首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed a specific assay for cisplatin in human plasma ultrafiltrate (PUF) and cell culture medium ultrafiltrate (MUF) using HPLC on-line with inductively coupled plasma mass spectrometry (ICP-MS). Separation of cisplatin (6 min) and monohydrated cisplatin (12 min) was achieved using a muBondapak C(18) column (Waters) and a mobile phase (0.075 mM sodium dodecyl sulfate and 3% methanol, adjusted to pH 2.5 with triflic acid) pumped at a flow rate of 0.5 mL/min. The analytes were detected with little background interference by ICP-MS monitoring of platinum masses (m/z 194/195). Calibration curves were linear over three orders of magnitude (0.05-8 microM) and the limit of quantitation was 0.1 microM. Intra- and inter-assay accuracy (range 91.6-113%) and precision (range 1.00-12.3%) were acceptable for PUF and MUF. The method was applied to determining cisplatin during ex vivo incubation of the drug in whole human blood at 37 degrees C. In conclusion, a specific, sensitive and reliable HPLC-ICP-MS assay has been established for determining intact cisplatin in PUF and MUF.  相似文献   

2.
In this study we determined Vi bacteriophage III sensitivity to native cisplatin, gamma radiation ((60)Co) or to irradiated cisplatin, and checked the possibility of enhanced Vi bacteriophage III inactivation under combined exposure to cisplatin and gamma radiation. We used highly purified phage suspensions in 0.9% NaCl solution or phosphate-buffered saline. Phage suspensions were titrated using a double agar layer method. Our study implies that survival of Vi bacteriophage III shows an exponential inverse correlation with cisplatin concentration in the incubation medium and the time of phage incubation in the presence of cisplatin. The use of irradiated cisplatin reduces phage survival in comparison with suspensions containing non-irradiated cisplatin. Irradiation of phage suspension with cisplatin causes a significant increase of phage inactivation in comparison with either treatment alone. Our results suggest that presence of cisplatin in irradiated medium enhances the radiobiological effect on Vi bacteriophages III.  相似文献   

3.
Mechanism of cisplatin nephrotoxicity   总被引:2,自引:0,他引:2  
cis-Diamminedichloroplatinum II (cisplatin) is widely used in cancer treatments. Renal dysfunction is the major toxic effect of this drug. Micropuncture studies suggest that cisplatin reduces single-nephron glomerular filtration rate (GFR) and causes a significant backleak of inulin across the renal tubule. Pathological alterations are localized to the S3 segment of the proximal tubule situated in the outer stripe of the outer medulla. Renal clearance studies in humans demonstrate that the free platinum clearance exceeds the GFR, which suggests that cisplatin or a platinum metabolite is actively secreted by the kidney. Studies with renal cortex slices indicate that platinum is accumulated by renal tissue against a concentration gradient. This uptake is blocked by metabolic inhibitors and the organic base triethanolamine. Heavy metals are thought to produce renal damage because of interaction with renal sulfhydryl (SH) groups. After cisplatin administration to rats, total renal SH groups decreased by 14% owing to a decrease of protein-bound SH groups. The greatest decline of SH groups occurred in the mitochondrial and cytosolic fractions. These fractions also had the highest platinum concentrations. These results suggest that the nephrotoxic effects of cisplatin may be related to depletion of SH groups, but a cause and effect relationship has not been definitively established.  相似文献   

4.
Interaction of acridine- and 9-aminoacridinecarboxamide platinum complexes with DNA was investigated with respect to their DNA sequence specificity and kinetics of binding. The DNA sequence specificity of the compounds was quantitatively analyzed using a polymerase stop assay with the plasmid pUC19. The 9-aminoacridinecarboxamide platinum complexes exhibited a different sequence specificity to that of cisplatin, shifted away from runs of consecutive guanines (the main binding site for cisplatin). This alteration was dependent on chain length. Shorter chain length compounds (n = 2, 3) showed a greater difference in sequence specificity, while longer chain length compounds (n = 4, 5) more closely resembled cisplatin. An acridinecarboxamide platinum complex showed a similar sequence specificity to cisplatin, revealing that the major change of sequence specificity was due to the presence of the 9-amino substituent. A linear amplification system was used to investigate the time course of the reaction. The presence of an intercalating group (acridinecarboxamide or 9-aminoacridinecarboxamide) greatly increased the rate of reaction with DNA; this is proposed to be due to a different reaction mechanism with DNA (direct displacement by the N-7 of guanine).  相似文献   

