首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The localization of breakpoints in spontaneous chromosome aberrations, i.e., chromatid and chromosome gaps, breaks, and exchanges, has been studied in cultured skin fibroblasts from 34 untreated patients with musculoskeletal sarcoma and 38 controls. A total of 325 aberrations in the sarcoma group and 251 in the control group could be assigned to particular bands. The distribution was non-random (P<0.001) in both groups. Twenty-one bands in the sarcoma group and 20 in the control group appeared as hot spots, with 11 represented in both groups. Only three hot spots, all of which were present among both patients and controls, coincided with bands involved in primary sarcoma-associated chromosome rearrangements. The results indicate that the chromosome breakage pattern of non-malignant cells is similar in sarcoma patients and controls. Hence, the occurrence of primary structural rearrangements in sarcomas cannot be accounted for by any constitutional proneness to chromosome breakage at these bands.  相似文献   

2.
Chromosomal rearrangements resulting in an inverted duplication and a terminal deletion (inv dup del) can occur due to three known mechanisms, two of them resulting in a normal copy region between the duplicated regions. These mechanisms involve the formation of a dicentric chromosome, which undergo breakage during cell division resulting in cells with either an inverted duplication and deletion or a terminal deletion. We describe a mosaic 3 year old patient with two cell lines carrying a chromosome 9p deletion where one of the cell lines contains an additional telocentric marker chromosome. Our patient is mosaic for the product of a double breakage of a dicentric chromosome including a centric fission. Mosaicism involving different rearrangements of the same chromosome is rare and suggests an early mitotic breakage event.  相似文献   

3.
By means of cross-reacting molecular probes, some 18 loci specific for the X chromosome of both man and mouse have been localized on the mouse X chromosome using an interspecific mouse cross involving the inbred SPE/Pas strain derived from Mus spretus. Comparison of the localizations of these loci on the mouse X with their positions on the human X chromosome suggests that intrachromosomal rearrangements involving at least five X chromosome breakage events must have occurred during the period of evolutionary divergence separating primates from rodents. Within the five blocks of chromosomal material so defined, there is for the moment little or no evidence that either chromosomal inversion events or extensive rearrangements have occurred. These data confirm the remarkable evolutionary conservation of the X chromosome apparent in mammalian species, compared to autosomal synteny groups in which both inter- and intrachromosomal rearrangement events appear to have occurred frequently. The breakage events described here for the X chromosome should therefore provide a minimal estimate for the frequency of chromosomal rearrangement events, such as breakage and inversion, which have affected autosomal synteny groups during the evolutionary period separating man from mouse. The definition of the number of chromosome breakage events by which the X chromosomes of these species differ, together with their localization, provides a framework for the use of interspecies mouse crosses for further detailed mapping of particular subchromosomal regions of the human X chromosome and for defining loci in the mouse homologous to those implicated in human congenital diseases.  相似文献   

4.
The concentration of evolutionary breakpoints in primate karyotypes in some particular regions or chromosome bands suggests that these chromosome regions are more prone to breakage. This is the first extensive comparative study which investigates a possible relationship of two genetic markers (intrachromosomal telomeric sequences [TTAGGG]n, [ITSs] and fragile sites [FSs]), which are implicated in the evolutionary process as well as in chromosome rearrangements. For this purpose, we have analyzed: (a) the cytogenetic expression of aphidicolin-induced FSs in Cebus apella and Cebus nigrivittatus (F. Cebidae, Platyrrhini) and Mandrillus sphinx (F. Cercopithecidae, Catarrhini), and (b) the intrachromosomal position of telomeric-like sequences by FISH with a synthetic (TTAGGG)n probe in C. apella chromosomes. The multinomial FSM statistical model allowed us to determinate 53 FSs in C. apella, 16 FSs in C. nigrivittatus and 50 FSs in M. sphinx. As expected, all telomeres hybridized with the probe, and 55 intrachromosomal loci were also detected in the Cebus apella karyotype. The chi(2) test indicates that the coincidence of the location of Cebus and Mandrillus FSs with the location of human FSs is significant (P < 0.005). Based on a comparative cytogenetic study among different primate species we have identified (or described) the chromosome bands in the karyotypes of Papionini and Cebus species implicated in evolutionary reorganizations. More than 80% of these evolutionary breakpoints are located in chromosome bands that express FSs and/or contain ITSs.  相似文献   

