首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
The activity and conformation of lysozyme solubilized in apolar solvents via reverse micelles was investigated. The systems used were sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane/H2O, cetyltrioctylammoniumbromide (CTAB)/CHCl3, isooctane/H2O; tetraethyleneglycoldodecylether (EO4C12)/isooctane/H2O, and bulk water. CD spectra of lysozyme in reverse micellar solutions were investigated as a function of w0 (= [H2O]/[AOT]) and were compared to the spectra in aqueous solutions. No marked changes were found in the EO4C12 or in the CTAB systems with respect to water, which indicates that no sizeable conformational changes of the enzyme occurred upon solubilization in the reverse micellar systems. In agreement with previous studies [C. Grandi, R. E. Smith, and P. L. Luisi (1981) J. Biol. Chem. 256 , 837–843] dramatic conformational changes can be inferred in the AOT system on the basis of CD studies. This is taken as an indication that the enzyme denatures in this micellar system. This is particularly striking because the enzyme is fully active in AOT reverse micelles. The apparent paradox is solved by the observation that the native CD spectrum (and by inference, the native conformation) is maintained when lysozyme is bound to NAG or NAG3, and by inference, when the substrate is bound, e.g., during enzyme turnover. However, in the absence of added NAG, NAG3, or substrate, the enzyme in the AOT reverse micellar system rapidly denatures. Together with CD studies, fluorescence and nmr data confirm the hypothesis of an irreversible denaturation of lysozyme in the AOT system, the denaturation being slowed down when the substrate is present. The activity of the enzyme has been studied as a function of pH and w0 using the chromophoric substrate 3,4-dinitrophenyl-tetra-N-acetyl-β-D -chitotetraoside (3,4-DNP-NAG4). Generally speaking, the kinetic parameters are comparable to those found in bulk water solution. More detailed, in the CTAB system, kcat tends to be smaller than in aqueous solution (with quite similar KM), whereas in the EO4C12 system (at pH 7.0) the turnover number is larger and KM is smaller than in water. In the AOT system, the kinetic parameters at pH 7.0 are also quite comparable to those found in water.  相似文献   

2.
Summary Conformational preferences of secretin as a model peptide have been analyzed by CD and IR spectroscopy in reverse micelles of AOT/isooctane/water and compared to those in aqueous TFE, in SDS micelles and in DMPG vesicles. Among the systems examined, reverse micelles and phospholipid vesicles displayed almost identical conformational equilibria. Very high lipid-to-peptide ratios can be obtained in reverse micelles with full retention of optical transparency, even at millimolar peptide concentrations, thus indicating this system to be an interesting mimic of cell membrane environments for spectroscopic analysis of bioactive peptide conformations.Abbreviations TFE trifluoroethanol - SDS sodium dodecyl sulfate - DMPG dimyristoylphosphatidylglycerol - AOT bis(2-ethylhexyl)sulfosuccinate - CMC critical micellar concentration - VIP vasoactive intestinal peptide  相似文献   

3.
alpha-Chymotrypsin (CT), spin-labeled at the active site by using an acylating label which constitutes a substrate for this protein, has been investigated in reverse micelles formed by AOT in isooctane. The electron spin resonance spectra provided information on conformation, dynamics and deacylation activity. The dynamics of the label bound to CT appears to be more hindered in reverse micelles than in aqueous solution, probably owing to the effect of the micellar environment on protein conformation. The deacylation rate in reverse micelles does not show the characteristic bell-shaped dependence on water content which is generally found for CT enzymatic activity.  相似文献   

4.
Abstract

The antimicrobial activity of different reverse micelles on microorganisms is been compared using the disc diffusion method. The bis (2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelle showed a more significant inhibitory effect than do other reverse. micelles, and it had an antimicrobial activity against a broad range of microorganisms. Results from an antimicrobial activity test of isooctane and a forward extraction containing soybean protein suggest that the surfactant was chiefly responsible for inhibiting microbes in AOT/isooctane reverse micelle, while isooctane hardly inhibited the microbial growth. The properties of S. aureus, cultured in the TSB with AOT reverse micellar solution, were identified by the SEM and SDS-PAGE fingerprinting of cell-wall proteins. It is concluded that the cell-wall of the S. aureus decreased in the TSB with AOT reverse micellar solution, and some cell protein subunits of the S. aureus did not occurr, especially between 14.4 and 42.7 kDa, while one new protein subunit at near 97.4 kDa occurred  相似文献   

