首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J W Weiss  H C Pitot 《Biochemistry》1975,14(2):316-326
Examination of nucleolar RNA from cultured Novikoff hepatoma cells treated for 3 hr with 5 x 10-4 M 5-azacytidine shows that significant amounts of analog-substituted 45S RNA are processed to the 32S RNA species, but 28S RNA formation is completely inhibited. Under these conditions of analog treatment 37% of the cytidine residues in the 45S RNA is replaced by 5-azacytidine. During coelectrophoresis of nucleolar RNA from 5-azacytidine-treated and control cells, the analog-substituted 45S RNA and 32S RNA display reduced mobilities compared to the control 45S RNA and 32S RNA. Coelectrophoresis of analog-substituted and control RNA after formaldehyde denaturation shows no differences in electrophoretic mobility between the two RNA samples, suggesting that 5-azacytidine incorporation may alter the secondary structure of the 45S RNA and the 32S RNA. 5-Azacytidine at 5 x 10-4 M severely inhibits protein synthesis in Novikoff cells by 3 hr. After this length of treatment, however, CsCl buoyant density analysis reveals no difference in density of either the 80S or 55S preribosomal ribonucleoprotein particles when compared to normal particles. Also 5-azacytidine treatment does not appear to cause major changes in the polyacrylamide gel electrophoresis patterns of the proteins in the 80S and 55S preribosomal particles. These results together with previous findings suggest that 5-azacytidine's inhibition of rRNA processing is possibly related to its alteration of the structure of the ribosomal precursor RNAs and is not a consequence of a general inhibition of ribosomal protein formation.  相似文献   

2.
L E Grosso  H C Pitot 《Biochemistry》1984,23(12):2651-2656
The effects of 5-fluorocytidine on ribosomal RNA maturation and structure in Novikoff hepatoma cells were investigated. Like other nucleic acid base analogues that are incorporated into RNA, this compound inhibits maturation of the 45S ribosomal RNA precursor. The 45S RNA precursor produced in the presence of 5-fluorocytidine has an abnormal electrophoretic mobility compared with that of the control precursor under nondenaturing conditions, but the two have identical mobilities under denaturing conditions. Under the conditions of these experiments, 5-fluorocytidine inhibited cellular protein synthesis only slightly, whereas equimolar concentrations of 5-azacytidine resulted in nearly 75% inhibition of this process. Despite this difference in the effects of the two analogues as well as the greater chemical lability of the 5-azacytidine, their effects on ribosomal RNA maturation are identical.  相似文献   

3.
Summary Tobacco chloroplasts were found to contain three species of 5S RNA with different electrophoretic mobility. The nucleotide sequences of two species of the 5S RNA have been determined. The large 5S RNA species (5S RNAL) is composed of 121 nucleotides and the small 5S RNA species (5S RNAs) of 119 nucleotides. The 5S RNAL contains and extra uridine residue at both 5 and 3ends of the 5S RNAs.  相似文献   

4.
Ribosomal RNA synthesis in mitochondria of Neurospora crassa   总被引:10,自引:0,他引:10  
Ribosomal RNA synthesis in Neurospora crassa mitochondria has been investigated by continuous labeling with [5-3H]uracil and pulse-chase experiments. A short-lived 32 S mitochondrial RNA was detected, along with two other short-lived components; one slightly larger than large subunit ribosomal RNA, and the other slightly larger than small subunit ribosomal RNA. The experiments give support to the possibility that 32 S RNA is the precursor of large and small subunit ribosomal RNA's. Both mature ribosomal RNA's compete with 32 S RNA in hybridization to mitochondrial DNA. Quantitative results from such hybridization-competition experiments along with measurements of electrophoretic mobility have been used to construct a molecular size model for synthesis of mitochondrial ribosomal RNA's. The large molecular weight precursor (32 S) of both ribosomal RNA's appears to be 2.4 × 106 daltons in size. Maturation to large subunit RNA (1.28 × 106 daltons) is assumed to involve an intermediate ~1.6 × 106 daltons in size, while cleavage to form small subunit RNA (0.72 × 106 daltons) presumably involves a 0.9 × 106 dalton intermediate. In the maturation process ~22% of the precursor molecule is lost. As is the case for ribosomal RNA's, the mitochondrial precursor RNA has a strikingly low G + C content.  相似文献   

