首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, we measure the iron bioavailability of micronized ferric orthophosphate when it is used to fortify low-fat fluid milk enriched with calcium and petit suisse cheese using the prophylactic-preventive method in rats. Four groups of male weaned rats received a basal diet (control diet; 6.5 ppm Fe), a reference standard diet (SO4Fe; 18.2 ppm Fe), a basal diet using iron-fortified fluid milk as the iron source (milk diet; Fe ppm 17.9), and a basal diet using iron-fortified petit suisse cheese as the iron source (cheese diet; 18.0 ppm Fe) for 22 d. The iron bioavailability of the different sources was calculated as the ratio between the mass of iron incorporated into hemoglobin during the experiment and the total iron intake per animal. The relative biological values with regard to the reference standard (RBV%) were 61% and 69% for the milk and cheese diet, respectively. These results show that according to this method, the iron bioavailability in both fortified foods can be considered as medium bioavailability rates.  相似文献   

2.
Mouse (MEL) and human (K-562) erythroleukemia cell lines can be induced to undergo erythroid differentiation, including hemoglobin (Hb) synthesis, by extra cellular hemin. In order to study the effect of extracellular hemin on intracellular ferritin and Hb content, we have used Mossabauer spectroscopy to measure the amount of 57Fe incorporated into ferritin or Hb and a fluorescent enzyme-linked immunosorbent assay (ELISA) to measure the ferritin protein content. When K-562 cells were cultured in the presence of a 57Fe source either as transferrin or citrate, in the absence of a differentiation inducer, all the intracellular 57Fe was detected in ferritin. When the cells were cultured in the presence of 57Fe-hemin, 57Fe was found in both ferritin and Hb. 57Fe in ferritin increased rapidly, and after 2 days it reached a plateau at 5 X 10(-14) g/cell. 57Fe in Hb increased linearly with time and reached the same value after 12 days. Addition of other iron sources such as iron-saturated transferrin, iron citrate, or iron ammonium citrate caused a much lower increase in ferritin protein content as compared to hemin. When K-562 cells were induced by 57Fe-hemin in the presence of 56Fe-transferrin, 57Fe was found to be incorporated in equal amounts into both ferritin and Hb. However, when the cells were induced by 56Fe-hemin in the presence of 57Fe-transferrin, 57Fe was incorporated only into ferritin, but not into Hb, which contained 56Fe iron. These results indicate that in K-562 cells, when hemin is present in the culture medium it is preferentially incorporated into Hb, regardless of the availability of other extra- or intracellular iron sources such as transferrin or ferritin. In MEL cells induced to differentiate by dimethylsulfoxide (DMSO) a different pattern of iron incorporation was observed; 57Fe from both transferrin and hemin was found to incorporate in ferritin as well as in Hb.  相似文献   

3.
This study reports the effects of dietary iron (Fe) deficiency and recovery on bone mineral composition and strength in anemic rats submitted to a hemoglobin (Hb) repletion assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulfate (n = 8) or ferric pyrophosphate (FP; n = 12). At final day of each period (depletion and repletion), Fe-adequate animals were also euthanized. Iron status (blood Hb, Hb Fe pool, Hb regeneration efficiency), tibia mineral concentrations (Ca, Mg, Fe, Cu, and Zn) and biomechanical properties were evaluated. Iron-deficient rats had lower tibia Fe and Mg levels and bone strength when compared to controls. Yield load and resilience were positively related to tibia Mg levels (r = 0.47, P = 0.02 and r = 0.56, P = 0.004, respectively). Iron repletion did not recover tibia Mg concentrations impaired by Fe deficiency. Moreover, bone elastic properties were negatively affected by FP consumption. In conclusion, bone mineral composition and strength were affected by Fe deficiency, whereas dietary Fe source influenced tibia Mg and resistance in the period during which rats were recovering from anemia.  相似文献   