5.
Normal and transformed human fibroblasts were treated for either 1 sec or 1 h with the antitumor drug cis-dichlorodiamine platinum (cisplatin). The dose response of drug binding and cell survival was determined for cells treated with the drug in the presence or absence of 3.0 mM CaCl2. The levels of drug initially bound to both cell types was similar and was not affected by the presence of Ca2+. The dividing non-transformed cells were most sensitive to killing by short treatment with cisplatin compared to the transformed cells or the confluent non-transformed cultures. After 1 h of cisplatin treatment, the levels of drug bound to the cells were significantly less than that recovered after the shorter treatment. This time-dependent loss of cisplatin was inhibited both by CaCl2 and by the calcium channel blocking agent, verapamil. The higher levels of cisplatin bound after 1 h in the presence of these agents, however, did not in all cases result in decreased survival; the effects were dependent on cell type and on whether the cells were dividing or confluent. Analysis of cisplatin binding to cell cultures indicated that initially the cisplatin was weakly attached to the pericellular and substratum attached material but that with time, the drug bound to this material decreased. This time-dependent removal from the extracellular matrix was much less in the transformed cell cultures and was inhibited by calcium. We propose that the major site of interaction of cisplatin with these cells is in the extracellular matrix and with time the cultures alter their extracellular matrix to decrease this binding. This removal process appears to involve calcium or calcium transport since CaCl2 and verapamil both block these changes.  相似文献   

6.
Cisplatin is a cancer chemotherapeutic agent whose clinical use is complicated by its dose related kidney toxicity. Since the histopathological profile of cisplatin nephrotoxicity appears similar to that of other heavy metals, it has been commonly presumed that cisplatin nephrotoxicity is related to the platinum moiety. However, the delayed time course and development of cisplatin nephrotoxicity is not characteristic of heavy metal nephropathy. Furthermore, cisplatin nephrotoxicity is stereospecific to the cis and not the trans isomer, indicating that the platinum atom is not the proximate nephrotoxicant. It is likely that a metabolite of cisplatin, possibly an aquated and/or hydroxylated complex, mediates the nephrotoxicity of cisplatin.  相似文献   

7.
The synergistic effect of ultrasound and drugs on cells is known as sonodynamic therapy. The use of sonodynamic therapy for the potential clinical treatment of certain tumors is promising, however, the mechanism of sonodynamic therapy could be due to either sonomechanical and/or sonochemical effects on the cells. The aim of the current study is to determine the importance of the sonochemical mechanism for sonodynamic therapy. Sonochemical effects arise from the formation of radical species following collapse of cavitation bubbles. The synergistic effect of ultrasound (47 kHz) and analogues of a gallium-porphyrin derivative (ATX-70) on cytolysis of Human leukemia cells (HL-525 and HL-60) suspended in a cell culture medium were studied. Organic surfactants preferentially accumulate and subsequently decompose at the gas/solution interface of cavitation bubbles, producing secondary radicals that can diffuse to the bulk solution. The gallium porphyrin analogues used in the current study possess two n-alkyl side chains (ATX-C(x), where x = number of carbon atoms, ranging from x = 2 to x = 12). By varying the n-alkyl chain length, thereby modifying the surfactant properties of the ATX-C(x) derivatives, cell killing in relation to the accumulation of ATX-C(x) derivatives at the gas/solution interface of cavitation bubbles was determined. Following sonolysis in the presence of ATX-C(x), a strong correlation for the yield of carbon-centered radicals and cell killing was observed. These results support the hypothesis that a sonochemical mechanism is responsible for the synergistic effect of ultrasound and ATX-C(x) on HL-525 and HL-60 cells.  相似文献   

