transduction mechanism.  相似文献   

14.
The effects of isoproterenol (ISO), a beta-adrenoceptor agonist, on cytosolic free Ca2+ ([Ca2+]i) in rat parotid acinar cells were examined using the fluorescent Ca2(+)-indicator fura-2. At concentrations up to 1 mM, ISO caused a rapid increase in [Ca2+]i in a dose-dependent manner, while addition of 1 microM ISO, which evokes the maximum amylase secretion, had only a slight effect on [Ca2+]i. There was no such increase in [Ca2+]i with the addition (2 mM) of 8-bromo-cyclic AMP, a permeant cyclic AMP analogue. The alpha-adrenoceptor antagonist phentolamine blocked the ISO-induced [Ca2+]i increase better than the beta-adrenoceptor antagonist, propranol, and the muscarinic receptor antagonist, atropine. The IC50 value (the concentration which reduces the ISO-induced increase in [Ca2+]i by 50%) of phentolamine was estimated to be 7.6 nM, for propranolol 13.2 microM and for atropine 3.5 microM. The difference in potency between the three antagonists was similar to the difference in blocking the [Ca2+]i increase induced by phenylephrine, an alpha-adrenoceptor agonist. These results suggest that the Ca2(+)-mobilization in response to high concentrations of ISO results from an activation of alpha-adrenoceptors rather than beta-adrenoceptors.  相似文献   

15.
Prostaglandin E1 (PGE1)-mediated transmembrane signal control systems were investigated in intact murine neuroblastoma cells (clone N1E-115). PGE1 increased intracellular levels of total inositol phosphates (IP), cyclic GMP, cyclic AMP, and calcium ([Ca2+]i). PGE1 transiently increased inositol 1,4,5-trisphosphate formation, peaking at 20 s. There was more than a 10-fold difference between the ED50 for PGE1 at cyclic AMP formation (70 nM) and its ED50 values at IP accumulation (1 microM), cyclic GMP formation (2 microM), and [Ca2+]i increase (5 microM). PGE1-mediated IP accumulation, cyclic GMP formation, and [Ca2+]i increase depended on both the concentration of PGE1 and extracellular calcium ions. PGE1 had more potent intrinsic activity in cyclic AMP formation, IP accumulation, and cyclic GMP formation than did PGE2, PGF2 alpha, or PGD2. A protein kinase C activator, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate, had opposite effects on PGE1-mediated IP release and cyclic GMP formation (inhibitory) and cyclic AMP formation (stimulatory). These data suggest that there may be subtypes of the PGE1 receptor in this clone: a high-affinity receptor mediating cyclic AMP formation, and a low-affinity receptor mediating IP accumulation, cyclic GMP formation, and intracellular calcium mobilization.  相似文献   

16.
We have addressed the important question as to if and how the cytosolic free Ca2+ concentration, [Ca2+]i, is involved in fMet-Leu-Phe induced actin polymerization in human neutrophils. Stimulation of human neutrophils with the chemotactic peptide (10(-7) M), known to result in a prompt rise of the [Ca2+]i to above 500 nM, also induced a rapid decrease of monomeric actin, G-actin, content (to 35% of basal) and increase of filamentous actin, F-actin, content (to 320% of basal). A reduction of the fMet-Leu-Phe induced [Ca2+]i transient to about 250 nM, resulted in a less pronounced decrease of G-actin content (to 80% of basal) and increase of F-actin content (to 235% of basal). A total abolishment of the chemotactic peptide induced [Ca2+]i rise, still led to a decrease of the G-actin content (to 85% of basal) and increase of F-actin (to 200% of basal). These results indicate that the [Ca2+]i rise is not an absolute requirement, but has a modulating role for the fMet-Leu-Phe induced actin polymerization. Another possible intracellular candidate for fMet-Leu-Phe induced actin polymerization is protein kinase C. However, direct activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) only resulted in a minor increase of F-actin content. The recent hypothesis that a metabolite of the polyphosphoinositide cycle, independently of [Ca2+]i and protein kinase C, is responsible for actin polymerization agrees well with these results and by the fact that preexposure to pertussis toxin totally abolished a subsequent increase of F-actin content induced by fMet-Leu-Phe.  相似文献   