4.
Microencapsulated ferrous sulfate with soy lecithin (SFE-171) has been used as an iron source for the fortification of milk and dairy products. With the purpose to extend the use of this agent to other kind of foods or even to pharmaceutical preparations for oral administration, the SFE-171 was turned into a fluid powder (SFE-171-P) by means of vacuum drying. The iron bioavailability (BioFe) of SFE-171-P was evaluated in this work by means of the prophylactic-preventive method in rats, using ferrous sulfate as reference standard. Both iron sources were separately added to a basal diet of low iron content in a concentration of 10 mg iron/kg diet. Two groups of 10 weaned rats 25 days old received the fortified diets during 28 days, while a third group of the same size received the basal diet without iron additions. The weights and haemoglobin concentrations (HbC) of every animal were determined before and after the treatment, thus allowing the calculation of the mass of iron incorporated into haemoglobin (HbFe) during this period. The BioFe of the iron sources were obtained as the percentage ratio between the HbFe and the mass of iron consumed by each animal. The results were also given as Relative Biological Value (RBV), which relates the BioFe of the studied source with that of the reference standard. The liver iron concentration (LIC) of each animal was determined at the end of the experiment in order to evaluate the influence of the studied iron sources on the liver iron stores. SFE-171-P presented BioFe, RBV and LIC values of (47 ± 7) %, 109% and (46.6 ± 3.4) mg/kg respectively, while the corresponding values for the reference standard were of (43 ± 7)%, 100% and (45.0 ± 4.7) mg/kg. These results show that the drying process used to produce the SFE-171-P does not affect its bioavailability, which is also adequate for the potential use of this product in food fortification or with pharmaceutical purposes.  相似文献   

5.
Catechin is a flavonoid present in fruits, wine and cocoa products. Most foods contain the (+)-enantiomer of catechin but chocolate mainly contains ( ? )-catechin, in addition to its major flavanol, ( ? )-epicatechin. Previous studies have shown poor bioavailability of catechin when consumed in chocolate. We compared the absorption of ( ? ) and (+)-catechin after in situ perfusion of 10, 30 or 50 μmol/l of each catechin enantiomer in the jejunum and ileum in the rat. We also assayed 23 samples of chocolate for (+) and ( ? )-catechin. Samples were analyzed using HPLC with a Cyclobond I-2000 RSP chiral column. At all concentrations studied, the intestinal absorption of ( ? )-catechin was lower than the intestinal absorption of (+)-catechin (p < 0.01). Plasma concentrations of ( ? )-catechin were significantly reduced compared to (+)-catechin (p < 0.05). The mean concentration of ( ? )-catechin in chocolate was 218 ± 126 mg/kg compared to 25 ± 15 mg/kg (+)-catechin. Our findings provide an explanation for the poor bioavailability of catechin when consumed in chocolate or other cocoa containing products.  相似文献   

6.
We encapsulated a purified and concentrated hemoglobin (Hb) solution with a phospholipid bilayer membrane to form Hb vesicles (particle diameter, ca. 250 nm) for the development of artificial oxygen carriers. Reaction of Hb inside the vesicle with hydrogen peroxide (H(2)O(2)) is one of the important safety issues to be clarified and compared with a free Hb solution. During the reaction of the Hb solution with H(2)O(2), metHb (Fe(III)) and ferrylHb (Fe(IV)=O) are produced, and H(2)O(2) is decomposed by the catalase-like reaction of Hb. The aggregation of discolored Hb products due to heme degradation is accompanied by the release of iron (ferric ion). On the other hand, the concentrated Hb within the Hb vesicle reacts with H(2)O(2) that permeated through the bilayer membrane, and the same products as the Hb solution are formed inside the vesicle. However, there is no turbidity change, no particle diameter change of the Hb vesicles, and no peroxidation of lipids comprising the vesicles after the reaction with H(2)O(2). Furthermore, no free iron is detected outside the vesicle, though ferric ion is released from the denatured Hb inside the vesicle, indicating the barrier effect of the bilayer membrane against the permeation of ferric ion. When vesicles composed of egg york lecithin (EYL) as unsaturated lipids are added to the mixture of Hb and H(2)O(2), the lipid peroxidation is caused by ferrylHb and hydroxyl radical generated from reaction of the ferric iron with H(2)O(2), whereas no lipid peroxidation is observed in the case of the Hb vesicle dispersion because the saturated lipid membrane of the Hb vesicle should prevent the interaction of the ferrylHb or ferric iron with the EYL.  相似文献   