8.
9.
This study aims to explore lipidic mechanism towards low‐density lipoprotein receptor (LDLR)‐mediated platinum chemotherapy resistance. By using the lipid profiling technology, LDLR knockdown was found to increase lysosomal lipids and decrease membranous lipid levels in EOC cells. LDLR knockdown also down‐regulated ether‐linked phosphatidylethanolamine (PE‐O, lysosomes or peroxisomes) and up‐regulated lysophosphatidylcholine [LPC, lipid droplet (LD)]. This implies that the manner of using Lands cycle (conversion of lysophospholipids) for LDs might affect cisplatin sensitivity. The bioinformatics analyses illustrated that LDLR‐related lipid entry into LD, rather than an endogenous lipid resource (eg Kennedy pathway), controls the EOC prognosis of platinum chemotherapy patients. Moreover, LDLR knockdown increased the number of platinum‐DNA adducts and reduced the LD platinum amount. By using a manufactured LPC‐liposome‐cisplatin (LLC) drug, the number of platinum‐DNA adducts increased significantly in LLC‐treated insensitive cells. Moreover, the cisplatin content in LDs increased upon LLC treatment. Furthermore, lipid profiles of 22 carcinoma cells with differential cisplatin sensitivity (9 sensitive vs 13 insensitive) were acquired. These profiles revealed low storage lipid levels in insensitive cells. This result recommends that LD lipidome might be a common pathway in multiple cancers for platinum sensitivity in EOC. Finally, LLC suppressed both cisplatin‐insensitive human carcinoma cell training and testing sets. Thus, LDLR‐platinum insensitivity can be due to a defective Lands cycle that hinders LPC production in LDs. Using lipidome assessment with the newly formulated LLC can be a promising cancer chemotherapy method.  相似文献   

10.
The cucurbit[n]uril (CB[n]) family of macrocycles has been shown to have potential in drug delivery where they are able to provide physical and chemical stability to drugs, improve drug solubility, control drug release and mask the taste of drugs. Cisplatin is a small molecule platinum-based anticancer drug that has severe dose-limiting side-effects. Cisplatin forms a host-guest complex with cucurbit[7]uril (cisplatin@CB[7]) with the platinum atom and both chlorido ligands located inside the macrocycle, with binding stabilised by four hydrogen bonds (2.15-2.44 ?). Whilst CB[7] has no effect on the in vitro cytotoxicity of cisplatin in the human ovarian carcinoma cell line A2780 and its cisplatin-resistant sub-lines A2780/cp70 and MCP1, there is a significant effect on in vivo cytotoxicity using human tumour xenografts. Cisplatin@CB[7] is just as effective on A2780 tumours compared with free cisplatin, and in the cisplatin-resistant A2780/cp70 tumours cisplatin@CB[7] markedly slows tumour growth. The ability of cisplatin@CB[7] to overcome resistance in vivo appears to be a pharmacokinetic effect. Whilst the peak plasma level and tissue distribution are the same for cisplatin@CB[7] and free cisplatin, the total concentration of circulating cisplatin@CB[7] over a period of 24 hours is significantly higher than for free cisplatin when administered at the equivalent dose. The results provide the first example of overcoming drug resistance via a purely pharmacokinetic effect rather than drug design or better tumour targeting, and demonstrate that in vitro assays are no longer as important in screening advanced systems of drug delivery.  相似文献   

11.