5.
H. K. Dooner  A. Belachew 《Genetics》1991,129(3):855-862
Chromosome breaks and hence chromosomal rearrangements often occur in maize stocks harboring transposable elements (TEs), yet it is not clear what types of TE structures promote breakage. We have shown previously that chromosomes containing a complex transposon structure consisting of an Ac (Activator) element closely linked in direct orientation to a terminally deleted or fractured Ac (fAc) element have a strong tendency to break during endosperm development. Here we show that pairs of closely linked transposons with intact ends, either two Ac elements--a common product of Ac transposition--or an Ac and a Ds (Dissociation) element, can constitute chromosome-breaking structures, and that the frequency of breakage is inversely related to intertransposon distance. Similar structures may also be implicated in chromosome breaks in other eukaryotic TE systems known to produce chromosomal rearrangements. The present findings are discussed in light of a model of chromosome breakage that is based on the transposition of a partially replicated macrotransposon delimited by the outside ends of the two linked TEs.  相似文献   

6.
We have induced micronuclei in two strains of diploid human fibroblasts with a known aneugen, colcemid, and a known clastogen, mitomycin C. Using immunofluorescence to detect the presence of kinetochores in micronuclei, we were able to demonstrate a 26.8-fold increase in fluorescence-positive micronuclei (aneuploidy) in colcemid-treated cells. However, colcemid also induced an increase in kinetochore-negative micronuclei. Our findings support previous reports that suggest colcemid may induce chromosome breakage in addition to its major aneugenic effect. The frequency of kinetochore-negative micronuclei (chromosome breakage) in mitomycin C-treated cells rose an average of 7.9-fold in the two test strains, a clear reflection of its clastogenic action. However, a 4-fold increase in the kinetochore-positive fraction was seen. We conclude that the fibroblast micronucleus assay, coupled with kinetochore immunofluorescence, provides a useful screening approach for genotoxic agents. The delineation of the precise mechanism by which an agent perturbs the rates of chromosomal breakage or lag may require more detailed analysis.  相似文献   

7.
We analysed the genetic stability of two subtelomeric genes of the human malaria parasite Plasmodium falciparum. A PCR based assay, using a telomere and a target-gene specific primer was used to detect potential chromosome rearrangements. We show that chromosome breakage and the formation of new telomeres occur frequently in the two genes coding for histidine rich proteins (HRP I and HRP II) in laboratory isolates, but remains undetectable in clinical parasite isolates. This finding suggests an essential role of these genes in vivo and that chromosome breakage is rather an accidental process than a programmed chromosome fragmentation. Cloning and sequencing of 8 chromosome breakpoints of the HRP II gene from one parasite isolate shows that the breakage occurs within a broad region in which new telomere formation appear to take place at random sites. Furthermore, this analysis revealed no obvious sequence similarities of sites of telomere addition. Finally, we show that an irregular pattern of heterogeneous telomere repeats is added at each broken end and that each healed chromosome contains a distinct pattern of repeats. We discuss a model for telomere formation in P. falciparum.  相似文献   

