首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rebound in growth hormone secretion following somatostatin treatment has been shown in several systems where somatostatin suppresses secretion of the hormone. We have developed an in vitro system in which isolated and cultured pituitary cells were perfused after mild trypsinization. After washing, these cells retained their sensitivity and secreted growth hormone (GH) in response to physiological activators (norepinephrine, dopamine, serotonin) or inhibitors (somatostatin) as well as pharmacological activators (PGE2). The variation in GH secretion occurred within a minute after commencement of the infusion and was as rapidly reversible and repeatable minutes later. During somatostatin infusion the GH secretion was not totally suppressed (residual secretion (mean +/- S.D.) 34 +/- 7%). After the infusion a rapid rebound in GH secretion occurred, reaching levels in excess of the pretreatment value of 138 +/- 13%. This rebound effect occurred at doses higher than (10(-10)M) but not at lower doses, even when significant inhibition was observed. The inhibitory effect is of greater magnitude than the rebound effect (rebound = inhibition X 57 +/- 7% (mean +/- S.D.)). Furthermore, rebound was not enhanced by prolongation of somatostatin infusion. These latter results indicate that the rebound in secretion cannot be explained on the sole basis of storage of intracellular GH during somatostatin infusion and in fact suggest the involvement of a process of GH degradation and/or an inhibition of GH synthesis.  相似文献   

2.
Growth hormone secretion is controlled by the two hypothalamic hormones, growth hormone releasing factor (GRF) and somatostatin. In addition, the insulin-like growth factors (IGF or somatomedins) which are themselves growth hormone dependent, inhibit growth hormone release in vitro, therefore acting to close the negative feedback loop. The studies reported here examine some of the differences between inhibition of growth hormone secretion by somatostatin and IGF-I in vitro. The major finding is that cycloheximide, a protein synthesis inhibitor, blocks inhibition of GRF-stimulated growth hormone release caused by IGF-I, without changing the inhibition caused by somatostatin. The experiments were done by exposing mixed rat adenohypophysial cells to secretagogues with or without cycloheximide for 24 h in a short term culture. Somatostatin (0.6 nM) totally blocked rat GRF (1 nM) stimulated growth hormone release to values 48% of control (nonstimulated values), while IGF-I (27 nM) only reduced the GRF-stimulated growth hormone release by 27 +/- 3% (N = 5). Cycloheximide (15 micrograms/mL) totally blocked the effect of IGF-I but not somatostatin. A low concentration (0.12 nM) of somatostatin, which only partly inhibited growth hormone release, was also unaffected by cycloheximide. In purified rat somatotrophs, somatostatin (0.1 nM) inhibited GRF-stimulated cAMP levels slightly and reduced growth hormone release while IGF-I (40 nM) had no effect. We suggest that IGF-I inhibits only the secretion of newly synthesized growth hormone, while somatostatin inhibits both stored and newly synthesized growth hormone pools.  相似文献   

3.
4.
Galanin stimulates rat pituitary growth hormone secretion in vitro   总被引:1,自引:0,他引:1  
The effect of galanin on growth hormone (GH) secretion was investigated in monolayer cultures of rat anterior pituitary cells. Galanin caused a gradual increase in GH concentrations into the culture medium that was maximal at 90 minutes and sustained after 180 minutes. The ED50 for galanin-stimulated GH secretion was approximately 200 nM compared to an ED50 for rat GH-releasing factor (rGRF)-stimulated GH secretion of 10pM. Galanin and rGRF were additive in increasing GH release into the incubation medium. These data indicate that porcine-derived galanin has a direct effect on pituitary GH secretion in vitro.  相似文献   

5.
The reduced and oxidized forms of synthetic somatostatin are equipotent to inhibit the secretion of immunoreactive growth hormone when tested in vitro and in vivo by intravenous administration. The reduced peptide has approximately half the potency and twice the duration of biological activity of the oxidized form when both are administered subcutaneously.  相似文献   