Background  

The aim of this study was to evaluate long-term platinum retention in patients treated with cisplatin and oxaliplatin.  相似文献   

12.
  • 1.1. DNA damage induced by carboplatin [cis-diammine-(1,1-cyclobutanedi-carboxylato)platinum(II)] was studied in vitro in comparison with cisplatin [cis-diammine-dichloroplatinum(II)]. The drug-induced DNA damage monitored by conformational change of pUC18 plasmid DNA showed that carboplatin required 10 times higher drug concentration and 7.5 times longer incubation time than those of cisplatin to induce the same degree of conformational change on plasmid DNA.
  • 2.2. The carboplatin-induced DNA damage was promoted by the increase of pH of the reaction mixture for platinum-DNA adduct formation.
  • 3.3. Sequence gel analysis of carboplatin-damaged DNA indicated that carboplatin attacked preferentially the sequence of GG > AG > GA > GNG in the order, similarly to the case of cisplatin.
  • 4.4. DNA adducts formed by carboplatin were analyzed by HPLC after a sequential digestion of carboplatin-treated DNA with deoxyribonuclease I and S1 nuclease. A single peak having the same retention time as that of bifunctional adduct of (dGMP)2Pt(NH3)2 appeared by treating DNA with carboplatin. The adduct was assigned to be d(pGpG) > Pt(NH3)2.
  • 5.5. These results suggested that carboplatin induces the same platinum-DNA adducts as those induced by cisplatin, and that the difference in efficiency or kinetics of DNA damage between carboplatin and cisplatin is due to difference of aquation rate between them.
  相似文献   

13.
Cisplatin is a cytotoxic platinum compound, used in the treatment of several solid tumors. Cisplatin and to a greater extent its hydrolysis product monohydrated cisplatin are responsible for side-effects like nephrotoxicity. A sensitive, accurate and precise method was developed to simultaneously determine cisplatin and monohydrated cisplatin in plasma. The compounds were separated by high-performance liquid chromatography and quantified by off-line furnace atomic absorption spectrophotometry. The linear ranges for cisplatin and monohydrated cisplatin in deproteinized plasma were 60-600 and 87.5-700 nM, respectively. From plasma, the mean recovery of cisplatin was 83.2% and that of monohydrated cisplatin 79.1%. The lower limits of quantification of cisplatin and monohydrated cisplatin in deproteinized plasma were 60 and 87.5 nM, respectively. Over the whole calibration range, the within- and between-day accuracy of intact cisplatin ranged from 100.7 to 111.4 and 94.8-102.0%, respectively. The within- and between-day accuracy of monohydrated cisplatin ranged from 107.1 to 113.3 and 101.4-104.9%, respectively. The within-day and between-day precision of cisplatin ranged from 3.4 to 11.5 and 7.3-10.3%, respectively. For monohydrated cisplatin, the within-day and between-day precision ranged from 3.7 to 6.2 and 5.6-7.9%, respectively. Currently, the developed assay has been implemented in pharmacokinetic studies of patients treated with cisplatin alone or in combination with other drugs.  相似文献   

14.
Alteration of appropriate cell‐cycle progression and of closely related apoptotic process is a basic feature of tumour cells, and development of new tumour‐targeted agents focus on apoptosis, either during cell‐cycle arrest or following premature cell‐cycle checkpoint exit. Increasingly, epidemiological and experimental studies suggest that curcumin protects against cancer, not only because of its well‐known antioxidant properties, but also because it modulates intracellular signalling, which is related to cell proliferation and apoptosis. Cisplatin and oxaliplatin are first‐line drugs in treatment of many types of epithelial cancer and their combination with other cytostatics are under investigation to limit their side effects and resistance to them. Objectives: The aim of this study was to evaluate effects of a combined treatment using curcumin with cisplatin or with oxaliplatin, in a human ovarian cancer cell line (2008) and in its cisplatin‐resistant variant (C13). Results: Curcumin per se caused concentration‐dependent (0.1–100 µm ) and time‐persistent (24–72 h) reduction in cell proliferation, as well as altered cell cycle parameters and induced apoptosis, in both cell lines. When carcinoma cells were simultaneously exposed to curcumin and to cisplatin or oxaliplatin (at concentrations lower than IC50) cell viability was reduced more than with single‐drug treatment. Moreover, dose and time related effects of curcumin, when combined with platinum drugs, were linked to consistent reduction in cell cycling and increased apoptosis, in comparison with single‐drug treatment. These effects were significant both in wild type and in cisplatin‐resistant cells, indicating that curcumin was also able to increase sensitivity of resistant ovarian cancer cells to cisplatin. Conclusions: The data suggests that curcumin is an interesting natural compound capable of limiting cell proliferation and possibly increasing clinical impact of platinum drugs, in ovarian cancer patients.  相似文献   