8.
In this paper an ancestral karyotype for primates, defining for the first time the ancestral chromosome morphology and the banding patterns, is proposed, and the ancestral syntenic chromosomal segments are identified in the human karyotype. The chromosomal bands that are boundaries of ancestral segments are identified. We have analyzed from data published in the literature 35 different primate species from 19 genera, using the order Scandentia, as well as other published mammalian species as out-groups, and propose an ancestral chromosome number of 2n = 54 for primates, which includes the following chromosomal forms: 1(a+c(1)), 1(b+c(2)), 2a, 2b, 3/21, 4, 5, 6, 7a, 7b, 8, 9, 10a, 10b, 11, 12a/22a, 12b/22b, 13, 14/15, 16a, 16b, 17, 18, 19a, 19b, 20 and X and Y. From this analysis, we have been able to point out the human chromosome bands more "prone" to breakage during the evolutionary pathways and/or pathology processes. We have observed that 89.09% of the human chromosome bands, which are boundaries for ancestral chromosome segments, contain common fragile sites and/or intrachromosomal telomeric-like sequences. A more in depth analysis of twelve different human chromosomes has allowed us to determine that 62.16% of the chromosomal bands implicated in inversions and 100% involved in fusions/fissions correspond to fragile sites, intrachromosomal telomeric-like sequences and/or bands significantly affected by X irradiation. In addition, 73% of the bands affected in pathological processes are co-localized in bands where fragile sites, intrachromosomal telomeric-like sequences, bands significantly affected by X irradiation and/or evolutionary chromosomal bands have been described. Our data also support the hypothesis that chromosomal breakages detected in pathological processes are not randomly distributed along the chromosomes, but rather concentrate in those important evolutionary chromosome bands which correspond to fragile sites and/or intrachromosomal telomeric-like sequences.  相似文献   

9.
The Q strain known as v6 was tested for its ability to induce X-linked lethal mutations in male and female hybrids from crosses with M strains in the P-M system of hybrid dysgenesis. All measurements of the mutation rate were made on the X chromosome derived from the v6 strain. The lethal rate for young hybrid males from the cross M female X v6 male was 1.11% per chromosome. For older males, it was only 0.44%, suggesting that there is less mutational or more repair activity in the germ cells of the older males or that mutant cells are selectively eliminated as the hybrid males age. The lethal rate for hybrid females from comparable crosses was approximately the same for both ages that were tested. However, it was substantially less than the rate for the hybrid males--only 0.26% per chromosome. Genetically identical hybrid females from reciprocal crosses also showed a low mutation rate, 0.13% per chromosome. Again, there was no difference between young and old flies. Mapping experiments established that most of the lethal mutations that were recovered from the male and female hybrids were located in two regions on the X chromosome, one between bands 14B13 and 15A9 , the other between bands 19A1 and 20A , which encompasses the maroonlike locus. More refined mapping of the lethals in the maroonlike region demonstrated that the vast majority of these affected a single gene located in band 19C4 . Cytological analysis of the lethal chromosomes revealed that several carried rearrangements, including inversions, duplications and deficiencies. Chromosome breakage occurred primarily in bands 14D1 -3 and 18F- 20A , and most of the breaks in the latter segment were located in 19C . However, rearrangements involving 19C and mutations of the gene in 19C4 were mutually exclusive events. In situ hybridization of a P element probe to the chromosomes of v6 demonstrated that P elements reside at a minimum of five sites on the X chromosome. These P element sites correspond to the mutational and breakage hot spots on that chromosome. The combined genetic and cytological data imply that most of the X-linked lethal mutations that occur in M X v6 hybrids are due to local P element action. Consideration of these and other data suggest that v6 is a weak P strain in the P-M system of hybrid dysgenesis and that other Q strains might also be regarded in this way.  相似文献   

