首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this study, we examined the impact of 3-day hypoxia of different degrees on the viability, proliferation, and secretory activity of endothelial cells from human umbilical vein (HUVEC). A gas mixture of three components was used (%): 1) 10 O2, 5 CO2, and 85 Ar; 2) 5 O2, 5 CO2, and 80 Ar; and 3) 1 O2, 5 CO2, and 94 Ar. Cells cultivated in a CO2 incubator in atmospheric oxygen (21% O2) served as control. It was found that 3-day HUVEC cultivation at 1% O2 increased NO synthesis; enhanced secretion of endothelin-1, IL-6, IL-8, TNF-alpha, sVCAM-1, sE-cadherin, sE-selectin, VEGF-A, and bFGF; and inhibited proliferation. HUVEC cultivated under 10% O2 and 5% O2 exhibited the lowest level of basal secretion of these substances and increased proliferative activity. These cells cultivated under conditions of atmospheric oxygen for 3 days displayed activated secretion of NO, IL-6, IL-8, and von Willebrand factor; the activation was higher than at 10% O2 and 5% CO2. Thus, the gaseous medium with reduced oxygen content (5%) is a more physiological condition for HUVEC cultivation. An increase in the amount of oxygen up to the atmospheric level causes endotheliocyte activation; the cells exhibit the features of endothelial dysfunction. Oxygen content reduced to 1% induces endothelial dysfunction and reduced proliferative potential.  相似文献   

2.
The low bone marrow (BM) MSC titers demand a fast ex vivo expansion process to meet the clinically relevant cell dosage. Attending to the low oxygen tension of BM in vivo, we studied the influence of hypoxia on human BM MSC proliferation kinetics and metabolism. Human BM MSC cultured under 2% (hypoxia) and 20% O2 (normoxia) were characterized in terms of proliferation, cell division kinetics and metabolic patterns. BM MSC cultures under hypoxia displayed an early start of the exponential growth phase, and cell numbers obtained at each time point throughout culture were consistently higher under low O2, resulting in a higher fold increase after 12 days under hypoxia (40 ± 10 vs. 30 ± 6). Cell labeling with PKH26 allowed us to determine that after 2 days of culture, a significant higher cell number was already actively dividing under 2% compared to 20% O2 and BM MSC expanded under low oxygen tension displayed consistently higher percentages of cells in the latest generations (generations 4–6) until the 5th day of culture. Cells under low O2 presented higher specific consumption of nutrients, especially early in culture, but with lower specific production of inhibitory metabolites. Moreover, 2% O2 favored CFU‐F expansion, while maintaining BM MSC characteristic immunophenotype and differentiative potential. Our results demonstrated a more efficient BM MSC expansion at 2% O2, compared to normoxic conditions, associated to an earlier start of cellular division and supported by an increase in cellular metabolism efficiency towards the maximization of cell yield for application in clinical settings. J. Cell. Physiol. 223: 27–35, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Modulation of epithelial cell proliferation by the dissolved oxygen concentration (PO2) of the growth medium was assessed with primary human foreskin epithelium and a continuous monkey kidney epithelial cell line (LLC-MK2). Direct measurement of the growth medium PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2 provides the first quantitative evaluation of epithelial cell proliferation as a function of PO2. Sustained proliferation of LLC-MK2 cells occurs in serum-free medium equilibrated with a gas phase containing 18% or 30% O2 v/v. Mid-logarithmic phase cultures rapidly consume dissolved oxygen; this results in a 60–70 mm Hg decline in PO2 and leads to a stable growth medium PO2 between 70 and 100 mm Hg, well above anoxic values. In contrast, if culture medium is equilibrated with a gas phase containing 0% or 1% O2 v/v to yield a growth medium PO2 ~ 20–40 mm Hg, proliferation of LLC-MK2 and primary foreskin epithelial cells is retarded, and LLC-MK2 cells use little dissolved oxygen. Gentle, continuous rocking to prevent diffusion gradient formation enhances proliferation slightly at the higher PO2, but neither periodic fluid renewals nor continued rocking stimulates cells retarded by a lowered oxygen concentration to resume proliferation. The data collectively demonstrate that epithelial cell proliferation requires a PO2 > 40 mm Hg, and threshold requirements are probably closer to 70 mm Hg. Glycolysis continues at a PO2 insufficient for proliferation, but more lactic acid accumulates in actively proliferating cultures than in cultures equilibrated with 0% oxygen. We conclude that epithelial cells in vitro both consume more oxygen and require a higher PO2 for continued proliferation, and that the oxygen requirement for epithelial cell proliferation exceeds that of a comparable population of fibroblasts for which low oxygen may enhance survival and proliferation.  相似文献   

