首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Customized human embryonic stem cells   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
The application of human stem cell technology offers theoretically a great potential to treat various human diseases. However, to achieve this goal a large number of scientific issues remain to be solved. Cell surface carbohydrate antigens are involved in a number of biomedical phenomena that are important in clinical applications of stem cells, such as cell differentiation and immune reactivity. Due to their cell surface localization, carbohydrate epitopes are ideally suited for characterization of human pluripotent stem cells. Amongst the most commonly used markers to identify human pluripotent stem cells are the globo-series glycosphingolipids SSEA-3 and SSEA-4. However, our knowledge regarding human pluripotent stem cell glycosphingolipid expression was until recently mainly based on immunological assays of intact cells due to the very limited amounts of cell material available. In recent years the knowledge regarding glycosphingolipids in human embryonic stem cells has been extended by biochemical studies, which is the focus of this review. In addition, the distribution of the human pluripotent stem cell glycosphingolipids in human tissues, and glycosphingolipid changes during human stem cell differentiation, are discussed.  相似文献   

5.
Human embryonic stem cells (HESC) are pluripotent stem cells isolated from the inner cell mass of human blastocysts. With the first successful culturing of HESC, a new era of regenerative medicine was born. HESC can differentiate into almost any cell type and, in the future, might replace solid organ transplantation and even be used to treat progressive degenerative diseases such as Parkinson’s disease. Although this sounds promising, certain obstacles remain with regard to their clinical use, such as culturing HESC under well-defined conditions without exposure to animal proteins, the risk of teratoma development and finally the avoidance of immune rejection. In this review, we discuss the immunological properties of HESC and various strategic solutions to circumvent immune rejection, such as stem cell banking, somatic cell nuclear transfer and the induction of tolerance by co-stimulation blockade and mixed chimerism.  相似文献   

6.
Most cells are coated by a dense glycocalyx composed of glycoconjugates such as glycosphingolipids, glycoproteins, and proteoglycans. The overall glycomic profile is believed to be crucial for the diverse roles of glycans, which are mediated by specific interactions that regulate cell-cell adhesion, the immune response, microbial pathogenesis, and other cellular events. Many cell surface markers were discovered and identified as glycoconjugates such as stage-specific embryonic antigen, Tra-1-60/81 and various other cell surface molecules (e.g., cluster of differentiation). Recent progress in the development of analytical methodologies and strategies has begun to clarify the cellular glycomics of various cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). The glycomic profiles of these cells are highly cell type-specific and reflect cellular alterations, such as development, differentiation and cancerous change. In this mini review, we briefly summarize the glycosylation spectra specific to hESCs and hiPSCs, which cover glycans of all major glycoconjugates (i.e., glycosphingolipids, N- and O-glycans of glycoproteins, and glycosaminoglycans) and free oligosaccharides.  相似文献   

7.
人胚胎干细胞的研究   总被引:13,自引:2,他引:13  
来自着床前的囊胚和早期人胚胎的人胚胎干细胞是未分化的多能干细胞,具有无限增殖和分化的潜力,这种特性使之在基础研究和移植治疗中具有广泛的应用。尤其是胚胎干细胞可以产生任何类型的可供临床使用的细胞、组织和器官的潜力,将会带来一场医学革命。  相似文献   

8.
Autophagy in human embryonic stem cells   总被引:2,自引:0,他引:2  
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.  相似文献   

9.

Background  

Pooled human embryonic stem cells (hESC) cell lines were profiled to obtain a comprehensive list of genes common to undifferentiated human embryonic stem cells.  相似文献   

10.
Cryopreservation of adherent human embryonic stem cells   总被引:16,自引:0,他引:16  
Standard human embryonic stem (HES) cell cryopreservation methodologies, including slow freezing and vitrification of colonies in suspension, are plagued by poor viability and high differentiation rates upon recovery. To facilitate research studies and clinical applications of HES cells, we have developed a cryopreservation technique based on stabilizing HES colonies adherent to or embedded in a Matrigel matrix. This method increases cell viability by over an order of magnitude compared with cryopreservation in suspension and reduces differentiation. Loading adherent HES cells with the disaccharide trehalose prior to cryopreserving in a dimethylsulfoxide-containing cryoprotectant solution further improves cell viability under certain conditions. Our proposed approach has the potential to reduce the time required to amplify frozen stocks of HES cells, minimize risk of clonal selection during freeze-thaw cycles, and facilitate storage of HES cell clone libraries.  相似文献   

