首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The autometallographic procedure represents a new technique that can substitute for the normal methods of physical development (PD). The physical developer (a solution of reducing substance, silver salt and protection colloid) is replaced by a photographic emulsion and chemical developer. Accumulations of gold, silver, metal sulphides and metal selenides can be amplified by the present technique.Tissue sections placed on glass slides are covered by a silver bromide containing emulsion, dried and exposed to a chemical developer. After development the emulsion is either removed or cleared and the sections are counterstained and embedded.The autometallographic procedure can also be applied to ultrathin sections.  相似文献   

2.
Summary The autometallographic silver enhancement method is a method for subcellular localization of some heavy metals, such as mercury. However, no quantitative estimate has been made of the amount of mercury demonstrated by the method. In this study, pellets of autometallographic silver grains were prepared from unfixed kidney slices of rats exposed i.p. to mercury chloride containing trace amounts of 203Hg. The slices were silver-enhanced, and subsequently all organic material was removed by enzymatic digestion. During all stages of the experiment the solutions and tissue were gamma-counted. The analysis showed that the final pellets contained approximately 30% of the mercury compared to that found in the slices prior to development and that the mercury was probably located in lysosomes.  相似文献   

3.
The autometallographic technique involves application of a silver bromide-containing emulsion on the surface of ultrathin sections placed on grids that are subsequently exposed to a photographic developer. In tissue sections from animals treated intravitally with gold, silver, or mercury compounds, accumulations of the metals are visualized by autometallography and can be used for quantitative studies. After amplification, sections can be stained with lead citrate and uranyl acetate. Using autometallography, particles of colloidal gold dispersed in a film of gelatin showed a time-dependent growth and were gradually amplified up to 3.5-fold after 15 min of development. Hence the method may prove useful tracing colloidal gold particles in sections with low particle density, and be a powerful tool for revealing metals in biological tissues.  相似文献   

4.
The autometallographic silver enhancement method has been applied increasingly to detect trace amounts of mercury in preparations of biological tissue. It has, however, been difficult to establish the presence of a core of mercury within the silver grain by direct methods such as energy dispersive X-ray analysis. In the present work, a sample of autometallographic silver grains was prepared from kidneys of rats exposed to mercury in the drinking water. Frozen sections from the kidneys were silver-enhanced and subsequently all organic material was removed by enzymatic digestion. The remaining pellet of silver grains was analyzed by proton-induced X-ray emission (PIXE) and mercury was demonstrated in an amount of 0.1-0.5% compared to silver. In addition, it was demonstrated that two pools of catalytic mercury compounds exist, probably corresponding to sulfide- and selenium-bound mercury.  相似文献   

5.
Autometallography: tissue metals demonstrated by a silver enhancement kit   总被引:1,自引:0,他引:1  
In biological tissue, minute accumulations of gold, silver, mercury and zinc can be visualized by a technique whereby metallic silver is precipitated on tiny accumulations of the two noble metals, or on selenites or sulphides of all four metals. In the present study a silver enhancement kit, primarily intended for the amplification of colloidal gold particles, has been used to demonstrate these catalytic tissue metals. Sections from animals exposed intravitally to aurothiomalatate, silver lactate, mercury chloride, sodium selenite or perfused with sodium sulphide were subjected to a commercial silver enhancement kit (IntenSE, Janssen Pharmaceutica). It was found that the kit performs adequately to the silver lactate gum arabic developer and to the photographic emulsion technique. The kit can be used as a silver enhancement medium for the demonstration of zinc by the Neo-Timm and selenium methods and for demonstration of gold, silver, and mercury in tissues from animals intravitally exposed to these metals. It can also be used for counterstaining silver treated osmium fixed tissues embedded in plastic.  相似文献   