4.
The human THP-1 cell line is widely used as an in vitro model system for studying macrophage differentiation and function. Conventional culture conditions for these cells consist of ambient oxygen pressure (∼20% v/v) and medium supplemented with the thiol 2-mercaptoethanol (2-ME) and serum. In consideration of the redox activities of O2 and 2-ME, and the extensive experimental evidence supporting a role for reactive oxygen species (ROS) in the differentiation and function of macrophages, we addressed the question of whether culturing THP-1 cells under a more physiologically relevant oxygen tension (5% O2) in the absence of 2-ME and serum would alter THP-1 cell physiology. Comparisons of cultures maintained in 18% O2 versus 5% O2 indicated that reducing oxygen tension had no effect on the proliferation of undifferentiated THP-1 cells. However, decreasing the oxygen tension to 5% O2 significantly increased the rate of phorbol ester-induced differentiation of THP-1 cells into macrophage-like cells as well as the metabolic activity of both undifferentiated and PMA-differentiated THP-1 cells. Removal of both 2-ME and serum from the medium decreased the proliferation of undifferentiated THP-1 cells but increased metabolic activity and the rate of differentiation under either oxygen tension. In differentiated THP-1 cells, lowering the oxygen tension to 5% O2 decreased phagocytic activity, the constitutive release of β-hexosaminidase and LPS-induced NF-κB activation but enhanced LPS-stimulated release of cytokines. Collectively, these data demonstrate that oxygen tension influences THP-1 cell differentiation and primary macrophage functions, and suggest that culturing these cells under tightly regulated oxygen tension in the absence of exogenous reducing agent and serum is likely to provide a physiologically relevant baseline from which to study the role of the local redox environment in regulating THP-1 cell physiology.  相似文献   

5.
The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions.  相似文献   

6.
7.
The aim of the study was to obtain the highest number of multipotent adipose-derived mesenchymal stem cells (ADMSCs) by using culture conditions which favour cell expansion without loss of mesenchymal stem cells (MSC)-like properties. Based on the assumption that stem cells reside in niches characterized by hypoxic condition, we investigated if the low oxygen tension may improve the proliferation and stemness of ADMSCs. Intact adipose tissue was resected from eight subjects, and the stromal vascular fraction was obtained by using type II collagenase. The heterogeneity of cellular lineages was confirmed by immunophenotypic analysis that showed the presence of leukocytes (CD45+), endothelial cells (CD34+), and pericytes (CD140+). The immunophenotype of confluent ADMSCs was similar to that of bone marrow-derived MSCs, except for the expression of CD34, which was variable (donor-dependent) and inversely correlated to the CD36 expression. ADMSCs showed a high clonal efficiency (94.5 ± 1 %) and were able to generate osteoblastic, chondrocytic and adipocytic lineages. ADMSCs were cultured under normoxic (21 % O2) and hypoxic (1 % O2) conditions, and we found that hypoxia significantly favoured ADMSC proliferation and preserved the expression of stemness genes, i.e. Nanog and Sox2. Since hypoxia reflects the microenvironment in which ADMSCs must proliferate and differentiate, the culture in hypoxic condition allows to better understand the biology of these cells and their regenerative potential. Low oxygen concentrations promote cell proliferation and stemness, thus enriching the pool of cells potentially able to differentiate into multi-lineages, and extending the possibility of a long-term expansion.  相似文献   

8.