15.
Cisplatin, a mononuclear platinum compound, which is known as a cancer drug for long time, can exhibit considerable side effects and is also not effective in many types of cancer. Therefore, the alternative platinum anticancer agents that can act at a much lower dose limit compared to the dose relevant for cisplatin treatment have been searched for. BBR3464, a trinuclear platinum compound, is found to exhibit cytotoxic effects at 10 to 1000 times lower dose limit, even in cisplatin-resistant cancer cells. The primary cellular target for cisplatin and BBR3464 is thought to be DNA. Herein, we report the nature of DNA structural changes that are induced by cisplatin and BBR3464, considering the same DNA sequence and similar sample deposition methods for comparison purpose. We have applied high-resolution atomic force microscopy (AFM) in order to obtain an idea about the molecular basis of BBR3464's effectiveness at the lower dose limit. We show from the molecularly resolved AFM images that both the compounds can compact the whole dsDNA molecules, though the degree of compaction in case of BBR3464 treatment is significantly higher. Furthermore, local compaction in terms of loop structure formation could be induced by both BBR3464 and cisplatin, though BBR3464 generated microloops and macroloops both, whereas cisplatin could generate primarily the microloops. It is a significant observation that BBR3464 could induce relatively drastic DNA structural changes in terms of loop formation as well as overall DNA compaction at a molar ratio, which is 50 times less than that applied for cisplatin treatment. Implications of such structural changes in cytotoxic effects of the platinum anticancer agents will be mentioned.  相似文献   

16.
The trinuclear platinum agent BBR3464, a representative of a new class of anticancer drugs, is more potent than conventional mononuclear cisplatin [cis-diamminedichloroplatinum(II)]. BBR3464 retains significant activity in human tumor cell lines and xenografts that are refractory or poorly responsive to cisplatin, and displays a high activity in human tumor cell lines that are characterized by both wild-type and mutant p53 gene. In contrast, on average, cells with mutant p53 are more resistant to the effect of cisplatin. It has been hypothesized that the sensitivity or resistance of tumor cells to cisplatin might be also associated with cell cycle control and repair processes that involve p53. DNA is a major pharmacological target of platinum compounds and DNA binding activity of the p53 protein is crucial for its tumor suppressor function. This study, using gel-mobility-shift assays, was undertaken to examine the interactions of active and latent p53 protein with DNA fragments and oligodeoxyribonucleotide duplexes modified by BBR3464 in a cell free medium and to compare these results with those describing the interactions of these proteins with DNA modified by cisplatin. The results indicate that structurally different DNA adducts of BBR3464 and cisplatin exhibit a different efficiency to affect the binding affinity of the modified DNA to p53 protein. It has been suggested that different structural perturbations induced in DNA by the adducts of BBR3464 and cisplatin produce a differential response to p53 protein activation and recognition and that a 'molecular approach' to control of downstream effects such as protein recognition and pathways of apoptosis induction may consist in design of structurally unique DNA adducts as cell signals.  相似文献   

