首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atrial natriuretic factor (ANF) is stored in mammalian atria primarily as ANF-(1-126), the precursor to the known circulating form of the hormone ANF-(99-126). When primary cultures of atrial myocytes were maintained in a complete serum-free medium, they contained and secreted an ANF-(1-126)-like peptide. The addition of dexamethasone to the culture medium, however, resulted in the secretion of a molecule with chromatographic characteristics identical to ANF-(99-126), although the intracellular storage form of ANF was unchanged. Radiosequencing and amino acid analysis confirmed that the cultures maintained in dexamethasone secreted authentic ANF-(99-126). Chronic exposure of the cells to dexamethasone also resulted in a significant increase in the quantity of immunoreactive ANF both contained and secreted by the cultures. Dexamethasone stimulated ANF processing and secretion by atrial cultures in a dose-dependent manner, with an approximate EC50 of 10 nM. This stimulation could be reversed by removing the glucocorticoid from the culture medium. ANF processing was also stimulated by the specific glucocorticoid receptor agonist RU 28362, and both DEX- and RU 28362-stimulated ANF processing was inhibited by the specific glucocorticoid receptor antagonist RU 38486. Ventricular cells, which possess few granules and release ANF in a constitutive fashion, were also capable of processing ANF in a glucocorticoid-dependent fashion. Medium freshly removed from atrial cultures did not convert ANF-(1-126) to ANF-(99-126) nor was exogenous ANF-(1-126) efficiently processed when added to the medium of actively processing cultures. These results indicate that the post-translational processing of ANF-(1-126) to ANF-(99-126) likely occurs within or in close association with the cardiac myocytes and is not dependent on the presence of large quantities of secretory granules. Furthermore, it is apparent that both the expression and the post-translational processing of ANF by cultured cardiac myocytes is specifically regulated by glucocorticoids.  相似文献   

2.
Primary cultures of atrial and ventricular myocytes (approx. 1 x 10(5) cells/culture) were prepared from adult teleost fish Gila atraria and maintained for 10 days. Immunoreactive atrial natriuretic peptide (ir-ANP) from fish atrial and ventricular cells was 3.9 and 2.8 ng/culture respectively, values not significantly different. Atriocytes from rat and mouse secreted comparable amounts of ANP which were not significantly different from atrial fish cultures (5.2 and 4.3 ng/culture). In contrast, their ventricular myocytes secreted only small quantities of ANP (0.8 and 0.3 ng/culture). When analyzed by reversed-phase HPLC, the media of both fish atrial and ventricular myocytes contained a peptide which exhibited properties similar to authentic human ANP (Ser 99-Tyr 126), suggesting a significant degree of sequence homology between fish and mammalian ANP. Fish ventricular cells, unlike normal mammalian ventricular cells, secrete substantial quantities of immunoreactive-ANP.  相似文献   

3.
Cardiac myocytes store the 126-amino acid precursor of atrial natriuretic factor (pro-ANF), yet the mature, bioactive 28-amino acid peptide, ANF-(99-126), and the resulting N-terminal product, ANF-(1-98), are the forms of the hormone that are released by the heart and found in the circulation. Although previous studies have shown that the maturation of ANF takes place in the heart, it is not known whether it occurs in or on the myocyte concurrently with secretion, or whether cleavage takes place postsecretionally on either the myocyte surface or the surface of a nonmuscle cardiac cell. To address these questions, experiments were carried out in the present study using primary atrial cultures that had been prepared such that greater than 90% of the cells were myocytes. Reversed-phase and ion-exchange HPLC, coupled with immunoprecipitation of biosynthetically labeled ANF, showed that the stored peptide, pro-ANF, was cleaved between residues 98 and 99 such that ANF-(1-98) and (99-126) accumulated in the medium. Coupling biosynthetic labeling with timed secretion experiments showed that the extent of ANF processing was not dependent on the time after secretion; maximal levels of processing were observed at all secretion times examined. Additionally, the processing-competent myocyte-enriched cultures were unable to cleave exogenously added pro-ANF. These results indicate that the myocyte is the cell type responsible for pro-ANF maturation and that this cleavage event takes place cosecretionally.  相似文献   