6.
Nano-sized clusters of gold atoms, or alternatively silver, mercury, bismuth, or zinc sulphide/selenide molecules, can be autometallographically silver-enhanced by being placed in a developer containing reducing molecules and silver ions, i.e. an autometallographic developer. A specific recipe has been worked out for each autometallographically traceable metal, and in cases where two or more autometallographic catalysts are present in the same section it is feasible to distinguish one from the other by chemical removal of one or the other of the metals. In the present study we present protocols that allow differentiation and control of specificity of the established autometallographically detectable metals. It is recommended to implement a multi-element analysis, e.g. proton-induced X-ray emission on a few samples to secure the histochemical data.  相似文献   

7.
A method for light and electron microscopic demonstration of mercury sulfides and mercury selenides in mammalian tissue is presented. Silver ions adhering to the surface of submicroscopic traces of mercury sulfides or selenides in the tissue are reduced to metallic silver by hydroquinone. Physical development thereupon renders deposits of mercury sulfides or mercury selenide visible as spheres of solid silver. Examples of localization of mercury in the central nervous system and various organs from animals exposed to mercury chloride or methyl mercury chloride with or without additional sodium selenide treatment are presented. Selenium treatment results in a considerable increase in the amount of mercury that can be made visible by silver amplification. After mercury chloride treatment, most of the mercury is localized in lysosomes and is only rarely seen in secretory granules. After simultaneous selenium treatment, mercury is also found in nuclei of proximal tubule cells in the kidney and in macrophages. The "sulfide-osmium" method for ultrastructural localization of mercury suggested by Silberberg, Lawrence, and Leider (Arch Environ Health 19:7, 1969) and the light microscopic method using a photographic emulsion suggested by Umeda, Saito, and Saito (Jpn J Exp Med 39:17, 1969) have been experimentally analyzed and commented on.  相似文献   

8.
The autometallographic technique was used to demonstrate the localization of mercury in dorsal root ganglia of adult Wistar rats. The animals were either exposed to mercury vapour, 100 μg Hg m−3, 6 h day−1, 5 days per week, or treated with organic mercury in the drinking water, 20 mg CH3HgCl per litre, for 4 weeks. The effect of orally administered sodium selenite on the pattern of intracellular distribution of mercury in these two situations was investigated. In rats exposed to mercury vapour alone, faint staining was present in ganglion cells. The selenite induced a conspicuous increase in the number of stained cells and in the intracellular staining intensity. In rats treated with organic mercury, mercury deposits were detected within ganglion cells and macrophages. The number of mercury-containing cells was increased by co- administration of selenite. In addition, satellite cells, the capsule and vessel walls were faintly stained. Twenty weeks after cessation of the organic mercury treatment, mercury staining was reduced. Again, selenite treatment enhanced staining intensity. When studied using the electron microscope, mercury was restricted to lysosomes, irrespective of treatments. The present study shows that the deposition of autometallographic mercury in the dorsal root ganglia depends on the chemical type of mercury, the co-administration of selenite and the length of the survival period. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

9.
Autometallographic (AMG) silver enhancement is a potent histochemical tool for tracing a variety of metal containing nanocrystals, e.g. pure gold and silver nanoclusters and quantum dots of silver, mercury, bismuth or zinc, with sulphur and/or selenium. These nanocrystals can be created in many different ways, e.g. (1) by manufacturing colloidal gold or silver particles, (2) by treating an organism in vivo with sulphide or selenide ions, (3) as the result of a metabolic decomposition of bismuth-, mercury- or silver-containing macromolecules in cell organelles, or (4) as the end product of histochemical processing of tissue sections. Such nano-sized AMG nanocrystals can then be silver-amplified several times of magnitude by being exposed to an AMG developer, i.e. a normal photographic developer enriched with silver ions. The present monograph attempts to provide a review of the autometallographic silver amplification techniques known today and their use in biology. After achieving a stronghold in histochemistry by Timm's introduction of the "silver-sulphide staining" in 1958, the AMG technique has evolved and expanded into several different areas of research, including immunocytochemistry, tracing of enzymes at LM and EM levels, blot staining, retrograde axonal tracing of zinc-enriched (ZEN) neurons, counterstaining of semithin sections, enhancement of histochemical reaction products, marking of phagocytotic cells, staining of myelin, tracing of gold ions released from gold implants, and visualization of capillaries. General technical comments, protocols for the current AMG methods and a summary of the most significant scientific results obtained by this wide variety of AMG histochemical approaches are included in the present article.  相似文献   