5.
The activity of lignin peroxidase (LiP) and the partition of its optimum substrate veratryl alcohol (VA) in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/toluene/water reverse micelles were studied in this paper to understand the microheterogeneous effect of the medium on the catalytic properties of LiP hosted in the reverse micelle. Results showed that LiP from Phanerochaete chrysosporium could express its activity in the reverse micelles, but its activity depended, to a great extent, on the composition of the reverse micelles. Optimum activity occurred at a molar ratio of water to AOT (ω0) of 11, a pH value of 3.6, and a volume ratio of isooctane to toluene of 7–9. Under optimum conditions, the half-life of LiP was circa 12 h. The dependence of LiP activity on the volume fraction of water in the medium (θ), at a constant ω0 value of 11, indicated that VA was mainly solubilized in the pseudophase of the reverse micelle. Based on the pseudobiphasic model and the corresponding kinetic method, a linear line can be obtained in a plot of apparent Michaelis constant of VA vs θ, and the partition coefficient of VA between the pseudophase and the organic solvent phase was determined to be 35.8, which was higher than that (22.3) between bulk water and the corresponding mixed organic solvent. H2O2 inhibited LiP at concentrations higher than 80 μM; this concentration value seems to be different from that in aqueous solution (about 3 mM). The differences mentioned above should be ascribed to the microheterogeneity and the interface of the AOT reverse micelle.  相似文献   

6.
The activity and stability of yeast alcohol dehydrogenase (YADH) entrapped in aerosol OT reverse micellar droplets have been investigated spectrophotometrically. Various physical parameters, e.g., water pool size, w(0), pH, and temperature, were optimized for YADH in water/AOT/isooctane reverse micelles. It was found that the enzyme exhibits maximum activity at w(0) = 28 and pH 8.1. It was more active in reverse micelles than in aqueous buffers at a particular temperature and was denatured at about 307deg;C in both the systems. At a particular temperature YADH entrapped in reverse micelles was less stable than when it was dissolved in aqueous buffer.  相似文献   

7.
Structure and activity of trypsin in reverse micelles   总被引:3,自引:0,他引:3  
The kinetic properties of trypsin have been studied in reverse micelles formed by two surfactant systems, namely bis(2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane, and hexadecyltrimethyl ammonium bromide (CTAB) in chloroform/isooctane (1:1, by vol.). Three substrates have been used, namely N alpha-benzoyl-L-Arg ethyl ester, N alpha-benzoyl-L-Phe-L-Val-L-Arg p-nitroanilide (BzPheValArg-NH-Np) in AOT and N alpha-benzyloxycarbonyl-L-Lys p-nitrophenyl ester (ZLysO-Np) in CTAB. One of the main aims of the work was to compare the behaviour of trypsin in reverse micelles with that of alpha-chymotrypsin, for which an enhancement of kcat had been observed with respect to aqueous solutions. The pH profile is not significantly altered in reverse micelles with respect to water, however the kinetic parameters (kcat and Km) differ widely from one another, and are markedly affected by the micellar conditions, in particular by the water content wo (wo = [H2O]/[AOT]). Whereas in the case of BzPheValArg-NH-Np kcat is much smaller than in water, in the case of ZLysO-Np at pH 3.2 (but not at pH 6.0) a slight enhancement with respect to water is observed. On the basis of rapid kinetic spectrophotometry (stopped-flow) and solvent isotope effect studies, this enhancement is ascribed to a change in the rate-limiting step (acylation rather than hydrolysis). As in the case of alpha-chymotrypsin, the maximal activity is found for all substrates at rather small wo values (below 12), which is taken to suggest that the enzyme works better when is surrounded by only a few layers of tightly bound water. Spectroscopic studies [ultraviolet absorption, circular dichroism (CD) and fluorescence] have been carried out as a function of wo. Whereas the absorption properties are practically unchanged, the CD spectrum in AOT micelles has a lower intensity than in water, which is interpreted as a partial unfolding. The intensity is partly restored when Ca2+ ions are added, indicating that the micellar environment may cause a partial denaturation by depleting it of calcium ions. Fluorescence data show that the emission properties of the protein in reverse micelles match those in aqueous solution at around wo = 13 approx., whereas lambda max shifts towards the red by increasing wo, indicating an exposure of the tryptophan residues and probably an unfolding of the whole protein, at wo values above 15. Finally the reaction between trypsin and its specific macromolecular Kunitz inhibitor from soybeans is studied.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Pig liver ribosomes have been solubilized in reverse micelles constituted by bis (2-ethyl hexyl) sodium sulfosuccinate (AOT) in isooctane and 3.6% water, v:v. The micellar ribosomal solutions are transparent, show no significant scattering and permit direct spectroscopic observation of the ribosomes to be made. Ultraviolet absorption and circular dichroic spectra have been recorded and indicate that the ribosomes maintain in the micellar environment their structural integrity. Some possible applications of these micellar systems are discussed.  相似文献   