6.
Somatomedins-insulin-like growth factors (SM/IGF) are growth hormone (GH) dependent serum growth factors. There is some evidence that IGF inhibit GH release (negative feedback) in 3- to 24-h incubations of cultured rat adenohypophysial cells. We have used acutely dispersed noncultured rat adenohypophysial cells to study the dynamics of IGF on GH secretion. In this system both IGF-I and IGF-II (100 ng/mL) slightly, but significantly, decrease the cumulative GH released by human pancreas growth hormone releasing factor 1-40 (GRF) and the phosphodiesterase inhibitor 3-isobutyl-1-methyl xanthine. The inhibition is small (16%) and usually not statistically significant until 2 h of incubation. The inhibition with IGF is additive to that produced with low concentrations of somatostatin. The IGF also significantly decrease the rate of GH release in all time periods tested (0-1, 1-2, 2-3 h). In addition, the IGF decrease the quantity of [14C]leucine protein eluted at the position of labelled rat GH on Sephadex G75, which would include newly synthesized GH extracted from the cells. Thus we conclude that the decreased GH released may be due to an effect of IGF on both rate of release and on GH synthesis.  相似文献   

7.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

8.
Somatocrinin, a 44 amino acid peptide with potent growth hormone (GH) releasing activity in anesthetized rats, was tested in conscious freely-moving rats. When high doses of 1 to 10 μg were administered (iv) at random times between spontaneous GH pulses, the responses were inconsistent. When similar doses were tested under identical conditions but in rats pretreated with antibodies against somatostatin, all animals demonstrated a marked and immediate increase in plasma GH of 5 to 10 fold. Similarly, a 1 μg dose of somatocrinin was also ineffective in increasing plasma GH when administered to rats subjected to a 72 h fast, a paradigm known to enhance endogenous somatostatin secretion. However, plasma GH increased over 20 fold if rats were pretreated with antibodies against somatostatin. These results demonstrate the dynamic and opposite roles exerted by somatocrinin and somatostatin in regulating GH secretion.  相似文献   

9.
10.
Rat anterior pituitary glands were incubated in buffered medium, pH 7.4, containing 32Pi. After incubation the tissue and medium were separated and a post-mitochondrial supernate (PMS) of the tissue homogenate was prepared. Gel filtration of the PMS and medium resulted in a radioactive peak which coincided with the elution volume of authentic rat growth hormone (rGH). Polyacrylamide gel electrophoresis of the radioactive peak under denaturing condition resulted in a protein-staining band having the same mobility as authentic rGH. Autoradiography of the gels revealed radioactivity precisely at the position of growth hormone as well as elsewhere. The specific radioactivity of the PMS [32P]GH was estimated to be 5 to 10 times greater than that of tissue [32P]GH. These results indicate that phosphorylated GH is synthesized and secreted by pituitary glands in vitro.  相似文献   

11.
Pulsatile GH secretion decreases during food-deprivation in the rat. It has been hypothesized that this decrease is due to elevated hypothalamic somatostatin secretion. This is based on the observation that GH increases in food-deprived rats following removal of endogenous somatostatin using passive immunization techniques. Cognizant of the important stimulatory effects of growth hormone-releasing hormone (GHRH) on GH secretion, we sought to determine if this neuropeptide plays any role in mediating GH secretion in food-deprived rats. Male rats were prepared with indwelling venous catheters using sodium pentobarbital anesthesia seven days prior to experimentation. Animals were food-deprived for 72 h, after which control blood samples were drawn from -60 to 0 min. One group was then treated with normal rabbit serum (NRS), while a second group was treated with GHRH antiserum (GHRHab). At 55 min all animals received somatostatin antiserum (SSab). No animal exhibited any spontaneous GH peak during the one hour control period or in the subsequent one hour period following the administration of GHRHab or NRS. Absence of GH pulsatility during food-deprivation, coupled with no decrease in GH levels in food-deprived rats treated with GHRHab suggest that diminished GHRH pulsatility is likely during food-deprivation. Subsequent treatment of these animals with SSab resulted in an identical 2.5 fold increase in GH concentrations. This result suggests that GHRH is not involved in the GH rebound following somatostatin withdrawal in food-deprived rats.  相似文献   