10.
In Tetrahymena, as in other ciliates, development of the somatic macronucleus during conjugation involves extensive and reproducible rearrangements of the germ line genome, including chromosome fragmentation and excision of internal eliminated sequences (IESs). The molecular mechanisms controlling these events are poorly understood. To investigate the role that histone acetylation may play in the regulation of these processes, we treated Tetrahymena cells during conjugation with the histone deacetylase inhibitor trichostatin A (TSA). We show that TSA treatment induces developmental arrests in the early stages of conjugation but does not significantly affect the progression of conjugation once the mitotic divisions of the zygotic nucleus have occurred. Progeny produced from TSA-treated cells were examined for effects on IES excision and chromosome breakage. We found that TSA treatment caused partial inhibition of excision of five out of the six IESs analyzed but did not affect chromosome breakage at four different sites. TSA treatment greatly delayed in some cells and inhibited in most the excision events in the developing macronucleus. It also led to loss of the specialized subnuclear localization of the chromodomain protein Pdd1p that is normally associated with DNA elimination. We propose a model in which underacetylated nucleosomes mark germ line-limited sequences for excision.  相似文献   

11.
Summary Human chromosome 12 has been used as a model for studying the distributions of sites of induced and spontaneous breaks. The breakpoints were determined from (1) translocations involving chromosome 12, (2) spontaneous breaks in untreated cultures, (3) radiation-induced breaks, and (4) spontaneous breaks in Fanconi's anaemia.Statistical analysis showed discordance in the results both between the eleven individual bands and between the four assessments. Also, the distribution of breaks for all bands was significantly diferent from random in each assessment. Certain bands added considerable bias to the results, and when analysed individually, only four bands (p11.1, q13, q24, and p13) showed distributions over the four assessments that were significantly different from random. These four bands are Giemsa-negative bands, and two (p13 and q24) are adjacent to telomeres, while p11.4 is adjacent to the centromere. The fourth band, q13, is a known fragile site.It is concluded that bands adjacent to centromeres, which are not C-banded, are peculiarly sensitive to breakage. Telomeric bands are variable in their response to different conditions of breakage, and both the physical structure of the telomere and the specific gene sequences of individual telomeres are probably of importance in determining this response. The fragile site q13 responds as if breakage at this site is due to the base composition of the DNA.  相似文献   

12.
Ajima J  Umezu K  Maki H 《Mutation research》2002,504(1-2):157-172
The SGS1 gene of Saccharomyces cerevisiae is a member of the RecQ helicase family, which includes the human BLM, WRN and RECQL4 genes responsible for Bloom and Werner's syndrome and Rothmund-Thomson syndrome, respectively. Cells defective in any of these genes exhibit a higher incidence of genome instability. We previously demonstrated that various genetic alterations were detectable as events leading to loss of heterozygosity (LOH) in S. cerevisiae diploid cells, utilizing a hemizygous URA3 marker placed at the center of the right arm of chromosome III. Analyses of chromosome structure in LOH clones by pulse field gel electrophoresis (PFGE) and PCR, coupled with a genetic method, allow identification of genetic alterations leading to the LOH. Such alterations include chromosome loss, chromosomal rearrangements at various locations and intragenic mutation. In this work, we have investigated the LOH events occurring in cells lacking the SGS1 gene. The frequencies of all types of LOH events, excluding intragenic mutation, were increased in sgs1 null mutants as compared to the wild-type cells. Loss of chromosome III and chromosomal rearrangements were increased 13- and 17-fold, respectively. Further classification of the chromosomal rearrangements confirmed that two kinds of events were especially increased in the sgs1 mutants: (1) ectopic recombination between chromosomes, that is, unequal crossing over and translocation (46-fold); and (2) allelic crossing over associated with chromosome loss (40-fold). These findings raise the possibility that the Sgs1 protein is involved in the processing of recombination intermediates as well as in the prevention of recombination repair during chromosome DNA replication. On the other hand, intrachromosomal deletions between MAT and HMR were increased only slightly (2.9-fold) in the sgs1 mutants. These results clearly indicate that defects in the SGS1 gene function lead to an elevated incidence of LOH in multiple ways, including chromosome loss and interchromosomal rearrangements, but not intrachromosomal deletion.  相似文献   