9.
After complete solubilization by the direct method, porcine pepsin was not released from AOT in isooctane reverse micelles even under aqueous-phase conditions which would not ordinarily allow uptake. Similarly, bovine chymosin, once forward-transferred at a pH below its isoelectric point, was not back-transferred into an aqueous contact phase buffered at a pH value above its isoelectric point. These results show that there is significant hysteresis in the forward- and backward-transfer processes and further imply that kinetics, and not equilibrium, control uptake or release processes for these enzymes. The addition of 10-15% isopropyl alcohol to the aqueous phase increases the rate of protein release dramatically and allows for nearly complete back-transfer of porcine pepsin and 70% back-transfer of bovine chymosin. IPA addition does not destroy the functional integrity of the system since forward transfer of bovine chymosin still occurs at pH values below (but not above) the pI of the protein.  相似文献   

10.
Reverse micelles are formed in apolar solvents by spontaneous aggregation of surfactants. Surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT) is most often used for the reverse micellar extraction of enzymes. However, the inactivation of enzyme due to strong interaction with AOT molecules is a severe problem. To overcome this problem, the AOT/water/isooctane reverse micellar system was modified by adding short chain polyethylene glycol 400 (PEG 400). The modified AOT reverse micellar system was used to extract Mucor javanicus lipase from the aqueous phase to the reverse micellar phase. The extraction efficiency (E) increased with the increase in PEG 400 addition and the maximum E in PEG 400 modified system was twofold higher than that in the PEG 400-free system. Upon addition of PEG 400, the water activity (a(w)) of aqueous phase decreased, whereas a(w) of reverse micellar phase increased. The circular dichroism spectroscopy analysis revealed that PEG 400 changes the secondary and tertiary structure of lipase. The maximum specific activity of lipase extracted in PEG 400-modified reverse micellar system was threefold higher than that in the PEG-free system.  相似文献   

11.
Tryptophan octyl ester (TOE) represents an important model for membrane-bound tryptophan residues. In this article, we have employed a combination of wavelength-selective fluorescence and time-resolved fluorescence spectroscopies to monitor the effect of varying degrees of hydration on the dynamics of TOE in reverse micellar environments formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. Our results show that TOE exhibits red edge excitation shift (REES) and other wavelength-selective fluorescence effects when bound to reverse micelles of AOT. Fluorescence parameters such as intensity, emission maximum, anisotropy, and lifetime of TOE in reverse micelles of AOT depend on [water]/[surfactant] molar ratio (w (o)). These results are relevant and potentially useful for analyzing dynamics of proteins or peptides bound to membranes or membrane-mimetic media under conditions of changing hydration.  相似文献   