The milieu of male germline stem cells (mGSCs) is characterized as a low-oxygen (O2) environment, whereas, their in-vitro expansion is typically performed under normoxia (20–21% O2). The comparative information about the effects of low and normal O2 levels on the growth and differentiation of caprine mGSCs (cmGSCs) is lacking. Thus, we aimed to investigate the functional and multilineage differentiation characteristics of enriched cmGSCs, when grown under hypoxia and normoxia. After enrichment of cmGSCs through multiple methods (differential platting and Percoll-density gradient centrifugation), the growth characteristics of cells [population-doubling time (PDT), viability, proliferation, and senescence], and expression of key-markers of adhesion (β-integrin and E-Cadherin) and stemness (OCT-4, THY-1 and UCHL-1) were evaluated under hypoxia (5% O2) and normoxia (21% O2). Furthermore, the extent of multilineage differentiation (neurogenic, adipogenic, and chondrogenic differentiation) under different culture conditions was assessed. The survival, viability, and proliferation were significantly (p?<?0.05) improved, thus, yielding a significantly (p?<?0.05) higher number of viable cells with larger colonies under hypoxia. Furthermore, the expression of stemness and adhesion markers were distinctly upregulated under lowered O2 conditions. Conversely, the differentiated regions and expression of differentiation-specific genes [C/EBPα (adipogenic), nestin and β-tubulin (neurogenic), and COL2A1 (chondrogenic)] were significantly (p?<?0.05) reduced under hypoxia. Overall, the results demonstrate that culturing cmGSCs under hypoxia augments the growth characteristics and stemness but not the multilineage differentiation of cmGSCs, as compared with normoxia. These data are important to develop robust methodologies for ex-vivo expansion and lineage-committed differentiation of cmGSCs for clinical applications.

  相似文献   

9.
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.  相似文献   

10.
The effect of the relative oxygen partial pressure (pO2) in bioreactors on cell proliferation and subsequent differentiation of somatic embryos from suspension cultures of Cyclamen persicum Mill. was investigated. The growth rate of cell line 3738-VIII in growth-regulator containing medium in bioreactors at 5% pO2 was slightly reduced in comparison to 10% and 20% pO2. Cultures growing at 40% pO2 had a lower growth rate, a markedly reduced cell viability and showed a decrease of the medium pH to 3.5. Because a pH-control with a setpoint of 3.3 caused cell death within 4 days, it was assumed, that the reason for the poor cell proliferation and viability in the cultures at 40% pO2 was an effect of medium acidification rather than of the high O2 partial pressure. A significantly higher number of germinating embryos was obtained from the cultures grown at 40% pO2 than from those grown in flasks or in bioreactors at 5%, 10% and 20% pO2. These results were specific for cell line 3738-VIII. Another cell line, 3736-12, did not show marked differences in cell proliferation, viability, pH or subsequent regeneration of somatic embryos when grown at different O2 partial pressures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Summary Cell viability, cytochrome P-450 content, cell respiration, and lipid peroxidation were all investigated as a function of oxygen tension in adult rat hepatocytes in short-term culture (less than 9 h). The various oxygen tensions used in this study were obtained by equilibrating culture medium with air, air + nitrogen, or air + oxygen. Cell viability, as assessed by trypan blue exclusion, was significantly greater at all time points tested when hepatocytes were cultured in Ham's F12 medium containing 132 μM O2, as compared to medium equilibrated with air (220 μM O2) or air + oxygen (298 μM O2). Cells cultured in 220 μM O2 (air) also exhibited a gradual loss of cytochrome P-450, so that by 9 h of incubation less than 60% of the active material remained. This loss of P-450 was minimized when cells were cultured in 163 μM O2 and abolished when cells were cultured in 132 μM O2. The 132 μM O2 exposure conditions also maintained cell respiration at the 1 h incubation values, whereas there was a continuous loss in cell respiration over time when the cells were cultured in either 220 μM O2 (air) or 298 μM O2 (air:O2). These cytotoxicity findings may be related to oxidative cell damage inasmuch as it was additionally demonstrated that lipid peroxidation (as measured by malondieldehyde equivalents) was consistantly lower in hepatocytes cultured in air:N2 as compared to air or air:O2. These results suggest that hepatocyte culture in low oxygen tension improves not only cell viability but also maintains other functional characteristics of the cell. This work was supported by a Biomedical Research Support Grant S-S07-RR 05448 awarded to the University of Minnesota School of Public Health by the Biomedical Research Grant Program, Division of Research and Resources, National Institutes of Health, Bethesda, MD.  相似文献   