11.
Human embryonic stem cells (hESC) represent a population of undifferentiated pluripotent cells with both self-renewal and multilineage differentiation characteristics. Proteomics provides a powerful approach for studying the characteristics of hESC and discovering molecular markers. We have analyzed proteome profiles of three hESC lines using 2-DE and MALDI TOF-TOF. Out of 844 spots analyzed with MALDI TOF-TOF, 685 proteins were identified of which 60 proteins were classified as the most abundant proteins on 2-D gels. A large number of proteins particularly high abundant ones were identified as chaperones, heat shock proteins, ubiquitin/proteasome, and oxidative stress responsive proteins underscoring the ability of these cells to resist oxidative stress and increase the life span. Several proteins involved in cell proliferation and differentiation were also among the highly expressed proteins. Although overall expression pattern of three hESC were similar, 54 spots changed quantitatively and 14 spots changed qualitatively among the hESC cell lines. Most of these proteins were identified as proteins involved in cell growth, metabolism and signal transduction, which may affect the self-renewal and pluripotency. To our knowledge, this study represents the first proteomic dataset for hESC and provides a better insight into the biology of hESC. Proteome maps of hESC are accessible at http://www.RoyanProteomics.ir.  相似文献   

12.
13.
Feeder-independent culture of human embryonic stem cells   总被引:1,自引:0,他引:1  
  相似文献   

14.
Homologous recombination in human embryonic stem cells   总被引:24,自引:0,他引:24  
  相似文献   

15.
Skeletal myogenesis by human embryonic stem cells   总被引:4,自引:0,他引:4  
We have examined the myogenic potential of human embryonic stem (hES) cells in a xeno-transplantation animal model. Here we show that precursors differentiated from hES cells can undergo myogenesis in an adult environment and give rise to a range of cell types in the myogenic lineage. This study provides direct evidences that hES cells can regenerate both muscle and satellite cells in vivo and are another promising cell type for treating muscle degenerative disorders in addition to other myogenic cell types.  相似文献   

16.
Nuclear reprogramming by human embryonic stem cells   总被引:3,自引:0,他引:3  
Surani MA 《Cell》2005,122(5):653-654
Embryonic stem cells have two unique properties. They are capable of indefinite self-renewal and, being pluripotent, they can differentiate into all possible cell types, including germ cells. A new study by Cowan et al. (2005) published in Science shows that human embryonic stem cells are able to reprogram the nuclei of fully differentiated human somatic cells, apparently conferring on them a pluripotent state.  相似文献   

17.
The United States is a federal union with separate state jurisdictions. In part owing to the sometimes heated debate about public support for human embryonic stem-cell (ESC) research, there has been restricted federal support and little central regulation of this research to date. Instead, guidelines developed by scientific organizations have set principles for oversight and good practice for this research. These guidelines are functioning well, have influenced developing state regulations and, one hopes, will affect any future federal regulation.  相似文献   

18.
The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in culture for prolonged time, they acquired a mainly glutamatergic phenotype and morphological characteristics of cortical pyramidal neurons, including dendritic spines, and formed spectacular networks.  相似文献   

19.
Engineering vascularized tissue constructs remains a major problem in regenerative medicine. The formation of such a microvasculature—like the vasculogenesis in early embryogenesis that it closely resembles—is guided by biochemical and biophysical cues, such as growth factors, extracellular matrix proteins, hypoxia, and hydrodynamic shear. As they undergo spontaneous and directed vascular differentiation, human embryonic stem cells can be used as a model system to explore central issues in engineering vascularized tissue constructs and, potentially, to elucidate vasculogenic and angiogenic mechanisms involved in such vascular diseases as limb and cardiac ischemia. Because the conventional spontaneous differentiation approach can only isolate small quantities of vascular cells, recent efforts have sought to develop controlled approaches, including the development of three‐dimensional scaffolds to reengineer the microenvironments of early embryogenesis. This review focuses on emerging approaches to deriving and directing vasculatures from human embryonic stem cells and efforts to engineer 3D vasculatures from such derivatives. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

20.
The isolation of neural stem cells from fetal and adult mammalian CNS and the demonstration of functional neurogenesis in adult CNS have offered perspectives for treatment of many devastating hereditary and acquired neurological diseases. Due to this enormous potential, neural stem cells are a subject of extensive molecular profiling studies with a search for new markers and regulatory pathways governing their self-renewal as opposed to differentiation. Several in-depth proteomic studies have been conducted on primary or immortalized cultures of neural stem cells and neural progenitor cells, and yet more remains to be done. Additionally, neurons and glial cells have been obtained from embryonic stem cells and mesenchymal stem cells, and proteins associated with the differentiation process have been characterized to a certain degree with a view to further investigations. This review summarizes recent findings relevant to the proteomics of neural stem cells and discusses major proteins significantly regulated during neural stem cell differentiation with a view to their future use in cell-based regenerative and reparative therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号