12.
The commercial production of baculovirus insecticides is limited by the need to produce the virus in living insects. The influence of juvenile hormone analogs (JHA) on the growth and survival of Spodoptera exigua larvae placed on treated diet in the fifth instar was examined. Weight increases observed in methoprene- and fenoxycarb-treated larvae were over three-fold greater than that of control insects, whereas other compounds resulted in lower weight gains (pyriproxyfen) or highly variable responses (hydroprene). Approximately 90% and 70% of fenoxycarb and methoprene-treated larvae, respectively, molted to a supernumerary sixth instar and attained a final weight at 8–10 days post-treatment that was approximately double the maximum weight observed in control larvae. Inoculation of fenoxycarb and methoprene-treated sixth instars with a nucleopolyhedrovirus (SeMNPV) resulted in 2.4- or 2.9-fold increases in final weights, compared to control larvae inoculated in the fifth instar. The total yield of SeMNPV occlusion bodies (OBs) per larva was 2.7- and 2.9-fold greater in fenoxycarb- and methoprene-treated larvae, respectively, compared to fifth instar controls. A significant but small increase in the yield of OBs/mg larval weight was observed in fenoxycarb-treated insects but not in the methoprene treatment. The LC50 value of OBs harvested from fenoxycarb-treated insects was slightly higher than that of OBs from control insects, whereas no such difference was observed in OBs from methoprene-treated insects. We conclude that appropriate use of JHA technology is likely to provide considerable benefits for the mass production of baculoviruses.  相似文献   

13.
A 52-yr-old woman presented with hypertension, elevated urinary vanillylmandelic acid, metanephrines, normetanephrines, and plasma chromogranin A (CgA), but normal urinary catecholamine levels. Abdominal ultrasonography and subsequent MRI imaging showed a 3 cm nodular lesion of the right adrenal gland also visualized by 123I-meta-iodobenzylguanidine scintigraphy consistent with a pheochromocytoma (PC). Her OctreoScan was negative. The patient underwent right adrenalectomy and histological examination showed a PC. The adrenal medulla tissue was examined for somatostatin (SRIH) receptor subtypes 1 to 5 (SSTR1 to 5) expression by RT-PCR. Cultured tumor cells were treated with either SRIH, Lanreotide (Lan), or an SSTR2 (BIM-23 120) or SSTR5 (BIM-23 206) selective agonist. CgA secretion was measured in the medium by ELISA and catecholamine levels by HPLC after 6h. Cell viability was assessed after 48h. RT-PCR analysis showed that SSTR1, 2, 3 and 4 were expressed. CgA secretion was significantly reduced by SRIH (- 80 %), Lan (- 35 %), and the SSTR2 selective agonist (- 65 %). Norepinephrine secretion was reduced by SRIH (- 66 %), Lan (- 40 %), and BIM-23 120 (- 70 %). Epinephrine and dopamine secretion was also inhibited by treatment with SRIH (- 90 % and - 93 %, respectively) and BIM-23 120 (- 33 % and - 75 %, respectively) but not by Lan. Cell viability was also significantly reduced by SRIH (- 30 %), Lan (- 10 %), and the SSTR2 selective agonist (- 20 %). The SSTR5 selective agonist did not modify either CgA and catecholamine secretion or cell viability. Our data show that SSTRs may be present in a PC although OctreoScan is negative in vivo, and that SRIH and its analogs may reduce both differentiated and proliferative functions in chromaffin cells in vitro. These findings suggest that SRIH analogs with enhanced SSTR2 affinity might be useful in the medical therapy of PC, even when an OctreoScan is negative.  相似文献   

14.
The effect of both active passive immunization against somatostatin on growth rate and growth hormone levels was studied in chickens. Passive immunization against somatostatin by administration of antiserum had no effect on rate of growth of chickens and no persistent effect on circulating growth hormone (GH) levels. In acute experiments, administration of anti-somatostatin serum caused a marked elevation of GH levels in chickens at both 4 and 8 weeks of age, but the relative stimulation was greater in the older birds. Active immunization against somatostatin significantly stimulated growth rate in chickens, but was not shown to have a clear effect on circulating GH levels. These data suggest that somatostatin control over GH secretion may not be fully developed in the chicken at 4 weeks of age, but that immuno-neutralization of somatostatin can produce an increase rate of growth in chickens similar to that seen in mammals.  相似文献   

