首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of copper(II) ions on to dehydrated wheat bran (DWB), a by-product of the flour process, was investigated as a function of initial pH, temperature, initial metal ion concentration and adsorbent dosage. The optimum adsorption conditions were initial pH 5.0, initial copper concentration 100 mg l−1, temperature 60 °C and adsorbent dosage 0.1 g. The adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 51.5 mg g−1 of copper(II) ions on DWB. The observation of an increase in adsorption with increasing temperature leads to the result that the adsorption of copper(II) ions on DWB is endothermic in nature. The thermodynamic parameters such as enthalpy, free energy and entropy changes were calculated and these values show that the copper(II)-DWB adsorption process was favoured at high temperatures.  相似文献   

2.
The shell of the seed of Chrysophyllum albidum carbon was used to adsorb lead (Pb) from aqueous solution, the sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration, and particle size on adsorption were also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The first-order rate equation by Lagergren was tested on the kinetic data and the adsorption process followed first-order rate kinetics. Isotherm data were analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms; the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 72.1 mg Pb (II) g- 1 at initial pH of 5.0 at 30°C for the particle size of 1.00 to 1.25 mm with the use of 2.0 g/100 ml adsorbent mass. The structural features of the adsorbent were characterized by Fourier transform infrared (FTIR) spectrometry; the presence of hydroxyl, carbonyl, amide, and phosphate groups confirms the potential mechanism adsorption of the adsorbent. This readily available adsorbent is efficient in the uptake of Pb (II) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

3.
The adsorption of Au(III), Pt(IV) and Pd(II) onto glycine modified crosslinked chitosan resin (GMCCR) has been investigated. The parameters studied include the effects of pH, contact time, ionic strength and the initial metal ion concentrations by batch method. The optimal pH for the adsorption of Au(III), Pt(IV) and Pd(II) was found to range from 1.0 to 4.0 and the maximum uptake was obtained at pH 2.0 for Au(III), Pt(IV) and Pd(II). The results obtained from equilibrium adsorption studies are fitted in various adsorption models such as Langmuir and Freundlich and the model parameters have been evaluated. The maximum adsorption capacity of GMCCR for Au(III), Pt(IV) and Pd(II) was found to be 169.98, 122.47 and 120.39mg/g, respectively. The kinetic data was tested using pseudo-first-order and pseudo-second-order kinetic models and an intraparticle diffusion model. The correlation results suggested that the pseudo-second-order model was the best choice among all the kinetic models to describe the adsorption behavior of Au(III), Pt(IV) and Pd(II) onto GMCCR. Various concentrations of HCl, thiourea and thiourea-HCl solutions were used to desorb the adsorbed precious metal ions from GMCCR. It was found that 0.7M thiourea-2M HCl solution provided effectiveness of the desorption of Au(III), Pt(IV) and Pd(II) from GMCCR. The modification of glycine on crosslinked chitosan resin (CCR) was studied by Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM).  相似文献   

4.
The removal of chromium, cadmium and copper, toxic metals of high environmental priority due to their toxicity, from dilute aqueous solutions has been studied in the present work, applying a dead exopolysaccharide producing bacterium, Ochrobactrum anthropi, isolated from activated sludge. Particularly, the effect of pH, metal concentration and the effects of contact time were considered. Optimum adsorption pH values of chromium(VI), cadmium(II) and copper(II) were 2.0, 8.0 and 3.0 respectively. Experimental results also showed the influence of initial metal concentration on the metal uptake for dried biomass. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of chromium(VI), cadmium(II) and copper(II) by O. anthropi.  相似文献   