4.
Atrial natriuretic factor (ANF) is stored in atrial myocytes as a prohormone (ANF-(1-126] and is cosecretionally processed to the circulating ANF-related peptides, ANF-(1-98) and ANF-(99-126). Recently, we have shown that the cosecretional processing of ANF can be replicated in primary cultures of neonatal rat atrial myocytes maintained under serum-free conditions and that glucocorticoids are responsible for supporting this processing activity. Activators of protein kinase C (phorbol esters and alpha-adrenergic agonists) and of protein kinase A (cAMP analogs, forskolin, and beta-adrenergic agonists) were tested for their abilities to alter the rate of ANF secretion from the primary cultures. ANF secretion was stimulated approximately 4-fold after a 1-h incubation of the cultures with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA); maximal release occurred at about 100 nM TPA. Reversed-phase high performance liquid chromatography analysis of secreted material indicated that the cells efficiently cosecretionally processed ANF under both basal and TPA-stimulated conditions. However, incubating the cultures for more than 1 h with TPA resulted in a blunted secretory response to further TPA challenge and a 40-50% decrease in the quantity of ANF in the cells. The alpha-adrenergic receptor agonist phenylephrine was also capable of stimulating ANF secretion by about 4-fold at a half-maximal dose of about 1 microM. Phenylephrine-stimulated ANF secretion was inhibited by the alpha 1-adrenergic antagonist prazosin with half-maximal inhibition occurring at approximately 1 nM. Forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate, and N6-2(1)-O-dibutyryladenosine 3':5'-cyclic monophosphate inhibited basal, TPA- and phenylephrine-stimulated ANF secretion. The beta-adrenergic agonist isoproterenol partially inhibited phenylephrine-stimulated ANF secretion with the maximal effect occurring at 1 nM. These results indicate that ANF secretion from the neonatal rat atrial cultures is enhanced by activators of protein kinase C, and decreased by activators of protein kinase A, and that these secretory effects may be mediated through the actions of alpha- and beta-adrenergic receptors, respectively.  相似文献   

5.
Methodologies developed for the dissociation and subsequent enrichment of muscle and nonmuscle cells from atrial myocardium were used to evaluate the contribution of these cell populations to the natriuretic, diuretic and vasoactive properties of crude atrial tissue extracts. Suspensions of single cells, which contained approximately 34% myocytes, were prepared from atrial tissue blocks with a collagenase-trypsin digestion followed by gentle mechanical disruption. Differential centrifugation and unit gravity sedimentation techniques were employed to enrich the 'muscle' and 'nonmuscle' cell suspensions to a purity of approximately 91 and 95%, respectively. Cell extracts were bioassayed for natriuretic activity in saline-expanded, pentobarbital-anesthetized, female rats. Extracts obtained from 'initial' and 'muscle' cell suspensions significantly enhanced sodium and chloride excretion as well as urine flow while extracts from 'nonmuscle' cell suspensions had no effect on renal function. Sodium excretion was dose-dependent and increased linearly with increasing numbers of extracted and infused myocytes. This simple two-step centrifugation and sedimentation protocol can be utilized to obtain enriched atrial myocyte populations for subsequent physiologic and biochemical studies.  相似文献   

6.
The nature of plasma cardiodilatin, the amino-terminal product of the human pro-atrial natriuretic peptide, was investigated by two separate radioimmunoassays directed against the N-terminal and the putative C-terminal of the cardiodilatin molecule: ANP-[Asn1-Lys16] and ANP-[Lys87-Arg98], respectively. Serial dilutions of normal and cardiac failure plasma exhibited parallelism with the synthetic peptide standard curves in both assays. The concentrations of N- and C-terminal cardiodilatin-immunoreactivity equivalents (-IE) were significantly higher in cardiac failure patients. N-terminal-IE: 912 +/- 87, normal subjects 129 +/- 13 (mean +/- SEM); C-terminal-IE: 7979 +/- 1784, normal subjects 895 +/- 213 (both p less than 0.001). Although the concentrations determined by the two assays were not identical, significant correlations were found between them in both normal subjects (r = .69, p less than 0.001) and cardiac failure patients (r = .72, p less than 0.01). Characterisation by gel permeation and fast protein liquid chromatography demonstrated coelution of the N- and C-terminal cardiodilatin immunoreactivities in a single chromatographic peak. These results suggest that the circulating cardiodilatin in normal subjects and patients with cardiac failure contains the entire prohormone amino-terminal sequence ANP-[Asn1-Arg98].  相似文献   