13.
A questionnaire sent to major cytogenetics laboratories in the United States and Canada over a 10-year period collected data on the frequency and outcome of cases with either apparently balanced de novo rearrangements or de novo supernumerary marker chromosomes detected at amniocentesis. Of 377,357 reported amniocenteses, approximately 1/2,000 had a de novo reciprocal translocation, 1/9,000 a Robertsonian translocation, 1/10,000 a de novo inversion, and 1/2,500 an extra structurally abnormal chromosome of unidentifiable origin. The risk of a serious congenital anomaly was estimated to be 6.1% (n = 163) for de novo reciprocal translocations, 3.7% (n = 51) for Robertsonian translocations, and 9.4% (n = 32) for inversions. The combined risk for reciprocal translocations and inversions was 6.7% (95% confidence limits 3.1%-10.3%). The risk of abnormality for extra nonsatellited marker chromosomes was 14.7% (n = 68), and that for satellited marker chromosomes was 10.9% (n = 55). In non-Robertsonian rearrangements, distribution of breakpoints among chromosomes was not as would be expected strictly on the basis of length. Most breaks were stated to occur within G-negative bands, but there was little evidence of particular hot spots among these bands. Nevertheless, there did appear to be a correlation between those bands in which breakage was observed most often and those bands where common or rare fragile sites have been described.  相似文献   

14.
Lovett ST 《DNA Repair》2006,5(12):1421-1427
Difficulties in replication can lead to breakage of the fork. Recombinational reactions restore the integrity of the fork through strand-invasion of the broken chromosome with its sister. If this occurs in the context of repeated DNA sequences, genetic rearrangements can result. We have proposed that this process accounts for stimulation of chromosomal rearrangements by mutations in Escherichia coli's replicative DNA helicase, DnaB. At its permissive temperature for growth, a dnaB107 mutant is a 1000-fold more likely to experience a deletion of a 787bp tandem repeated segment inserted in the E. coli chromosome than is a wild-type strain. We have previously shown that enhanced deletion in a dnaB107 strain is reduced in recA, recB and recG102 (formerly known as radC102) derivatives. Here I show that this enhanced recombination is dependent on other factors: the RuvA Holliday junction helicase, the RecJ single-strand DNA exonuclease, the RadA/Sms RecA-paralog protein of unknown function and, surprisingly, the DinB translesion polymerase. The requirement for these factors in DnaB-stimulated rearrangements is much greater than that observed for recombinational events such as P1 transduction. This may be because strand invasion into the repeats limits the extent of heteroduplex DNA that can be formed in the initial stage of recombination. I propose that RadA, RecG and RuvAB are critically required to stabilize the strand-invasion intermediate and that DinB polymerase extends the invading 3' strand to aid in re-initiation. The role of DinB in bacteria may be analogous to translesion DNA polymerase eta in eukaryotes, recently shown to aid recombination.  相似文献   

15.
For many years, studies of chromosome evolution were dominated by the random breakage theory, which implies that there are no rearrangement hot spots in the human genome. In 2003, Pevzner and Tesler argued against the random breakage model and proposed an alternative “fragile breakage” model of chromosome evolution. In 2004, Sankoff and Trinh argued against the fragile breakage model and raised doubts that Pevzner and Tesler provided any evidence of rearrangement hot spots. We investigate whether Sankoff and Trinh indeed revealed a flaw in the arguments of Pevzner and Tesler. We show that Sankoff and Trinh's synteny block identification algorithm makes erroneous identifications even in small toy examples and that their parameters do not reflect the realities of the comparative genomic architecture of human and mouse. We further argue that if Sankoff and Trinh had fixed these problems, their arguments in support of the random breakage model would disappear. Finally, we study the link between rearrangements and regulatory regions and argue that long regulatory regions and inhomogeneity of gene distribution in mammalian genomes may be responsible for the breakpoint reuse phenomenon.  相似文献   

16.
Delayed chromosomal instability induced by DNA damage.   总被引:16,自引:4,他引:12       下载免费PDF全文
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability.  相似文献   