12.
This study aimed to examine the proliferative behavior and molecular mechanisms of rat bone marrow-derived MSCs (rBMSCs) cultured under three different oxygen concentrations. Passaged rBMSCs exhibited significantly greater proliferation rates at 1% O2 and 5% O2 than those at 18% O2 and the cells exposed to 1% O2 showed the highest proliferative potential, which was evidenced by the growth curves, colony-forming efficiencies, and CCK-8 absorbance values. The rBMSCs grown under hypoxic culture conditions (1% O2 and 5% O2) had the increased percentage of cells in S?+?G2/M-phase and the decreased apoptotic index, compared with normoxia (18% O2). It was revealed for the first time that there were more phosphohistone H3 (PHH3)-positive cells and higher expressions of proliferating cell nuclear antigen (PCNA) in the hypoxic cultures of rBMSCs than in the normoxic culture. Hypoxia upregulated the anti-apoptotic protein Bcl-2 and downregulated the pro-apoptotic proteins Bax and the cleaved caspase-3 in cultured rBMSCs. The levels of hypoxia-inducible factor-1α (HIF-1α) and phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) were increased in the hypoxic-cultured rBMSCs. Nevertheless, no significant difference was observed in p53 level of rBMSCs between different oxygen concentrations. In conclusion, the hypoxia exerts a promoting effect on the in vitro expansion of rBMSCs via several signaling and molecular pathways involved in the control of cell cycle and apoptosis.  相似文献   

13.
Oxidative stress after ischaemia impairs the function of transplanted stem cells. Increasing evidence has suggested that either salidroside (SAL) or hypoxia regulates growth of stem cells. However, the role of SAL in regulating function of hypoxia‐pre–conditioned stem cells remains elusive. Thus, this study aimed to determine the effect of SAL and hypoxia pre‐conditionings on the proliferation, migration and tolerance against oxidative stress in rat adipose‐derived stem cells (rASCs). rASCs treated with SAL under normoxia (20% O2) or hypoxia (5% O2) were analysed for the cell viability, proliferation, migration and resistance against H2O2‐induced oxidative stress. In addition, the activation of Akt, Erk1/2, LC3, NF‐κB and apoptosis‐associated pathways was assayed by Western blot. The results showed that SAL and hypoxia treatments synergistically enhanced the viability (fold) and proliferation of rASCs under non‐stressed conditions in association with increased autophagic flux and activation of Akt, Erk1/2 and LC3. H2O2‐induced oxidative stress, cytotoxicity, apoptosis, autophagic cell death and NF‐κB activation were inhibited by SAL or hypoxia, and further attenuated by the combined SAL and hypoxia pre‐treatment. The SAL and hypoxia pre‐treatment also enhanced the proliferation and migration of rASCs under oxidative stress in association with Akt and Erk1/2 activation; however, the combined pre‐treatment exhibited a more profound enhancement in the migration than proliferation. Our data suggest that SAL combined with hypoxia pre‐conditioning may enhance the therapeutic capacity of ASCs in post‐ischaemic repair.  相似文献   