7.
The iron bioavailability and acute oral toxicity in rats of a ferrous gluconate compound stabilized with glycine (SFG), designed for food fortification, was studied in this work by means of the prophylactic method and the Wilcoxon method, respectively. For the former studies, SFG was homogeneously added to a basal diet of low iron content, reaching a final iron concentration of 20.1 +/- 2.4 mg Fe/kg diet. A reference standard diet using ferrous sulfate as an iron-fortifying source (19.0 +/- 2.1 mg Fe/kg diet) and a control diet without iron additions (9.3 +/- 1.4 mg Fe/kg diet) were prepared in the laboratory in a similar way. These diets were administered to three different groups of weaning rats during 23 d as the only type of solid nourishment. The iron bioavailability of SFG was calculated as the relationship between the mass of iron incorporated into hemoglobin during the treatment and the total iron intake per animal. This parameter resulted in 36.6 +/- 6.2% for SFG, whereas a value of 35.4 +/- 8.0% was obtained for ferrous sulfate. The acute toxicological studies were performed in two groups of 70 female and 70 male Sprague-Dawley rats that were administered increasing doses of iron from SFG. The LD50 values of 1775 and 1831 mg SFG/kg body wt were obtained for female and male rats, respectively, evidencing that SFG can be considered as a safe compound from a toxicological point of view.  相似文献   

8.
A radiobioassay was performed in rats with or without iron depletion to evaluate the iron bioavailability of diets enriched with common beans and with “multimixture”, a nutritional supplement based on parts of foods that are not usually eaten. The full-body 59Fe level was determined after 5 h, the absorbed 59Fe level was determined after 48 h, and the amount of 59Fe retained was determined after 7 days. Iron bioavailability was assessed by the full-body radioactivity of the animals, determined using a solid scintillation detector. The iron bioavailability of common beans was higher in the iron-depleted animals (55.7%) than in the non-depleted animals (25.12%) because of the higher absorption rate in the iron-depleted animals. The multimixture did not influence dietary iron bioavailability. In addition, the iron bioavailability of common beans was similar to that observed in the standard source of iron for Wistar rats. Hence, common beans may be considered an adequate dietary iron source because of its high bioavailability.  相似文献   

9.
The iron bioavailability and acute oral toxicity in rats of a ferrous gluconate compound stabilized with glycine (SFG), designed for food fortification, was studied in this work by means of the prophylactic method and the Wilcoxon method, respectively. For the former studies, SFG was homogenously added to a basal diet of low iron content, reaching a final iron concentration of 20.1±2.4 mg Fe/kg diet. A reference standard diet using ferrous sulfate as an iron-fortifying source (19.0±2.1 mg Fe/kg diet) and a control diet without iron additions (9.3±1.4 mg Fe/kg diet) were prepared in the laboratory in a similar way. These diets were administered to three different groups of weaning rats during 23 d as the only type of solid nourishment. The iron bioavailability of SFG was calculated as the relationship between the mass of iron incorporated into hemoglobin during the treatment and the total iron intake per animal. This parameter resulted in 36.6±6.2% SFG, whereas a value of 35.4±8.0% was obtained for ferrous sulfate. The acute toxicological studies were performed in two groups of 70 female and 70 male Sprague-Dawley rats that were administered increasing doses of iron from SFG. The LD50 values of 1775 and 1831 mg SFG/kg body wt were obtained for female and male rats, respectively, evidencing that SFG can be considered as a safe compound from a toxicological point of view.  相似文献   

10.
Summary Different assay conditions induce changes in the ferric chelate reductase activities of leaf plasma membrane preparations from Fe-deficient and Fe-sufficient sugar beet. With an apoplasttype assay medium the ferric chelate reductase activities did not change significantly when Fe(III)-EDTA was the substrate. However, with ferric citrate as substrate, the effect depended on the citrateto-Fe ratio. When the citrate-to-Fe ratio was 20 1, the effects were practically unappreciable. However, with a lower citrate-to-Fe ratio of 5 1 the activities were significantly lower with the apoplast-type medium than with the standard assay medium. Our data also indicate that anaerobiosis during the assay facilitates the reduction of ferric malate and Fe(III)-EDTA by plasma membrane preparations. Anaerobiosis increased by approximately 50% the plasma membrane ferric chelate reductase activities when Fe(III)-EDTA was the substrate. With ferric malate anaerobiosis increased activities by 70–90% over the values obtained in aerobic conditions. However, with ferric citrate the increase in activity by anaerobiosis was not significant. We have also tested the effect of riboflavin, flavin adenine dinucleotide, and flavin mononucleotide on the plasma membrane ferric chelate reductase activities. The presence of flavins generally increased activities in plasma membrane preparations from control and Fe-deficient plants. Increases in activity were generally moderate (lower than twofold). These increases occurred with Fe(III)-EDTA and Fe(III)-citrate as substrates.Abbreviations BPDS bathophenantroline disulfonate - FC ferric chelate - FC-R ferric chelate reductase - PM plasma membrane  相似文献   