17.
McClintock's analysis of chromosome-breaking Dissociation (Ds) elements in maize demonstrated that sister chromatids fuse at the position of Ds, forming a dicentric chromosome and an acentric fragment. In tobacco, Ds left and right ends in direct orientation (that is, half a double Ds) are sufficient to promote Activator-dependent marker gene loss. We present here a detailed analysis of germinally inherited rearrangements promoted by "half double Ds" elements and a characterization of rearrangements that involve inversion of the segment between the Ds ends and/or deletion of a segment adjacent to the Ds construct. The results support a model in which chromosome breakage promoted by these elements, and presumably by double Ds elements, involves Ds ends on sister chromatids.  相似文献   

18.
Inverted DNA repeats are known to cause genomic instabilities. Here we demonstrate that double-strand DNA breaks (DSBs) introduced a large distance from inverted repeats in the yeast (Saccharomyces cerevisiae) chromosome lead to a burst of genomic instability. Inverted repeats located as far as 21 kb from each other caused chromosome rearrangements in response to a single DSB. We demonstrate that the DSB initiates a pairing interaction between inverted repeats, resulting in the formation of large dicentric inverted dimers. Furthermore, we observed that propagation of cells containing inverted dimers led to gross chromosomal rearrangements, including translocations, truncations, and amplifications. Finally, our data suggest that break-induced replication is responsible for the formation of translocations resulting from anaphase breakage of inverted dimers. We propose a model explaining the formation of inverted dicentric dimers by intermolecular single-strand annealing (SSA) between inverted DNA repeats. According to this model, anaphase breakage of inverted dicentric dimers leads to gross chromosomal rearrangements (GCR). This "SSA-GCR" pathway is likely to be important in the repair of isochromatid breaks resulting from collapsed replication forks, certain types of radiation, or telomere aberrations that mimic isochromatid breaks.  相似文献   

19.
A mouse L cell line containing the centromeric insertion of herpes thymidine kinase genes (tk) was previously shown to undergo a high frequency of DNA rearrangement at the site of tk insertion. Analysis of TK- revertants had demonstrated that DNA rearrangements were usually associated with DNA deletion and were always mediated by intrachromosomal recombinations. In this study, we further analyzed several TK+ subclones to examine the mode of DNA rearrangements in the absence of negative selection pressure. In two clones, LC2-3F and LC2-3E17, rearrangements were accompanied by DNA amplification and were mediated by intrachromosomal recombination. In subclone LC2-3E17-19, we further detected perturbations in the pattern of centromeric heterochromatization. This was associated with chromosome instability, as evidenced by chromosome breakage at the centromere. The analysis of three other sibling clones, LC2-3, LC2-6 and LC2-15, further suggests that reciprocal recombination events may play a role in such centromeric rearrangements. These results suggest that DNA rearrangements in the centromere may be mediated by a number of different mechanisms, and generally do not affect chromosome stability except when accompanied by changes in the pattern of heterochromatization.  相似文献   

20.
The frequencies and types of plasmid molecular rearrangements generated in different recombinant mutants which carried two plasmids of the FII incompatibility group were studied. The wild-type cells generated molecular rearrangements mainly by interplasmidic recombination with a frequency of 2.4 x 10(-6) per cell per cell doubling. Cells in which RecF was the principal recombination pathway generated different types of molecular rearrangements that involved either both plasmids or one of the plasmids and the chromosome. The frequencies of molecular rearrangements for these cells were 50-fold greater than those of wild-type cells. The recA- cells, even when the RecE pathway was derepressed, generated rearrangements only between one of the plasmids and the chromosome, at very low frequencies (10(-9]. In wild-type cells and in RecF cells, interplasmidic recombination generated mainly cointegrates carrying DNA deletions. These cointegrates were stable in recA- or recA- RecE+ cells, but unstable in wild-type or RecF+ cells. In the latter, the cointegrates generated smaller plasmids with different molecular structures at relatively low frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号