14.
15.
Molecular and in situ hybridization studies have shown, in a number of cell types, that under hypoxic conditions, vascular endothelial growth factor (VEGF) mRNA expression is up-regulated and VEGF protein is concomitantly increased. To establish a quantitative relationship between VEGF protein levels and oxygenation, we exposed exponentially growing clone A or HCT-8 human colon tumour cells in vitro (22 h at 37°C) to oxygen concentrations from 21% (air mixture) to 0.01%. Protein levels in cells and medium were then assayed using an enzyme-linked immunoabsorbent assay (ELISA). Intracellular levels of VEGF in clone A or HCT-8 cells exposed to either air (21% O2) or the 0.01% O2 mixture respectively increased from about 73 to 1270, and 1.5 to 1180 pg/106 cells (about 17- and 80-fold increases). The shapes of the response curves (log of the intracellular VEGF concentrations v. log oxygen concentration) for both cell types were sigmoidal. However, intracellular VEGF levels in HCT-8 cells were always less than that of clone A cells until levels of about 0.3 to 0.1% O2 were reached. Levels of VEGF in the supernatant were also increased after the 22 h hypoxic exposures. Because cell proliferation and clonogenicity were also measured, it was possible to estimate the secretion rates of VEGF for both cell lines as a function of oxygen percentage. For clone A cells, the secretion rate (pg/106 cells/h) in 21% O2 was 62.5. This rate increased to 428.8 pg/106 cells/h at 0.01% O2, a 7-fold increase. For HCT-8 cells, levels in the medium at 21% O2 were too low to be measured by ELISA. However, between 10% and 0.01% O2, secretion rates increased from 5.0 to 376.0 pg/106 cells/h, a 75-fold increase. Therefore, at very low O2 levels, VEGF secretion rates were similar in the two cell lines. We propose that the different VEGF responses of clone A and HCT-8 colon tumour cells to hypoxic stress in vitro are related to the in vivo observation that the respective hypoxic percentages of solid neoplasms originating from these cell lines are markedly different (i.e. about 3 versus 80%) at equivalent volumes of 750 mm3.  相似文献   

16.
Oxidative stress induced by serum starvation and H2O2 exposure, both triggers apoptosis in retinal neuronal cell line RGC‐5 (retinal ganglion cell‐5). We have examined whether, despite excess generation of ROS (reactive oxygen species) and apoptosis induction, there is any dissimilarity in nuclear morphology and apoptotic signalling pathway in RGC‐5 under these conditions. Sub‐confluent cells were treated either with H2O2 or maintained in SFM (serum‐free medium). ROS level was detected along with nuclear morphology and ultrastructural analysis. Generation of excess intracellular ROS, nuclear localization of Bax and caspase 3 activation along with decrease of cellular viability, confirmed apoptosis induction in RGC‐5 by 72 h serum starvation and 500 M H2O2 exposure for 1 h. Nuclear swelling as supported by nuclear cytoplasmic ratio and conspicuous black spots with nuclear remodelling were observed only upon SFM, but not with H2O2 treatment. Serum starvation did not alter JNK1 (c‐Jun N‐terminal kinase 1) expression, although nuclear translocation and higher level of pJNK (phospho‐JNK) was evident. Conversely, H2O2 exposure blocked the expression and activation of JNK1 to phospho‐JNK as a negligible level of pJNK was present in the cytoplasm. Despite similar ROS generation in both the conditions, difference in nuclear morphology and JNK1 expression leads to the hypothesis that RGC‐5 cells may follow different signalling pathways when challenged with serum starvation and H2O2.  相似文献   

17.
Summary An in vitro model of myocardial ischemia has been established with primary monolayer cultures of postnatal rat myocardial cells. Ischemic conditions were simulated in vitro by subjecting the myocardial cell cultures to various levels of oxygen and glucose deprivation. The experimental protocol consisted of treatment with 20% or 0% O2 and 1000, 500 or 0 mg glucose per 1 of medium for 4 or 24 hr. Control cultures were treated with 20% O2 and 1000 mg glucose. After the ischemic treatments, cultures of beating muscle (M) cells were evaluated for signs of injury, i.e. leakage of cytoplasmic enzymes into the culture medium. Differences were found in leakage of lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) from the cultures that were exposed to partial ischemia of glucose deprivation and from those cultures that were exposed to total ischemia of oxygen and glucose deprivation. Glucose deprivation alone resulted in a slight-to-moderate loss of LDH and CPK from the cells, whereas total ischemia resulted in a significant release of the two cytoplasmic enzymes. When the cultures were allowed to recover after ischemic treatment in complete medium (1000 mg glucose) and a normal atmosphere of 20% O2, they had levels of LDH leakage comparable to those of control cultures. Cell viability and total protein content of the ischemic cultures did not differ significantly from controls. This study was supported by Research Grant HL 18647 from the National Heart, Lung, and Blood Institute.  相似文献   