5.
The methylated nucleotide sequences in HeLa cell ribosomal RNA and its nucleolar precursors were examined by RNA fingerprinting and sequencing methods. 18 S RNA was found to contain approximately 46 methyl groups, 28 S RNA some 70 methyl groups and 5.8 S RNA one methyl group. Most methyl groups occur in different T1 ribonuclease oligonucleotides, and most of these were recovered approximately once per molecule of 18 S or 28 S RNA. There are also, however, several multiply methylated oligonucleotides, a few short products that occur more than once and a few “fractional” products. The great majority of methylations occur at the level of 45 S RNA, but six further methylations occur late during the maturation of 18 S RNA, and one fractional one occurs during 28 S maturation. The transcribed spacer regions of the precursor molecules are unmethylated. Chemical analysis of the methylated components and sequences indicates that all except five “early” methylations are on ribose groups, the remaining five being on bases within the 28 S sequence. The late methylations are all on bases, four of those on 18 S RNA giving rise to the sequence, … Gpm2post6Apm2post6ApCp… The product, pCmpUp, previously reported by Choi &; Busch (1970) as being the 5′ end-group of rat hepatoma 28 S, 32 S and 45 S RNA, is not present in HeLa cell 28 S RNA or its precursors. Implications of this work are discussed.  相似文献   

6.
Isolation of ribosomal precursors from Escherichia coli K12 is described. The RNA and protein content of the precursor particles was determined.One physiologically stable precursor was found for the 30 S subunit. The assembly scheme is as follows: p16 S RNA + 9 proteins → p30 S (“21 S” precursor) p30 S + 12 proteins → 30 S subunit where p is precursor.Each of the two precursors for the 50 S subunit, P150 S and p250 S (“32 S” and “43 S” precursors, respectively), contains p5 S + p23 S RNA's in a 1:1 molar ratio. The assembly scheme is as follows: p23 S RNA + p5 S RNA + 16 or 17 proteins → p150 S
In contrast to the p250 S precursor the p150 S precursor is not similar to any core particles, which were obtained by treating 50 S subunits with different concentrations of LiCl or CsCl.The precursors p30 S and p250 S can be converted into active 30 S and 50 S sub-units, respectively, by incubation at 42 °C in the presence of ribosomal proteins and under RNA methylating conditions.  相似文献   

7.
METABOLISM OF RIBOSOMAL PRECURSOR RIBONUCLEIC ACID IN KIDNEY   总被引:6,自引:2,他引:4       下载免费PDF全文
The labile precursors of ribosomal RNA in mouse kidney are preserved when nuclei rapidly isolated after sieving through multiple screens are swollen and cleansed in the presence of an RNase inhibitor before digestion with DNase and phenol extraction. The kinetics of nucleolar labeling analyzed on polyacrylamide gels show that 36S RNA is the major intermediate product in the catabolism of the original 45S RNA precursor to 32S RNA, from which 28S RNA is derived. Each kidney nucleus contains about 200–600 molecules of 45S RNA; the turnover time of the 45S pool is about 3 ± 2 min. Compared with HeLa cells, kidney nuclei have a different major intermediate product and a much smaller and more rapidly turning-over pool of ribosomal precursor RNA.  相似文献   

8.
Cordycepin is an analogue of adenosine lacking the 3'-OH. When incorporated into a growing RNA molecule, cordycepin prevents further elongation, thus producing a prematurely terminated RNA molecule. When HeLa cells are exposed to low concentrations of cordycepin, DNA and protein synthesis are unaffected during short exposure periods. The synthesis of completed ribosomal and ribosomal-precursor (45S) RNA is significantly depressed. Partially completed 45S ribosomal precursor molecules accumulate in the nucleolus. 18S ribosomal RNA can be cleaved from these incomplete precursors, while 32S ribosomal precursor cannot be produced from partially snythesized 45S molecules. The synthesis of transfer RNA is also reduced in the presence of cordycepin. The synthesis of the nuclear heterogeneous RNA species is unaffected by the drug while the cytoplasmic heterogeneous RNA is slightly reduced.  相似文献   

9.
10.
11.
32P-labelled ribosomal RNA of L 5178 Y cells (a mouse cell line) was digested with T1 ribonuclease and fingerprinted by electrophoresis at pH 3.5 on cellulose acetate and homochromatography on DEAE-cellulose thin-layer plate. From this, it can be concluded that 18-S and 28-S RNA have different and characteristic fingerprints and that the number, the size and the frequency of the large T1 oligonucleotides demonstrate that the guanylic residues are randomly interspaced along the molecule. Using a double-labelling technique with 32P-labelled 45-S RNA and 14C-labelled 18-S RNA or 28-S RNA, long T1 oligonucleotides of the 45-S RNA can be divided into three classes: (a) those which are lost during the transition, (b) those which are present in the 18-S RNA and (c) those which are present in the 28-S RNA. These results provide direct evidence for the existence of one common precursor for the two mature ribosomal RNAs. The comparison of the fingerprints of T1-ribonuclease-digested 47-S, 45-S and 41-S RNA shows that the 47-S and 41-S RNA have a characteristic ribosomal pattern. Finally the size, the number and the mobility of the oligonucleotides present in the different RNA precursors but absent from the mature RNA demonstrate that the non-conversed RNA pieces do not have a monotonous and repetitive sequence.  相似文献   