5.
The feasibility of using coffee beans after being dripped and degreased (DCB) as an adsorbent for base metals such as copper(II), zinc(II), lead(II), iron(III) and cadmium(II) were examined. The compositions of the DCB were characterized by Fourier transform infrared spectroscopy, scanning electronic micrograph and fluorescent X-ray. It was found that DCB contain sulfur and calcium from the analysis using fluorescent X-ray. The plant cell wall in DCB has the porous structure from the scanning electron microscopy (SEM) analysis, and the specific surface area was determined to be 1.2 m2/g using the specific surface area analyzer. Batch adsorption experiments on DCB were carried out at various pHs in order to elucidate the selectivity of metal ions. All metals were adsorbed at low pH region (3.0-5.0). Of particular interest was the adsorption characteristics of cadmium(II) on DCB. The adsorption isotherm for cadmium(II) at pH 8 fitted with a Langmuir equation to yield an adsorption equilibrium constant of 55.2 mmol dm(-3) and an adsorption capacity of 5.98 x 10(-2) mmol g(-1). The desorption of cadmium(II) was easily achieved over 90% by a single batchwise treatment with an aqueous solution of hydrochloric acid or nitric acid at more than 0.01 mol dm(-3). These results suggested that DCB behaves as a cation exchanger.  相似文献   

6.
The cadmium removing capacity of a biosorbent Calotropis procera, a perennial wild plant, is reported here. The biomass was found to possess high uptake capacity of Cd(II). Adsorption was pH dependent and the maximum removal was obtained at two different pH i.e. pH 5.0 and 8.0. Maximum biosorption capacity in batch and column mode was found to be 40 and 50.5 mg/g. The adsorption equilibrium (> or =90% removal) was attained within 5 min irrespective of the cadmium ion concentration. Interfering ions viz. Zn(II), As(III), Fe(II), Ni(II) interfered only when their concentration was higher than the equimolar ratio. The Freundlich isotherm best explained the adsorption, yet the monolayer adsorption was also noted at lower concentrations of Cd(II). The FTIR analysis indicates the involvement of hydroxyl (-OH), alkanes (-CH), nitrite (-NO(2)), and carboxyl group (-COO) chelates in metal binding. The complete desorption of the cadmium was achieved by 0.1M H(2)SO(4) and 0.1M HCl. The C. procera based Cd(II) removal technology appears feasible.  相似文献   

7.
Activated carbon (AC) prepared from waste Parthenium was used to eliminate Ni(lI) from aqueous solution by adsorption. Batch mode adsorption experiments are carried out, by varying contact time, metal ion concentration, carbon concentration, pH and desorption to assess kinetic and equilibrium parameters. They allowed initial adsorption coefficient, adsorption rate constant and maximum adsorption capacities to be computed. The adsorption data were modeled by using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity (Q0) calculated from the Langmuir isotherm was 54.35 mg Ni(II)/g of AC at initial pH of 5.0 and 20 degrees C, for the particle size 250-500 microm. Increase in pH from 2 to 10 increased percent removal of metal ion. The regeneration by HCl of Ni(II)-saturated carbon by HCl, allowed suggestion of an adsorption mechanism by ion-exchange between metal ion and H+ ions on the AC surfaces. Quantitative recovery of Ni(II) was possible with HCl.  相似文献   

8.
A comparative study on heavy metal biosorption characteristics of some algae   总被引:12,自引:0,他引:12  
The biosorption of copper(II), nickel(II) and chromium(VI) from aqueous solutions on dried (Chlorella vulgaris, Scenedesmus obliquus and Synechocystis sp.) algae were tested under laboratory conditions as a function of pH, initial metal ion and biomass concentrations. Optimum adsorption pH values of copper(II), nickel(II) and chromium(VI) were determined as 5.0, 4.5 and 2.0. respectively, for all three algae. At the optimal conditions, metal ion uptake increased with initial metal ion concentration up to 250 mg l−1. Experimental results also showed the influence of the alga concentration on the metal uptake for all the species. Both the Freundlich and Langmuir adsorption models were suitable for describing the short-term biosorption of copper(II), nickel(II) and chromium(VI) by all the algal species.  相似文献   