7.
Secretory rates for immunoreactive atrial natriuretic peptide (ANP) by 7 - 8 day-old primary cultures of atrial myocytes from adult rats (with myocyte contraction inhibited by tetrodotoxin (TTX)) were (a) constant for at least two hours, and (b) significantly slowed by forskolin (1, 5, and 25 microM), dibutyryl cyclic adenosine monophosphate (1 mM), or isobutylmethylxanthine (100 microM). The substantial rates of ANP secretion which persisted in cells rendered noncontracting either by inhibiting Ca2+ influx via reduction of external [Ca2+] to less than 10(-7) M or by inhibiting sarcoplasmic reticulum Ca2+ release with 100 microM ryanodine were significantly slowed by 25 microM forskolin, but forskolin sensitivity was lost by cells exposed simultaneously to external Ca2+ concentration of less than 10(-7) M and 100 microM ryanodine. Quiescent myocytes whose ANP secretory rate was depressed by forskolin remained responsive to secretory stimulation by phorbol ester.  相似文献   

8.
9.
Processing of pro-atrial natriuretic peptide by corin in cardiac myocytes   总被引:5,自引:0,他引:5  
Corin is a type II transmembrane serine protease abundantly expressed in the heart. In a previous study using transfected 293 cells, we showed that corin converted pro-atrial natriuretic peptide (pro-ANP) to atrial natriuretic peptide (ANP), suggesting that corin is likely the pro-ANP convertase. Because other serine proteases such as thrombin and kallikrein had previously also been shown to cleave pro-ANP in vitro, it remained to demonstrate that corin is indeed the endogenous pro-ANP convertase in cardiomyocytes. In this study, we examined pro-ANP processing in a murine cardiac muscle cell line, HL-5. Northern analysis showed that corin mRNA was present in HL-5 cells. In HL-5 cells transfected with a plasmid expressing pro-ANP, recombinant pro-ANP was converted to mature ANP as determined by Western analysis, indicating the presence of the endogenous pro-ANP convertase in these cells. The processed recombinant ANP was shown to be active in an enzyme-linked immunosorbent assay-based cGMP assay in baby hamster kidney cells. The processing of recombinant pro-ANP in HL-5 cells was highly sequence-specific, because mutation R98A, but not mutations R101A and R102A, in pro-ANP prevented the conversion of pro-ANP to ANP. Expression of recombinant wild-type corin enhanced the processing of pro-ANP in HL-5 cells. In contrast, overexpression of active site mutant corin S985A or transfection of oligonucleotide small interfering RNA duplexes directed against the mouse corin gene completely inhibited the processing of recombinant pro-ANP in HL-5 cells. These results indicate that corin is the physiological pro-ANP convertase in cardiac myocytes.  相似文献   

10.
We have isolated the Xenopus orthologue of the atrial natriuretic factor (ANF) gene. Characterization of embryonic expression indicates that the ANF gene is initially expressed throughout the developing myocardium at the late heart tube stage (about stage 32). This is in contrast to all previously characterized Xenopus cardiac differentiation markers that are first expressed in the cardiogenic plate at approximately stage 27. ANF expression becomes restricted exclusively to the atrium at about stage 47, long after the commencement of beating and the original formation of the atrial and ventricular compartments, but shortly after septation of the single atrium into two distinct atria. Received: 5 May 2000 / Accepted: 3 August 2000  相似文献   

11.

Background

Angiotensin-(1–12) [Ang-(1–12)] functions as an endogenous substrate for the productions of Ang II and Ang-(1–7) by a non-renin dependent mechanism. This study evaluated whether Ang-(1–12) is incorporated by neonatal cardiac myocytes and the enzymatic pathways of 125I-Ang-(1–12) metabolism in the cardiac myocyte medium from WKY and SHR rats.