12.
Electrophoresis on polyacrylamide gels was found to be a powerful technique for separating the mature from the precursor forms of bacterial ribosomal nucleic acid (rRNA). The separation of the 16S rRNA from its precursor was, for all practical purposes, complete; that of the 23S rRNA from its precursor was detectable but incomplete. When mature and precursor rRNA preparations were heated to randomize secondary structure, etc., and then cooled, it was found that electrophoretic mobility differences between mature forms of rRNA and their precursors persisted. This, in conjunction with the rather large electrophoretic mobility differences between mature and precursor forms, can be taken as strong evidence for a molecular weight difference between mature rRNA and its precursor forms of RNA. With the 16S rRNA, this difference could be as large as 130,000 daltons.  相似文献   

13.
The effect of ethionine on ribonucleic acid synthesis in rat liver.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. By 1h after administration of ethionine to the female rat the appearance of newly synthesized 18SrRNA in the cytoplasm is completely inhibited. This is not caused by inhibition of RNA synthesis, for the synthesis of the large ribosomal precursor RNA (45S) and of tRNA continues. Cleavage of 45S RNA to 32S RNA also occurs, but there was no evidence for the accumulation of mature or immature rRNA in the nucleus. 2. The effect of ethionine on the maturation of rRNA was not mimicked by an inhibitor of protein synthesis (cycloheximide) or an inhibitor of polyamine synthesis [methylglyoxal bis(guanylhydrazone)]. 3. Unlike the ethionine-induced inhibition of protein synthesis, this effect was not prevented by concurrent administration of inosine. A similar effect could be induced in HeLa cells by incubation for 1h in a medium lacking methionine. The ATP concentration in these cells was normal. From these two observations it was concluded that the effect of etionine on rRNA maturation is not caused by an ethionine-induced lack of ATP. It is suggested that ethionine, by lowering the hepatic concentration of S-adenosylmethionine, prevents methylation of the ribosomal precursor. The methylation is essential for the correct maturation of the molecule; without methylation complete degradation occurs.  相似文献   

14.
The processing of ribosomal RNA has been studied in a temperature sensitive mutant of the Syrian hamster cell line BHK 21. At 39 degrees C, these cells are unable to synthesize 28S RNA, and 60S ribosomal subunits, while 18S RNA, and 40S subunits are produced at both temperatures. At 39 degrees C the 45S RNA precursor is transcribed and processed as in wild type cells. The processing of the RNA precursors becomes defective after the cleavage of the 41S RNA, and the separation of the 18S and 28S RNAs sequences in two different RNA molecules. The 36S RNA precursor, which is always present in very small quantity in the nucleoli of wild type cells and of the mutant at 33 degrees C, is found in very large amounts in the mutant at 39 degrees C. The 36S RNA can be, however, slowly processed to 32S RNA. The 32S RNA cannot be processed at 39 degrees C, and it is degraded soon after its formation. Only a small proportion accumulates in the nucleoli. The 32S RNA synthesized at 39 degrees C cannot be processed to 28S RNA upon shift to the permissive temperature, even when the processing of the newly synthesized rRNA has returned to normal. The data suggest that the 36S and 32S RNAs are contained in aberrant ribonucleoprotein particles, leading to a defective processing of the particles as a whole.  相似文献   

15.
The synthesis of ribosomal precursor RNA in Novikoff hepatoma (N1S1) cells is very sensitive to cordycepin (3'-dA). The synthesis of hnRNA, however, is resistant to inhibition concentrations of 3'-dA that completely block the synthesis of 45S ribosomal RNA precursor. We have examined the RNA polymerases present in these cultured cells with regard to their sensitivity to cordycepin 5'-triphosphate (3'-dATP) in an effort to explain the differential inhibition of RNA synthesis observed in vivo. RNA polymerases I and II were characterized on the basis of their chromatographic behavior on DEAE-Sephadex, as well as the response of their enzymatic activities to ionic strength, the divalent metal ions Mn2+ and Mg2+, and the toxin alpha-amanitin. For both enzymes the inhibition of in vitro RNA synthesis by 3'-dATP was competitive for ATP. The km values for ATP and the K1 values for 3'-dATP for the two enzymes were quite similar. RNA polymerase II, the enzyme presumed responsible for hnRNA synthesis, was actually slightly more sensitive to 3'-dATP than RNA polymerase I, the enzyme presumed responsible for ribosomal precursor RNA synthesis. Similar data were obtained when the RNA polymerases were assayed in isolated nuclei. These results indicate that the differential inhibition of RNA synthesis caused by 3'-dA in vivo cannot be simply explained by differential sensitivity of RNA polymerases I and II to 3'-dATP.  相似文献   