9.
《Process Biochemistry》1999,34(5):483-491
The biosorption of iron(III)–cyanide complex anions to Rhizopus arrhizus was investigated. The iron(III)–cyanide complex ion binding capacity of the biosorbent was a function of initial pH, initial iron(III)–cyanide complex ion and biosorbent concentration. These results indicated that a significant reduction of iron(III)–cyanide complex ions was achieved at pH 13, a highly alkaline condition. The maximum loading capacity of biosorbent was 612·2 mg g−1 at 1996·2 mg litre−1 initial iron(III)–cyanide complex ion concentration at this pH. The Freundlich, Langmuir and Redlich–Peterson adsorption models were fitted to the equilibrium data at pH 3·0, 7·0 and 13·0. The equilibrium data could be best fitted to by all the adsorption models over the entire concentration range (50–2000 mg litre−1) at pH 13.  相似文献   

10.
Response surface methodology was used to optimize bead preparation conditions, including CaCl2 concentration (X1), hydroxypropylmethylcellulose concentration (X2), and bead-hardening time (X3), for the sustained-release of catechin from the calcium pectinate gel beads reinforced with liposomes and hydroxypropylmethylcellulose into simulated gastric fluid (SGF) and intestinal fluid (SIF). The optimized values of X1, X2, and X3 were found to be 5.82%, 0.08%, and 10.29 min, respectively. The beads prepared according to the optimized conditions released only about half of the entrapped catechin into SGF while most of the entrapped catechin was released into SIF after 24 h incubation.  相似文献   

11.
Biosorption of cadmium (II) ions from aqueous solution onto immobilized cells of Pycnoporus sanguineus (P. sanguineus) was investigated in a batch system. Equilibrium and kinetic studies were conducted by considering the effect of pH, initial cadmium (II) concentration, biomass loading and temperature. Results showed that the uptake of cadmium (II) ions increased with the increase of initial cadmium (II) concentration, pH and temperature. Langmuir, Freundlich and Redlich-Peterson isotherm models were used to analyze the equilibrium data at different temperatures. Langmuir isotherm model described the experimental data well followed by Redlich-Peterson and Freundlich isotherm models. Biosorption kinetics data were fitted using pseudo-first, pseudo-second-order and intraparticle diffusion. It was found that the kinetics data fitted well the pseudo-second-order followed by intraparticle diffusion. Thermodynamic parameters such as standard Gibbs free energy (Delta G0), standard enthalpy (Delta H0) and standard entropy (Delta S0) were evaluated. The result showed that biosorption of cadmium (II) ions onto immobilized cells of P. sanguineus was spontaneous and endothermic nature.  相似文献   

12.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

13.
为了研究鮸的形态性状与体质量之间的关系,测量了524尾12月龄左右鮸的体质量(Y, g)和8个形态性状(cm),包括全长(X1)、体长(X2)、头长(X3)、躯干长(X4)、尾长(X5)、尾柄长(X6)、尾柄高(X7)和体高(X8).采用相关分析、回归分析、通径分析以及模型拟合等方法对其进行分析.结果表明: 鮸所有性状两两之间存在极显著正相关关系,相关系数在0.834~0.941.经共线性诊断排除了体长这一具有严重共线性的性状后,采用逐步引入-剔除法进行多元回归并进行显著性检验,成功筛选出全长(X1)、躯干长(X4)、尾柄高(X7)和体高(X8)4个统计检验极显著的形态性状,并建立多元回归方程:Y =-444.188 +7.943X1 +12.861X4 +38.254X7 + 42.722X8.通径分析结果显示,4个形态性状中,体高对体质量的直接作用最大(通径系数=0.351),全长次之(通径系数=0.335).对全长和体高与体质量之间的函数关系进行曲线模型拟合得出,在6个拟合模型中,幂函数模型拟合效果最好,方程为:y=0.013 x2.891(全长); y=2.028 x2.751(体高).经适合性检验得知,全长比体高通过幂函数对体质量的预测效果更好.研究结果可为鮸的形态性状在选择育种中的有效利用提供重要参考.  相似文献   