17.
Extensive scientific efforts are directed towards finding new and improved platinum anticancer agents. A promising approach is the encapsulation of cisplatin in sterically stabilized, long circulating, PEGylated 100 nm liposomes. This liposomal cisplatin (STEALTH cisplatin, formerly known as SPI-77) shows excellent stability in plasma and has a longer circulation time, greater efficacy and lower toxicity than much free cisplatin. However, so far, the physicochemical characterization of STEALTH cisplatin has been limited to size distribution, drug-to-lipid ratio and stability. Information on the physical state of the drug in the liposome aqueous phases and the drug's interaction with the liposome membrane has been lacking. This study was aimed at filling this gap. We report a multinuclear NMR study in which several techniques have been used to assess the physical nature of cisplatin in liposomal formulations and if and to what extent the drug affects the liposome phospholipids. Since NMR detects only the soluble cisplatin in the liposomes and not the insoluble drug, combining NMR and atomic absorption data enables one to determine how much of the encapsulated drug is soluble in the intraliposomal aqueous phase. Our results indicate that almost all of the cisplatin remains intact during the loading process, and that the entire liposomal drug is present in a soluble form in the internal aqueous phase of the liposomes.  相似文献   

18.
The release of cisplatin (CDDP) encapsulated in temperature-sensitive unilamellar liposomes to murine SCC VII carcinoma by localized hyperthermia and the effects of the treatment on tumor growth were studied. A transition temperature of the temperature-sensitive liposomes containing cisplatin (LIP-CDDP) was 41 degrees C. Twenty-four hours after injection of LIP-CDDP, the heated tumors (42 degrees C, 60 min) contained 3.3 times more CDDP than the unheated tumors receiving free CDDP. Although the uptake of liposome-associated CDDP by liver was approximately threefold greater at 1.5 h after injection than uptake of free CDDP, it decreased about 50% over a 24-h period. No difference in uptake of the two forms of CDDP by kidney was observed. The combination of LIP-CDDP and localized heating at 42 or 43 degrees C was more effective relative to the amount of CDDP in delaying tumor growth than that of free CDDP and hyperthermia. Treatment with LIP-CDDP plus local heating resulted in a dose-modifying factor of 5.3 when compared with free CDDP and no hyperthermia. The dose-modifying factor was 2.8 when treatment with LIP-CDDP and heat was compared with treatment with free CDDP and heat. Thus CDDP could be released selectively from the temperature-sensitive liposomes by heat and resulted in both a greater uptake of the drug and a delay in tumor growth.  相似文献   

19.
X-ray microanalysis was used to study the localization of platinum, sodium and potassium in the frog nephrons 3 days after cisplatin administration (50 mg per kg of body weight). In the frog, like in mammals, platinum is accumulated in the proximal tubules. As evidenced by electron microscopy, the platinum content is correlated with the degree of deterioration of cell ultrastructure. The large scattering of the platinum content of individual tubules (from 0.03 to 0.15%) is probably due to the difference between the initial and late parts of the proximal tubule which is in agreement with the ultrastructural findings.  相似文献   

20.
The effects of cisplatin exposure time, concentration, and irradiation sequence on the sensitivity of Chinese hamster lung fibroblasts (V79) to gamma-ray exposure were examined. Based on clonogenic cell survival, the cisplatin concentrations corresponding to 50% cell survival (EC(50)) for exposure times of 1 h to 7 days followed a 2-phase exponential decay and ranged from 28.26 +/- 3.32 to 1.53 +/- 0.24 micromol/L, respectively. When cells were treated at EC(50) for exposures of less than 4 h and irradiated immediately, cisplatin inhibited the effect of radiation. Exposures of 4-6 h did not affect radiosensitivity. For exposures of 8-12 h, radiosensitization was observed, which disappeared at 14 h and reappeared for much longer cisplatin treatments. At the lowest achievable EC(50) (1.53 micromol/L), radiosensitization was observed if irradiation was delayed for 1-8 h. This enhancement in radiosensitivity disappeared for irradiation delays of 10-12 h, but reappeared when irradiation was delayed for 14-18 h. These data demonstrate that the mode of interaction between cisplatin and gamma-irradiation depends on the concentration and exposure time of cisplatin, as well as on the timing of irradiation after cisplatin administration. Consideration of changes in cell cycle kinetics may contribute to the improvement of treatment outcomes in adjuvant chemoradiotherapy involving cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号