18.
Summary Hemicyst formation is considered a manifestation of either transepithelial solute and fluid movement or secretory activity in culture. This study shows that hemicyst formation in postconfluent monolayers of rhesus monkey kidney (LLC-MK2) cells is modulated by the dissolved oxygen concentration (PO2) of the culture medium. Either daily replacement of serum-free medium or displacement of the gas phase with 18% vol/vol O2 (initial medium PO2=125 to 135 mm Hg) enhances formation of hemicysts. Use of 30% O2 (medium PO2≊175 mm Hg) does not further increase the incidence, but neither 10% O2 (medium PO2=90 to 95 mm Hg) nor 1% O2 (medium PO2=35 to 50 mm Hg), the approximate range of dissolved oxygen values in blood, supports hemicyst formation unless cultures are gently rocked to disrupt diffusion gradients. Phase photomicrography of living cultures shows that the surface of a turgid hemicyst is furrowed, and cinephoto-micrography reveals that the walls vibrate subtly. When hypoxic conditions (0 to 1% O2) are introduced this vibration ceases within 2 to 3 h, whereas collapse and disappearance of turgid hemicysts requires 18 to 20 h, seems virtually synchronous, and is reversible. Hemicysts form in a broad osmotic range, and increased electrolyte concentration increases the incidence. Hemicysts persist in localyy dense areas when cell-free strips are etched in the postconfluent monolayer; no DNA synthesis is detected under these conditions, but two-dimensional cell spreading into the denuded area is seen along the edge of the wound. We conclude that the dissolved oxygen supply in the cellular microenvironment modulates functional expression by differentiated kidney epithelial cells in culture and that increased electrolyte concentration also enhances expression of this phenotypic marker.  相似文献   

19.
There have been obtained evidences that not only GM1, but also other main brain gangliosides (GD1a, GD1b, and GT1b) increase viability of cells of the neuronal line PC12 under action of H2O2. By the example of GM1 and GD1a, gangliosides have been shown to produce a protective effect on PC12 cells under conditions of oxidative stress both at micro- and nanomolar concentrations that are physiological concentrations of gangliosides in cerebrospinal fluid. For the first time, GM1 at nanomolar concentrations was shown to decrease the H2O2-induced formation of reactive oxygen species (ROS). It was found that in the presence of inhibitor of tyrosine kinase Trk of receptors K-252a, GM1 at concentrations of 10 μM and 10 nM lost its ability to produce such metabolic effects as a decrease of ROS accumulation and of the degree of oxidative inactivation of Na+,K+-ATPase in PC12 cells, as well as ceased to increase viability of these cells under conditions of oxidative stress. The dependence of protective and metabolic effects of gangliosides GM1 in PC12 cells treated with H2O2 on modulation of activity of activity of tyrosine kinase Trk receptors (i.e., from the same signal system) agrees with concept about the essential role of oxidant effect of GM1 in its increase of cell viability.  相似文献   

20.
Cryopreservation is the only existing method of storage of human adipose-derived stem cells (ASCs) for clinical use. However, cryopreservation has been shown to be detrimental to ASCs, particularly in term of cell viability. To restore the viability of cryopreserved ASCs, it is proposed to culture the cells in a hypoxic condition. To this end, we aim to investigate the effect of hypoxia on the cryopreserved human ASCs in terms of not only cell viability, but also their growth and stemness properties, which have not been explored yet. In this study, human ASCs were cultured under four different conditions: fresh (non-cryopreserved) cells cultured in 1) normoxia (21% O2) and 2) hypoxia (2% O2) and cryopreserved cells cultured in 3) normoxia and 4) hypoxia. ASCs at passage 3 were subjected to assessment of viability, proliferation, differentiation, and expression of stemness markers and hypoxia-inducible factor-1 alpha (HIF-1α). We found that hypoxia enhances the viability and the proliferation rate of cryopreserved ASCs. Further, hypoxia upregulates HIF-1α in cryopreserved ASCs, which in turn activates chondrogenic genes to promote chondrogenic differentiation. In conclusion, hypoxic-preconditioned cryopreserved ASCs could be an ideal cell source for cartilage repair and regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号