14.
Steady-state current-voltage relationships (SSCVRs) of the plasma membrane of human T-lymphocytes were studied at the physiological temperature of 37°C by using the whole-cell patch-clamp technique. SSCVRs displayed a characteristic N-like shape with a negative resistance region (NRR) in a voltage range of −45 to −35 mV. The majority of cells assayed revealed SSCVR patterns crossing the V-axis at three points (in mV): V1 = −55 to −45, V2 = −40 to −35, V3 = −30 to −10. SSCVRs of T-cells activated by phytohaemagglutinin (48–96 h) also displayed NRR, but crossed the V-axis at one point only (V1 = −55 to −60 mV). It implies the possibility of two stable levels of membrane potential (V1 and V3) for the resting T-cells, but only one (V1) for activated T-cells. These data thus account for the triggering property of T-cell membrane potential previously reported. The NRR can be explained on the basis of the Hodgkin-Huxley type n4j model of K+ channel kinetics. According to the model the possibility for a membrane to have on or two stable levels of membrane potential depends on the ratio of selective K+ conductance to non-selective leaky conductance (Gk/Gleak). The steady-state level of K+ conductance in resting T-lymphocytes proved to be sensitive to Ca2+. Buffering Ca2+ ions from either external or internal solution resulted in an appreciable increase in K+ conductance. The possibility for membrane potential have two stable levels of membrane potential in connection with the Ca2+ dependence of K+ conductance was supposed to be important for Ca2+-signalling during T-cell activation.  相似文献   

15.
The potential use of the immobilized fresh water algae (in Ca-alginate) of Scenedesmus quadricauda to remove Cu(II), Zn(II) and Ni(II) ions from aqueous solutions was evaluated using Ca-alginate beads as a control system. Ca-alginate beads containing immobilized algae were incubated for the uniform growth at 22 degrees C for 5d ays. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae showed highest values at around pH 5.0. Adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae increased as the initial concentration of metal ions increased in the medium. The maximum adsorption capacities of the immobilized algal biosorbents for Cu(II), Zn(II) and Ni(II) were 75.6, 55.2 and 30.4 mg/g (or 1.155, 0.933 and 0.465 mmol/g) biosorbent, respectively. When the heavy metal ions were in competition, the amounts of adsorbed metal ions were found to be 0.84 mol/g for Cu(II), 0.59 mol/g for Ni(II) and 0.08 mol/g for Zn(II), the immobilised algal biomass was significantly selective for Cu(II) ions. The adsorption-equilibrium was also represented with Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherms. The adsorption of Cu(II), Zn(II) and Ni(II) ions on the immobilized algae followed second-order kinetic.  相似文献   

16.
铝毒是限制酸性土壤中作物产量的主要因素之一。番茄(Solanum lycopersicum)是适合在酸性土壤中种植的主要经济作物, 不同品种番茄对铝胁迫的响应存在差异, 因此, 筛选苗期耐铝毒种质对番茄生产及研究具有重要意义。以10个番茄品种为材料, 采用室内土培盆栽, 设置1 000 µmol∙L-1 AlCl3·6H2O处理, 测定反映植物铝胁迫下生长状况的16个形态、生理生化及光合指标。通过主成分分析, 将铝胁迫下番茄幼苗的16个指标转化为5个独立的综合指标, 累积贡献率达90.779%。基于耐铝性综合评价值(A)的系统聚类分析, 将供试种质划分为5类, 第I类为高度耐铝品种Qianxi, 第V类为高度不耐铝品种Puluowangsi。经多元线性逐步回归分析得出番茄苗期耐铝评价方程: y=0.046+0.405X6+0.515X10-0.207X15+0.028X3 (R2=0.997), 从16个指标中提取出与A值显著相关(P<0.01)的4个指标: 丙二醛含量(X3)、净光合速率(X6)、叶面积(X10)和地下部干重(X15)。利用评价方程可判断不同番茄品种苗期的耐铝性, 使番茄耐铝性鉴定工作快速简便。  相似文献   