Methodology/Principal Findings

The degradation of 125I-Ang-(1–12) (1 nmol/L) in the cultured medium of these cardiac myocytes was evaluated in the presence and absence of inhibitors for angiotensin converting enzymes 1 and 2, neprilysin and chymase. In both strains uptake of 125I-Ang-(1–12) by myocytes occurred in a time-dependent fashion. Uptake of intact Ang-(1–12) was significantly greater in cardiac myocytes of SHR as compared to WKY. In the absence of renin angiotensin system (RAS) enzymes inhibitors the hydrolysis of labeled Ang-(1–12) and the subsequent generation of smaller Ang peptides from Ang-(1–12) was significantly greater in SHR compared to WKY controls. 125I-Ang-(1–12) degradation into smaller Ang peptides fragments was significantly inhibited (90% in WKY and 71% in SHR) in the presence of all RAS enzymes inhibitors. Further analysis of peptide fractions generated through the incubation of Ang-(1–12) in the myocyte medium demonstrated a predominant hydrolytic effect of angiotensin converting enzyme and neprilysin in WKY and an additional role for chymase in SHR.

Conclusions/Significance

These studies demonstrate that neonatal myocytes sequester angiotensin-(1–12) and revealed the enzymes involved in the conversion of the dodecapeptide substrate to biologically active angiotensin peptides.  相似文献   

12.
13.
14.
Endothelin (ET), a potent stimulator of atrial natriuretic factor (ANF) secretion in atrial myocyte cultures, has been hypothesized to act via the stimulation of protein kinase C (PKC). This study was carried out in order to determine if ET activates PKC in atrial cultures and whether this activation fully accounts for the effects of ET on ANF secretion. By monitoring the phosphorylation of p80 upon exposure to phorbol ester or ET, it was shown that ET activated PKC in atrial cultures, but to a lesser extent than phorbol ester. In contrast, ET stimulated ANF secretion to a level five times greater than phorbol ester, indicating that PKC activation alone does not fully account for the effects of ET on ANF secretion. Down-regulation of PKC or exposure to the PKC inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) resulted in a 50% decrease in ET-stimulated ANF secretion. Interestingly, increasing calcium influx with BAY K 8644 stimulated ANF secretion but did not effect the phosphorylation of p80, indicating a PKC-independent pathway of ANF secretion. Similarly, a component of ET-stimulated secretion that required calcium influx was independent of PKC activation but was sensitive to the Ca2+/calmodulin kinase (CaMK) inhibitor KN-62. Complete inhibition of ET-mediated ANF secretion was obtained only in the presence of both H7 and KN-62. These results demonstrate that ET activates PKC in atrial myocyte cultures and that the full effects of ET on ANF secretion require both PKC and Ca2+/calmodulin kinase activities.  相似文献   

15.
Primary cultures of atrial myocytes were prepared from newborn rats and maintained for 8 days in complete serum-free medium. The culture content of immunoactive atrial natriuretic peptide (ANP) increased from 10 to 25 ng/culture during this time. The cells released immunoactive ANP at a rate of 2 to 3% of culture content per hour in a linear fashion for at least 6 hours. When analyzed by gel filtration the major immunoactive material released by and contained within the cells displayed a molecular weight of approximately 15,000 daltons. The medium and cellular ANP-related peptides were further shown to be indistinguishable by reversed-phase HPLC. When the 15,000 dalton material was incubated with rat serum it was converted to ANP-related material possessing a molecular weight of approximately 3,000 daltons. These results suggest that under basal conditions, atrial myocytes release a large molecular weight form of ANP that is converted in the circulation to a low molecular weight form of ANP, which has been previously identified in plasma.  相似文献   

16.
17.
Using the primary culture of neonatal rat ventricular myocytes, synthesis and secretion of rat atrial natriuretic peptide (rANP) were studied. Ventricular myocytes in culture, although contained less amounts of cellular immunoreactive (IR)-rANP, secreted substantial amounts of IR-rANP at a rate comparable to that of atrial myocytes. Dexamethasone markedly stimulated synthesis and secretion of IR-rANP by cultured ventricular myocytes in a dose-dependent manner (10(-10)-10(-6) M), of which effect was far more potent than that in atrial myocytes. Testosterone and triiodothyronine also stimulated synthesis and secretion of ventricular IR-rANP to the extent comparable to that of atrial IR-rANP. The present study suggests that tissue-dependent difference in glucocorticoids sensitivity plays an important role in the regulation of developmental ANP gene expression in mammalian heart.  相似文献   