11.
Acquisition of iron from citrate by Pseudomonas aeruginosa   总被引:2,自引:0,他引:2  
Transport of [14C]citrate, ferric [14C]citrate and [55Fe]ferric citrate into Pseudomonas aeruginosa grown in synthetic media containing citrate, succinate, or succinate and citrate as carbon and energy sources was measured. Cells grown in citrate-containing medium transported radiolabelled citrate and iron, whereas the succinate-grown cells transported iron but not citrate. Binding studies revealed that isolated outer and inner membranes of citrate-grown cells contain a citrate receptor, absent from membranes of succinate-grown cells. [55Fe]Ferric citrate bound to the isolated outer membranes of each cell type. The failure of citrate to compete with this binding suggests the presence of a ferric citrate receptor on the outer membranes of each cell type. Citrate induced the synthesis of two outer-membrane proteins of 41 and 19 kDa. A third protein of 17 kDa was more dominant in citrate-grown cells than in succinate-grown cells.  相似文献   

12.
Reduction of ferric citrate catalyzed by NADH:nitrate reductase   总被引:1,自引:0,他引:1  
We show that NADH:nitrate reductase from squash cotyledons can catalyze the reduction of ferric citrate. When nitrate reductase was purified to homogeneity using a two-step affinity chromatography procedure, an NADH:Fe(III)-citrate reductase activity copurified with it and had identical electrophoretic mobility to it. The iron reductase activity was optimum near pH 6.3, had an apparent Km for Fe(III)-citrate of 0.02 mM, and was inhibited by monospecific anti-nitrate reductase rabbit sera. Differential inhibition of the enzyme's activities indicated iron and nitrate were reduced at different sites. In addition to its role in nitrogen assimilation, nitrate reductase catalyzes ferric citrate reduction and could have a role in iron assimilation.  相似文献   

13.
When tetanus toxin is made by fermentation with Clostridium tetani, the traditional source of iron is an insoluble preparation called reduced iron powder. This material removes oxygen from the system by forming FeO2 (rust). When inoculated in a newly developed medium lacking animal and dairy products and containing glucose, soy-peptone, and inorganic salts, growth and toxin production were poor without reduced iron powder. The optimum concentration of reduced iron powder for toxin production was found to be 0.5 g/l. Growth was further increased by higher concentrations, but toxin production decreased. Inorganic iron sources failed to replace reduced iron powder for growth or toxin formation. The iron source that came closest was ferrous ammonium sulfate. The organic iron sources ferric citrate and ferrous gluconate were more active than the inorganic compounds but could not replace reduced iron powder. Insoluble iron sources, such as iron wire, iron foil, and activated charcoal, were surprisingly active. Combinations of activated charcoal with soluble iron sources such as ferrous sulfate, ferric citrate, and ferrous gluconate showed increased activity, and the ferrous gluconate combination almost replaced reduced iron powder. It thus appears that the traditional iron source, reduced iron powder, plays a double role in supporting tetanus toxin formation, i.e., releasing soluble sources of iron and providing an insoluble surface.  相似文献   

14.
1. A comparative study shows that ferrous ions give a much better yield of Fe(III)-bleomycin than ferric ions, when iron salt is added to bleomycin in a buffer solution (pH 7.2). 2. The amount of Fe(III)-bleomycin formed after addition of ferric ions was markedly increased in the presence of ferric ion binding compounds (BSA, citrate) or reducing agents (ascorbate, cysteine).  相似文献   

15.
It is unclear whether regular exercise depletes body iron stores and how exercise regulates iron absorption. In this study, growing female Sprague–Dawley rats were fed a high-iron diet (300 mg iron/kg) and subjected to swimming for 1, 3, or 12 months. Their body weight, liver nonheme iron content (NHI), spleen NHI, blood hemoglobin (Hb) concentration, hematocrit (Hct), and kinetics of 59Fe transfer across isolated duodenal segments were then compared with sedentary controls. The main results were as follows: exercise for 1 month enhanced the transepithelial 59Fe transfer and increased liver NHI content and Hb concentration; exercise for 3 months inhibited transepithelial 59Fe transfer without affecting the liver and spleen NHI content, Hb concentration, and Hct; exercise for 12 months did not affect these parameters as compared with the corresponding sedentary controls; and the changes in transepithelial iron transfer were not associated with basolateral iron transfer. Our findings demonstrated that chronic, regular exercise in growing rats with a high dietary iron content does not deplete iron stores in the liver and spleen and may possibly enhance or inhibit duodenal iron absorption and even maintain duodenal iron absorption at the sedentary level, at least, in part depending on growth.  相似文献   