15.
The following eight analogs of somatostatin were synthesized by solid phase: des-[Ala1-Gly2]-somatostatin (I); des-[Ala1-Gly2]-H2somatostatin (II); N-acetyl-Cys3-somatostatin (III); N-acetyl-Cys3-H2somatostatin (IV); N-pyvalyl-Cys3-H2somatostatin (V); N-acrylyl-Cys3-H2somatostatin (VI); N-benzoyl-Cys3-H2somatostatin (VII); N-hexanoyl-Cys3-H2somatostatin (VIII). Deletion of the N-terminal dipeptide Ala1-Gly2 is compatible with high biological activity. A single s.c. injection of these analogs as a microsuspension in saline inhibits for 24–72 hours (depending on the compound) the secretion of growth hormone normally stimulated in rats by pentobarbital.  相似文献   

16.
17.
The role of prostaglandins as mediators of the inhibitory effect of somatostatin on gastric acid secretion has been evaluated in conscious and anesthetized rats. The effect of somatostatin on bethanechol-stimulated gastric acid secretion was determined with or without indomethacin pretreatment. Prostaglandin synthesis inhibition (less than 90%) by indomethacin was verified with PGE2-generation assay on gastric mucosal tissue. In both conscious and anesthetized rats somatostatin significantly inhibited the stimulated acid output in the control and indomethacin pretreated groups. The present findings do not support a role for prostaglandins in the inhibition of gastric acid secretion by somatostatin in the rat.  相似文献   

18.
19.
The effects of growth hormone-releasing factor (GHRF) on growth hormone (GH) secretion were studied in beef calves after hypophysial stalk transection (HST). Peripheral GH concentration during surgery was elevated for 60 min after the initiation of anesthesia to 15 ng/ml, which was greater than plasma levels after HST and during the recovery period (0-30 hr mean, 3 ng/ml; P less than 0.05). Episodic GH secretion normally seen in sham-operated controls (SOC) was abolished after HST. Before HST, calves responded to 80% of the GHRF challenges, whereas after HST calves responded to every challenge of GHRF with an increase in plasma GH. A dose of 0.067 microgram human pancreatic (hp) hpGHRF(1-40)OH/kg body wt 3 days after HST increased plasma GH to 55 ng/ml from a control period mean of 5 ng/ml (P less than 0.04). On Day 8, HST calves received two injections of 0.067 microgram hpGHRF/kg body wt at 3-hr intervals, with feeding 70 min after the first injection. During two preinjection control periods, basal GH averaged less than 4 ng/ml and increased to 17 (P less than 0.02) and 9 (P less than 0.04) ng/ml immediately after the first and second injection of hpGHRF, but the response declined over the 8-day period after surgery. On Days 19 and 20, the HST calves were infused iv with 0.033 and 0.067 microgram somatostatin(SS)-14 (SRIH)/kg body wt, during which a pulse injection of 0.067 microgram hpGHRF/kg body wt was administered. GH increased to 9 and 5 ng/ml during the 0.033- and 0.067-microgram SRIH infusions after GHRF; no somatotropic rebound was observed after the SRIH was discontinued as was seen in the animals while the hypothalamic-hypophysial connections were intact. Five and six months after HST the responses to two analogs of rat hypothalamic GHRF were similar to those in SOC calves. These results indicate that HST calves responded to exogenous GHRF with an abrupt increase in plasma GH, but GH response to GHRF during SRIH infusion was greatly inhibited.  相似文献   

20.
Growth hormone (GH) secretion in salmonids and other fish is under the control of a number of hypothalamic factors, but negative feed-back regulation by circulating hormones can also be of importance for the regulation of GH secretion. Mammalian studies show that GH has a negative feed-back effect on its own secretion. In order to elucidate if GH levels present a direct ultra-short negative feedback loop at the pituitary level GH secretion was studied in intact pituitaries from 50 g fish in an in vitro perifusion system. Following an initial equilibrium period pituitaries were exposed to five increasing concentrations (1-1,000 ng ml(-1)) of ovine GH (oGH) in 20-min steps, before being returned to a GH-free perifusion. Ovine GH caused a significant dose-dependent inhibition of GH secretion and it is concluded that GH can exert a direct negative feedback control on GH secretion at the pituitary level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号