10.
We provide a detailed protocol of the autometallographic bismuth technique and evaluate the specificity of the technique. We show by the multi-element technique "proton-induced X-ray microanalysis" (PIXE) that the autometallographic grains contain silver, bismuth, and sulfur, proving that autometallography can be used for specific tracing of bismuth bound as bismuth sulfide clusters in tissue sections from Bi-exposed animals or humans. In sections from animals exposed concurrently to selenium and bismuth, the autometallographic grains also contain selenium. This demonstrates that, if present in excess in the organisms, selenium will bind to exogenous bismuth, creating bismuth selenide clusters. As a further possible control for specificity and as a tool for differentiating among autometallographically detectable metals in sections containing more than one, we describe how bismuth sulfide clusters can be removed from Epon-embedded tissue sections by potassium cyanide.  相似文献   

11.
Summary The distribution of mercury in the spleen, liver, lymph nodes, thymus and bone marrow was studied by autometallography in mice exposed to mercuric chloride intraperitoneally. Application of immunofluorescence histochemistry and an autometallographic silver amplification method was employed to the same tissue section. Mercury was not only detected in macrophages marked by the antibody M1/70 but also in macrophage-like cells, which were either autofluorescent or devoid of fluorescent signals. These two cell types were identified as macrophages at the electron microscopical level. Autometallographically stained macrophages were observed in the spleen, lymph nodes, thymus and in Kupffer cells of the liver. Furthermore, mercury was observed in endothelial cells. No obvious pathological disturbances were observed at light and electron microscopical level. At the subcellular level mercury was localized in lysosomes of macrophages and endothelial cells.  相似文献   

12.
A short clarifying view of how semiconductor quantum dots (QDs) can be made visible in tissue sections by autometallographic (AMG) silver enhancement and how the introduction of AMG enhanceable gold nanoparticles into isolated cells can be used to follow the fate of these marked cells in organisms and cell cultures. As the AMG approach for visualizing quantum dots is extremely sensitive, QDs less than one nanometer can be made visible at both LM and EM levels.  相似文献   

13.
Summary A new version of Timm's sulphide silver method involvingin vivo binding of zinc ions in zinc enriched terminals is presented. By injecting sodium sulphide into the vena cava of deeply anaesthetized animals, it is possible to bind chemically the vesicular zinc, i. e. chelatable zinc (zinc ions), in secretory and synaptic vesicles, in the form of zinc sulphide crystal lattices. Four minutes after the intravenous injection the animal is perfused transcardially with a phosphate-buffered solution of glutaraldehyde, glutaraldehyde and formaldehyde, or with a saline solution. The nanometer-sized catalytic crystals can then be silver-amplified in cryostat and vibratome sections by exposure to an autometallographic developer. It is demonstrated that contemporaneously with silver enhancement, the zinc sulphide crystals are transformed to the corresponding silver sulphide crystals. For ultrastructural studies, autometallographic development of vibratome sections is recommended. From these sections tissue blocks are cut from the areas of interest, blockstained with osmium tetroxide and embedded in Epon. This approach results in a zinc-specific autometallographic staining of the sections of a hitherto unseen, high technical quality.  相似文献   