18.
Peptide hormones such as ANG II and endothelin contribute to cardiac remodeling after myocardial infarction by stimulating myocyte hypertrophy and myofibroblast proliferation. In contrast, angiotensin-(1-7) [ANG-(1-7)] infusion after myocardial infarction reduced myocyte size and attenuated ventricular dysfunction and remodeling. We measured the effect of ANG-(1-7) on protein and DNA synthesis in cultured neonatal rat myocytes to assess the role of the heptapeptide in cell growth. ANG-(1-7) significantly attenuated either fetal bovine serum- or endothelin-1-stimulated [(3)H]leucine incorporation into myocytes with no effect on [(3)H]thymidine incorporation. [d-Ala(7)]-ANG-(1-7), the selective ANG type 1-7 (AT(1-7)) receptor antagonist, blocked the ANG-(1-7)-mediated reduction in protein synthesis in cardiac myocytes, whereas the AT(1) and AT(2) angiotensin peptide receptors were ineffective. Serum-stimulated ERK1/ERK2 mitogen-activated protein kinase activity was significantly decreased by ANG-(1-7) in myocytes, a response that was also blocked by [d-Ala(7)]-ANG-(1-7). Both rat heart and cardiac myocytes express the mRNA for the mas receptor, and a 59-kDa immunoreactive protein was identified in both extracts of rat heart and cultured myocytes by Western blot hybridization with the use of an antibody to mas, an ANG-(1-7) receptor. Transfection of cultured myocytes with an antisense oligonucleotide to the mas receptor blocked the ANG-(1-7)-mediated inhibition of serum-stimulated MAPK activation, whereas a sense oligonucleotide was ineffective. These results suggest that ANG-(1-7) reduces the growth of cardiomyocytes through activation of the mas receptor. Because ANG-(1-7) is elevated after treatment with angiotensin-converting enzyme inhibitors or AT(1) receptor blockers, ANG-(1-7) may contribute to their beneficial effects on cardiac dysfunction and ventricular remodeling after myocardial infarction.  相似文献   

19.
The in vitro effects of various steroid and thyroid hormones on synthesis of rat atrial natriuretic peptide (rANP) were studied using new-born rat atrial myocytes in culture. Dexamethasone, testosterone and triiodothyronine markedly stimulated both synthesis and secretion of immunoreactive (IR)-rANP with the same peak after 4-day-culture. Dexamethasone and testosterone dose-dependently (10(-7)-10(-6) M) stimulated synthesis of IR-rANP and were the most potent among various steroids tested. Triiodothyronine (T3) also stimulated synthesis of IR-rANP in a dose-dependent manner (10(-8)-10(-7) M), of which effect was more potent than that of tetraiodothyronine, whereas reverse T3 was ineffective. The present study clearly shows that glucocorticoids, androgens and thyroid hormones directly stimulate synthesis of ANP by atrial myocytes and suggests that ANP may play a potential role in mediating and/or modulating the biological effects by these hormones in the cardiovascular system.  相似文献   

20.
Atrial natriuretic peptide (ANP) stimulates cGMP production in isolated rabbit ventricular myocytes incubated in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (1mM). Half maximal activation was found at 10(-8)M ANP. Cellular cGMP concentrations of around 0.6 pmol/10(6) cells were elevated 4-6 fold by ANP (10(-6)M), 3-4 fold by carbachol (1mM) and around 10 fold by sodium nitroprusside (1mM). ANP had no effect on basal or isoprenaline-stimulated cAMP concentrations or on basal or noradrenaline-stimulated turnover of phosphatidylinositol. From these results we conclude that ANP receptors, coupled to particulate guanylate cyclase, exist in cardiac ventricular muscle. This indicates that ANP may also have a physiological action on ventricular muscle contractility during volume expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号