16.
Ribosomal RNA Turnover in Contact Inhibited Cells   总被引:14,自引:0,他引:14  
CONTACT inhibition of animal cell growth is accompanied by a decreased rate of incorporation of nucleosides into RNA1–3. Contact inhibited cells, however, transport exogenously-supplied nucleosides more slowly than do rapidly growing cells4,5, suggesting that the rate of incorporation of isotopically labelled precursors into total cellular RNA may be a poor measure of the absolute rate of RNA synthesis by these cells. Recently, Emerson6 determined the actual rates of synthesis of ribosomal RNA (rRNA) and of the rapidly labelled heterogeneous species (HnRNA) by labelling with 3H-adenosine and measuring both the specific activity of the ATP pool and the rate of incorporation of isotope into the various RNA species. He concluded that contact inhibited cells synthesize ribosomal precursor RNA two to four times more slowly than do rapidly growing cells, but that there is little if any reduction in the instantaneous rate of synthesis of HnRNA by the non-growing cells. We have independently reached the same conclusion from simultaneous measurements on the specific radioactivity of the UTP pool and the rate of 3H-uridine incorporation into RNAs (unpublished work of Edlin and myself). However, although synthesis of the 45S precursor to ribosomal RNA is reduced two to four times in contact inhibited cells, the rate of cell multiplication and the rate of rRNA accumulation are reduced ten times. This suggests either “wastage”7 of newly synthesized 45S rRNA precursor, or turnover of ribosomes in contact inhibited cells Two lines of evidence suggest that “wastage” of 45S RNA does not play a significant role in this system. (1) The rate of synthesis of 45S RNA in both growing and contact inhibited cells agrees well with that expected from the observed rates of synthesis of 28S and 18S RNAs (unpublished work of Edlin and myself). Emerson has made similar calculations6. (2) 45S RNA labelled with a 20 min pulse of 3H-uridine is converted in the presence of actinomycin D to 28S and 18S RNAs with the same efficiency (approximately 50%) in both growing and contact inhibited cells. These results indicate that, in order to maintain a balanced complement of ribosomal RNAs, contact inhibited cells must turn over their ribosomes. We present evidence here that rRNA is stable in rapidly growing chick cells, but begins to turn over with a half-life of approximately 35–45 h as cells approach confluence and become contact inhibited.  相似文献   

17.
18.
Tradescantia paludosa 5S ribosomal RNA (rRNA) has been characterized with respect to its base composition and relative electrophoretic mobility in comparison with that of E. coli . The period of 5S rRNA synthesis during pollen grain development was determined by pulse labeling the RNA synthesized during a 24 hr period of development with 32P and then chasing in cold medium until pollen maturity. The period of highest 5S rRNA synthesis was found to occur prior to microspore mitosis. During and following mitosis over a period of 4 days there was a sharp decrease in the amount of 5S RNA synthesized and during the last 48 hr of pollen maturation, no 5S rRNA was synthesized.  相似文献   

19.
The method employed to determine the sequence of a T1 RNase fragment, A-A-A-A-A-U-A-A-C-A-A-U-A-C-A-Gp, from Novikoff rat hepatoma 18S ribosomal RNA is described. This method is applicable to any oligoribonucleotide produced by specific endonucleases that leave the newly cleaved 5'-end free for labeling with polynucleotide kinase and gamma-(32p)-ATP. The (32p)-labeled oligoribonucleotide is subjected to partial endonucleolytic digestion and fractionated by two-dimensional homochromatography fingerprinting. The nucleotide sequence is determined by following mobility shifts of the labeled and partially digested oligoribonucleotides in homochromatography fingerprinting.  相似文献   

20.
The DNA sequences of the intergenic region between the 17S and 5.8S rRNA genes of the ribosomal RNA operon in yeast has been determined. In this region the 37S ribosomal precursor RNA is specifically cleaved at a number of sites in the course of the maturation process. The exact position of these processing sites has been established by sequence analysis of the terminal fragments of the respective RNA species. There appears to be no significant complementarity between the sequences surrounding the two termini of the 18S secondary precursor RNA nor between those surrounding the two termini of 17S mature rRNA. This finding implies that the processing of yeast 37S ribosomal precursor RNA is not directed by a double-strand specific ribonuclease previously shown to be involved in the processing of E. coli ribosomal precursor RNA [see Refs 1,2]. The processing sites of yeast ribosomal precursor RNA described in the present paper are all flanked at one side by a very [A+T]-rich sequence. In addition, sequence repeats are found around the processing sites in this precursor RNA. Finally, sequence homologies are present at the 3'-termini [6 nucleotides] and the 5'-termini [13 nucleotides] of a number of mature rRNA products and intermediate ribosomal RNA precursors. These structural features are discussed in terms of possible recognition sites for the processing enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号