17.
Abstract

A series of batch adsorption experiments were carried out, with the aim of removing cadmium ions from aqueous solutions and water samples using powdered marble wastes (PMW) as an effective inorganic sorbent. PMW is inexpensive, widespread, and may be considered as environmental problem. The main parameters (i.e. solution pH, sorbent and cadmium concentrations, stirring time, and temperature) influencing the sorption process were investigated. The results obtained for sorption of cadmium ions onto PMW are well described by the Freundlich and Langmuir models. The Dubinin-Radushkevick (D–R) isotherm model was applied to describe the nature of the adsorption of the metal ion; it was found that the adsorption process was chemical in nature. The thermodynamic parameters were also calculated from the Gibbs free energy change (ΔG°), enthalpy (AH°) and entropy (ΔS°). These parameters indicated that the adsorption process of cadmium(II) ions on PMW was spontaneous and endothermic in nature. Under the optimum experimental conditions employed the removal of ca ~100% of Cd2+ ions was attained. The procedure was successfully applied to removal of the cadmium ions from aqueous and various natural water samples. The adsorption mechanism is discussed.  相似文献   

18.
Ascorbic acid (vitamin C) induced hydrogen peroxide (H2O2) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H2O2 formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H2O2 formation during acidic conditions (pH: 3.5-5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H2O2 concentration exceeded 400 μM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H2O2 accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H2O2 formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H2O2. Ascorbic acid/Cu(II)-induced H2O2 formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.  相似文献   

19.
Comparative studies on the adsorption of Cr(VI) ions on to various sorbents   总被引:2,自引:0,他引:2  
The adsorption of Cr(VI) ions onto various sorbents (chitin, chitosan, ion exchangers; Purolite CT-275 (Purolite I), Purolite MN-500 (Purolite II) and Amberlite XAD-7) was investigated. Batch adsorption experiments were carried out as a function of pH, agitation period and concentration of Cr(VI) ions. The optimum pH for Cr(VI) adsorption was found as 3.0 for chitin and chitosan. The Cr(VI) uptake by ion exchangers was not very sensitive to changes in the pH of the adsorption medium. The maximum chromium sorption occurred at approximately 50 min for chitin, 40 min for Purolite II and 30 min for chitosan, Purolite I and Amberlite XAD-7. The suitability of the Freundlich and Langmuir adsorption models were also investigated for each chromium-sorbent system. Adsorption isothermal data could be accurately interpreted by the Langmuir equation for chitosan, chitin, Purolite I and Purolite II and by the Freundlich equation for chitosan, chitin and Amberlite XAD-7. The chromium(VI) ions could be removed from the sorbents rapidly by treatment with an aqueous EDTA solution and at the same time the sorbent regenerated and also could be used again to adsorb by heavy metal ions. The results showed that, chitosan, which is a readily available, economic sorbent, was found suitable for removing chromium from aqueous solution.  相似文献   

20.
A basic investigation on the removal of cadmium(II) ions from aqueous solutions by dead Sargassum sp. was conducted in batch conditions. The influence of different experimental parameters; initial pH, shaking rate, sorption time, temperature and initial concentrations of cadmium ions on cadmium uptake was evaluated. Results indicated that cadmium uptake could be described by the Langmuir adsorption model, being the monolayer capacity negatively affected with an increase in temperature. Analogously, the adsorption equilibrium constant decreased with increasing temperature. The kinetics of the adsorption process followed a second-order adsorption, with characteristic constants increasing with increasing temperature. Activation energy of biosorption could be calculated as equal to 10 kcal/mol. The biomass used proved to be suitable for removal of cadmium from dilute solutions. Its maximum uptake capacity was 120 mg/g. It can be considered an optimal result when compared to conventional adsorbing materials. Thus Sargassum sp. has great potential for removing cadmium ions especially when concentration of this metal is low in samples such as wastewater streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号