16.
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.  相似文献   

17.
Citrate as a siderophore in Bradyrhizobium japonicum.   总被引:14,自引:6,他引:8       下载免费PDF全文
Under iron-limiting conditions, many bacteria secrete ferric iron-specific ligands, generically termed siderophores, to aid in the sequestering and transport of iron. One strain of the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum, 61A152, was shown to produce a siderophore when 20 B. japonicum strains were screened with all six chemical assays commonly used to detect such production. Production by strain 61A152 was detected via the chrome azurol S assay, a general test for siderophores which is independent of siderophore structure. The iron-chelating compound was neither a catechol nor a hydroxamate and was ninhydrin negative. It was determined to be citric acid via a combination of thin-layer chromatography and high-voltage paper electrophoresis; this identification was verified by a specific enzymatic assay for citric acid. The inverse correlation which was observed between citric acid release and the iron content of the medium suggested that ferric citrate could serve as an iron source. This was confirmed via growth and transport assays. Exogenously added ferric citrate could be used to overcome iron starvation, and iron-deficient cells actively transported radiolabeled ferric citrate. These results, taken together, indicate a role for ferric citrate in the iron nutrition of this strain, which has been shown to be an efficient nitrogen-fixing strain on a variety of soybean cultivars.  相似文献   

18.
Iron reductases from Pseudomonas aeruginosa   总被引:13,自引:6,他引:7       下载免费PDF全文
Cell-free extracts of Pseudomonas aeruginosa contain enzyme activities which reduce Fe(III) to Fe(II) when iron is provided in certain chelates, but not when the iron is uncomplexed. Iron reductase activities for two substrates, ferripyochelin and ferric citrate, appear to be separate enzymes because of differences in heat stabilities, in locations in fractions of cell-free extracts, in reductant specificity, and in apparent sizes during gel filtration chromatography. Ferric citrate iron reductase is an extremely labile activity found in the cytoplasmic fraction, and ferripyochelin iron reductase is a more stable activity found in the periplasmic as well as cytoplasmic fraction of extracts. A small amount of activity detectable in the membrane fraction seemed to be loosely associated with the membranes. Although both enzymes have highest activity reduced nicotinamide adenine dinucleotide, reduced glutathione also worked with ferripyochelin iron reductase. In addition, oxygen caused an irreversible loss of a percentage of the ferripyochelin iron reductase following sparge of reaction mixtures, whereas the reductase for ferric citrate was not appreciably affected by oxygen.  相似文献   

19.
1. Citrate binds to Fe(III)-bleomycin, removing the ferric ion from the iron-drug complex; a reaction that may be of physiological significance. 2. Low concentrations of citrate markedly enhance the rate of iron transfer from Fe(III)-bleomycin to apotransferrin; an iron binding plasma protein.  相似文献   

20.
The bioavailability of iron from a new commercial source containing ferric gluconate stabilized with glycine sold under the trade name Bioferrico™ was studied in this work by means of the prophylactic-preventive test in rats. NaFeEDTA was also studied by the same methodology for comparative purposes and ferrous sulfate was used as the reference standard. The test was conducted for 4 wk with male weaned rats, which were randomized into four groups of at least eight animals each. A control group received a basal diet of low-iron content, whereas the other groups received the same diet with iron added at a dose of 20 mg/kg as FeSO4·7H2O, NaFeEDTA, and Bioferrico, respectively. Individual hemoglobin concentrations (HbC) and weights were determined at the beginning and at the end of the study and food intake was daily registered. The iron bioavailability (BioFe) of each source was calculated as the ratio between the amount of iron incorporated into hemoglobin during the treatment (HbFe) and the total iron intake per animal (ToFeIn). A relative biological value (RBV) was obtained for each iron source under study as the ratio between the BioFe of the tested compound and that of the reference standard. The RBVs were 98% and 86% for Bioferrico and NaFeEDTA, respectively. Bioferrico showed a high bioavailability and behaved inertly in relation to the sensorial properties of the fortified food when it was added to flour. These qualities emphasize Bioferrico as a promising source for iron fortification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号