14.
Summary In order to visualize the vascular system of the rat brain, 10 Wistar rats were perfused transcardially with glutaraldehyde and a 40°C gold-gelatine solution. The brains were post-fixed with glutaraldehyde and vibratomized into 100-μm-thick slices, and the gold particles were developed by autometallography. In this way, the colloidal gold particles in the vessels became encased in silver and thereby made visible. The developed gold staining is stable and does not interfere with further dehydration and counterstaining. Images were frame grabbed during optical slicing, and classic stereograms and ‘shadow’ 3-D images were produced. We found a high variation of capillary density in the hippocampal region reflecting known subregional structures. The silver-enhanced vessels acted as natural markers and made it possible to study and measure aspects of the complexity of dehydration and staining artifacts. We found a non-linear shrinking of 13–17% in the x- and y-directions and a spatial shrinking up to 50% in some regions after the dehydration and staining process. This observation may be of interest not only in relation to tissue subjected to this fixation protocol but also to other fixation procedures. The gold-gelatine autometallographic technique and the present stereograms can release data for stereological use as well This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

15.
The present study demonstrates that cultured macrophages are able to liberate gold ions from metallic gold surfaces, a process suggested to be called “dissolucytosis”, in a way analogous to the release taking place when metallic implants are placed in a body. Using the ultra-sensitive autometallographic (AMG) technique, we demonstrate that murine macrophages grown on a surface of metallic gold liberate gold ions. Ultra-structural AMG reveals that the gold ions are located in an ultra-thin membrane-like structure, “the dissolution membrane”, intervened between the macrophages and the metal surface. The presence of AMG silver enhanced gold nanoparticles in the dissolution membrane proves that the release of charged gold atoms takes place extracellularly. The dissolution membrane is most likely secreted and chemically controlled by the “dissolucytes”, here macrophages, and the membrane is essential for the dissolution of metal implants and particles, which cannot be phagocytosed. Our findings support the notion that whenever a metallic gold surface is attacked by dissolucytes, gold ions are liberated and taken up by surrounding cells. As gold ions can suppress the inflammatory process, it is reasonable to expect that when dissolucytosis takes place in the living organism the liberated gold ions will cause local immunosuppression.  相似文献   

16.
Autometallography was used to localize mercury in rat spinal cord after intraperitoneal administration of methylmercuric chloride (200 micrograms CH3HgCl daily). The technique permits small amounts of mercury sulfides and mercury selenides to be visualized by silver-enhancement. Mercury deposits were observed by light microscopy only in neurons. In all of the spinal cord segments selected (first cervical segment, C1; fifth cervical segment, C5; sixth thoracic segment, T6; and first lumbar segment, L1) the mercury was observed with cumulative dosages of 6000 micrograms CH3HgCl and greater. Laminae VII, VIII, and IX contained the majority of stained neurons, whereas laminae IV, V, VI, and X had a relatively lower density of mercury-containing neurons. Stained neurons were confined to specific cell groups, such as Clarke's column, nucleus intermedio-lateralis, nucleus cervicalis centralis, and nucleus dorsomedialis. At the ultrastructural level, mercury deposits were restricted to lysosomes of neurons and occasional accumulations in the lysosomes of ependymal cells.  相似文献   

17.
Abstract: The effect of mineralogical characteristics of gold ore minerals on the nature of sulphide oxidation during a bacterial leaching process was investigated. Three different ore types from the South African goldmines were used, i.e. an arsenopyritic-pyritic ore (Sheba goldmine), a pyritic ore (Agnes goldmine) and a loellingitic-arsenopyritic ore (New Consort goldmine). Detailed mineralogical characterization of each ore was performed. Thereafter, polished sections of the sulphides were suspended in a bacterial leach pulp in an air-stirred vessel for various periods of time. The effect of bacterial oxidation on the sulphides was monitored. Different types of gold-bearing arsenopyrite exist, each type having its own characteristic behaviour during the bacterial oxidation process. The rate of oxidation is controlled by the amount of defects in the crystal structure, and the amount of defects is again controlled by the composition of the arsenopyrite crystal. The distribution of refractory gold in the sulphide minerals can be correlated with the presence of compositional zones and structural deviations. These same mineralogical features also control the sites and rates of bacterial oxidation. Thus. refractory gold occurs at sites which are preferentially leached by the bacteria. The rate of gold liberation from sulphides is therefore being enhanced during the early stages of bacterial oxidation. Defects in a crystal structure influence the rate of bio-oxidation, and can be related directly to the crystal structure of the sulphide mineral, the crystallographic orientation of the exposed surfaces, and differences in chemical compositional and mechanical deviations in the crytals. A combination of all of these mineralogical factors influences the bacterial oxidation process. To optimize and to understand the leaching of an individual ore it is important to establish its controlling factors.  相似文献   