17.
The intracellular signals generated by carbachol activation of the muscarinic receptor [release of inositol phosphates as a consequence of phosphoinositide hydrolysis and rise of the cytosolic Ca2+ concentration ([Ca2+]i, measured by quin2)] were studied in intact PC12 pheochromocytoma cells that had been differentiated by treatment with nerve growth factor. When measured in parallel samples of the same cell preparation 30 s after receptor activation, the release of inositol trisphosphate and of its possible metabolites, inositol bis- and mono-phosphate, and the [Ca2+]i rise were found to occur with almost superimposable carbachol concentration curves. At the same time carbachol caused a decrease in the radioactivity of preloaded phosphatidylinositol 4,5-bisphosphate, the precursor of inositol trisphosphate. Neither the inositol phosphate nor the [Ca2+]i signal was modified by preincubation of the cells with either purified Bordetella pertussis toxin or forskolin, the direct activator of adenylate cyclase. Both signals were partially inhibited by dibutyryl cyclic AMP, especially when the nucleotide analogue was applied in combination with the phosphodiesterase inhibitors RO 201724 and theophylline. The latter drug alone profoundly inhibited the carbachol-induced [Ca2+]i rise, with only minimal effect on phosphoinositide hydrolysis. Because of the diverging results obtained with forskolin on the one hand, dibutyryl cyclic AMP and phosphodiesterase inhibitors on the other, the effects of the latter drugs are considered to be pharmacological, independent of the intracellular cyclic AMP concentration. Two further drugs tested, mepacrine and MY5445, inhibited phosphoinositide hydrolysis at the same time as the 45Ca2+ influx stimulated by carbachol. Taken together, our results concur with previous evidence obtained with permeabilized cells and cell fractions to indicate phosphatidylinositol 4,5-bisphosphate hydrolysis and [Ca2+]i rise as two successive events in the intracellular transduction cascade initiated by receptor activation. The strict correlation between the carbachol concentration curves for inositol trisphosphate generation and [Ca2+]i rise, and the inhibition by theophylline of the Ca2$ signal without major effects on inositol phosphate generation, satisfy important requirements of the abovementioned interpretation.  相似文献   

18.
The initial kinetics of agonist-evoked rises in the cytosolic Ca2+ concentration [Ca2+]i were investigated in fura-2-loaded human neutrophils by stopped-flow fluorimetry. The rises in [Ca2+]i evoked by chemotactic peptide (fMet-Leu-Phe), platelet-activating factor and ADP all lagged behind agonist addition by 1-1.3 s. Lag times were not significantly different in the presence and in the absence of external Ca2+. Stimulation of the cells in the presence of extracellular Mn2+ resulted in a quench of fluorescence with a similar lag time to [Ca2+]i rise. The delay in onset of the rise in [Ca2+]i evoked by fMet-Leu-Phe was dependent on concentration, becoming longer at lower concentrations of agonist. These results indicate that both the agonist-evoked discharge of the intracellular Ca2+ stores and the generation of bivalent-cation influx lag behind agonist-receptor binding in neutrophils. Both pathways thus appear to be mediated by indirect mechanisms, rather than by a directly coupled process such as a receptor-operated channel. The temporal coincidence of the onset of store discharge with the commencement of bivalent-cation influx suggests that the two events may be causally linked.  相似文献   

19.
When intracellular free Ca2+ concentration [( Ca2+]i) was monitored in fura2-loaded Swiss 3T3 cells, endothelin increased [Ca2+]i in a dose-dependent manner; after the addition of endothelin, an initial transient peak was observed immediately and was followed by a sustained increase in [Ca2+]i lasting at least 5 min. 45Ca2+ efflux and influx experiments in endothelin-stimulated Swiss 3T3 cells revealed that the change in [Ca2+]i could be explained by a dual mechanism; an initial transient peak induced mainly by the release of Ca2+ from intracellular stores and the sustained increase by an influx of extracellular Ca2+. Cellular generation of inositol 1,4,5-trisphosphate and cyclic AMP were not induced by endothelin, suggesting that other cellular mediators with the capacity to release Ca2+ from intracellular stores play a significant role in the signal transduction pathway of endothelin in Swiss 3T3 cells.  相似文献   

20.
We investigated cellular mechanisms mediating the parathyroid hormone (PTH)-induced increase in cytosolic free Ca2+ concentration ([Ca2+]i) in isolated perfused rabbit connecting tubules. Prior and/or concomitant exposure to 0.5 mM of N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-8), a cyclic nucleotide-dependent protein kinase inhibitor, abolished the rise in [Ca2+]i produced by 0.1 nM PTH in five connecting tubules and suppressed it by approximately 50% in another five. In the latter, there was a delayed onset in the rise of [Ca2+]i. Such responses contrasted to the prompt increase in [Ca2+]i in PTH-stimulated control tubules. However, when H-8 was withdrawn, [Ca2+]i rose within minutes to reach a plateau value similar to the uninhibited response to PTH in controls, indicating rapidly reversible inhibition by H-8. In an otherwise identical protocol, 0.5 mM H-8 also reversibly suppressed the rise in [Ca2+]i induced by 0.175 mM 8-Br-cAMP. In contrast to the stimulatory effect of 8-Br-cAMP on [Ca2+]i, 1 mM 8-Br-cGMP caused no increase. At a concentration of 0.4 mM, the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate (Rp-cAMPS), a well-characterized cAMP-dependent protein kinase inhibitor, totally abolished the rise in [Ca2+]i caused by 0.1 nM PTH. We conclude that a cAMP-dependent protein kinase plays an important role in the PTH-stimulated rise in [Ca2+]i in the rabbit connecting tubule. Since the increase in [Ca2+]i was shown previously to depend on extracellular Ca2+, we propose that cAMP-dependent protein phosphorylation is important in mediating PTH-stimulated Ca2+ fluxes across plasma membranes of connecting tubule cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号