18.
It is well known that several metals, such as lead, mercury, cadmium, and vanadium, can mimic the effects of estrogens (metallo-estrogens). Nevertheless, there are only a few studies that have assessed the effects of toxic metals on the female genital tract and, in particular, endometrial tissue. In this context, we measured the concentrations of several trace elements in human endometrial tissue samples from individuals with hyperplasia or adenocarcinoma and in normal tissues. Hyperplasic endometrial tissue has a 4-fold higher concentration of mercury than normal tissue. Mercury can affect both the AhR and ROS signaling pathways. Thus, we investigated the possible toxic effects of mercury by in vitro studies. We found that mercury increases oxidative stress (increased HO1 and NQO1 mRNA levels) and alters the cytoskeleton in the human endometrial Ishikawa cell line and to a lesser extent, in the “less-differentiated” human endometrial Hec-1b cells. The results might help to explain a potential link between this metal and the occurrence of endometrial hyperplasia.  相似文献   

19.
Consistency in gold chloride staining is essential for anatomical analysis of sensory nerve endings. The gold chloride stain for this purpose has been modified by many investigators, but often yields inconsistent staining, which makes it difficult to differentiate structures and to determine nerve ending distribution in large tissue samples. We introduce additional steps and major changes to the modified Gairns’ protocol. We controlled the temperature and mixing rate during tissue staining to achieve consistent staining and complete solution penetration. We subjected samples to sucrose dehydration to improve cutting efficiency. We then exposed samples to a solution containing lemon juice, formic acid and paraformaldehyde to produce optimal tissue transparency with minimal tissue deformity. We extended the time for gold chloride impregnation 1.5 fold. Gold chloride was reduced in the labrum using 25% formic acid in water for 18 h and in the capsule using 25% formic acid in citrate phosphate buffer for 2 h. Citrate binds gold nanoparticles, which minimizes aggregation in the tissue. We stored samples in fresh ultrapure water at 4° C to slow reduction and to maintain color contrast in the tissue. Tissue samples were embedded in Tissue Tek and sectioned at 80 and 100 μm instead of using glycerin and teasing the tissue apart as in Gairns’ modified gold chloride method. We attached sections directly to gelatin subbed slides after sectioning with a cryostat. The slides then were processed and coverslipped with Permount. Staining consistency was demonstrated throughout the tissue sections and neural structures were clearly identifiable.  相似文献   

20.
Primary sensory trigeminal neurons supplying the dental pulp of incisors in guinea pigs were labelled by retrograde axonal transport. Using an autometallographic intensification procedure, 48 h after injection of wheat germ agglutinin/colloidal gold in the pulp, gold particles were detected in the cytoplasm of the neurons as black granulations. A morphometric study showed a bimodal repartition of the labelled neurons of the ganglion. By submitting ganglion slices to an anti-substance P immunserum revealed by immunocytochemistry, it could be observed that, among the neurons supplying the dental pulp of incisors, the majority of the largest were substance P immunopositive while the smallest were substance P immunonegative. These observations suggest that there could be at least two different populations of nerve fibres supplying the guinea pig incisor dental pulp. Substance P negative neurons could express different neurotransmitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号