12.
The modification of reverse micellar systems composed of AOT, isooctane, water by the addition of aprotic solvents has been performed. The impact of this change on the activity, stability and kinetics of solubilized Chromobacterium viscosum lipase (glycerol-ester hydrolase, EC 3.1.1.3) was investigated. Of seven aprotic solvents tested, dimethyl sulfoxide (DMSO) was found to be most effective. It was found that lipase activity was enhanced by optimizing some relevant parameters, such as water–AOT molar ratio (W0), buffer pH and surfactant concentration. A kinetic model that considers the free substrate in equilibrium with the substrate adsorbed on the micellar surface was successfully used to deduce some kinetic parameters (Vmax, Km and Kad), and the values of Km and Kad were significantly reduced by the presence of DMSO. Higher lipase stability was found in AOT reverse micelles with DMSO compared with that in simple AOT systems with half-life of 125 and 33 days, respectively. Fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to elucidate the effects of DMSO on the properties of AOT reverse micelles.  相似文献   

13.
A new method is presented to precipitate proteins and amino acids from reverse micelles by dehydrating the micelles with molecular sieves. Nearly complete precipitation is demonstrated for alpha-chymotrypsin, cytochromec, and trytophan from 2-ethylhexyl sodium sulfosuccinate (AOT)/isooctane/water reverse micelle solutions. The products precipitate as a solid powder, which is relatively free of surfactant. The method does not require any manipulation of pH, ionic strength, temperature, pressure, or solvent composition, and is applicable over a broad range of these properties. This general approach is compared with other techniques. This general approach is compared with other techniques for the recovery of biomolecules from reverse micelles. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
An enzymatic system for the regeneration of redox cofactors NADH and NADPH was investigated in nanostructural reverse micelles using bacterial glycerol dehydrogenase (GLD) and soluble transhydrogenase (STH). Catalytic conversion of NAD+ to NADH was realized in the sodium dioctylsulfosuccinate (AOT)/isooctane reverse micellar system harboring GLD and a sacrificial substrate, glycerol. The initial rate of NADH regeneration was enhanced by exogenous addition of ammonium sulfate into the reverse micelles, suggesting that NH4+ acts as a monovalent cationic activator. STH was successfully entrapped in the AOT/isooctane reverse micelles as well as GLD and was revealed to be capable of catalyzing the stoichiometric hydrogen transfer reaction between NADP+ and NADPH in reverse micelles. These results indicate that GLD and STH have potential for use in redox cofactor recycling in reverse micelles, which allows the use of catalytic quantities of NAD(P)H in organic media.  相似文献   

15.
We present a comparative analysis of the unfolding and inactivation of three cutinases in the presence of guanidine hydrochloride (GdnHCl) and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). Previous investigations have focused on the cutinase from Fusarium solani pisi (FsC). In addition to FsC, the present study includes the cutinase from Humicola insolens (HiC) and a mutant variant of HiC (muHiC) with increased activity and decreased surfactant sensitivity. Equilibrium and time-resolved denaturation by AOT were studied in aqueous solution and reverse micelles, and were compared with GdnHCl denaturation. The far-UV CD and fluorescence denaturation profiles obtained in the aqueous solutions of the two denaturants coincide for all three cutinases, indicating that unfolding is a co-operative two-state process under these conditions. In reverse micelles, the cutinases unfold with mono-exponential rates, again indicating a two-state process. The free energy of denaturation in water was calculated by linear extrapolation of equilibrium data, yielding very similar values for the three cutinases with averages of -11.6 kcal mol(-1) and -2.6 kcal mol(-1) for GdnHCl and AOT, respectively. Hence, the AOT denatured state (D(AOT)) is less destabilised than the GdnHCl denatured state (D(GdnHCl)), relative to the native state in water. Far-UV CD spectroscopy revealed that D(AOT) retains some secondary structure, while D(GdnHCl) is essentially unstructured. Similarly, fluorescence data suggest that D(AOT) is more compact than D(GdnHCl). Activity measurements reveal that both D(AOT) and D(GdnHCl) are practically inactive (catalytic activity <1% of that of the native enzyme). The fluorescence spectrum of D(AOT) in reverse micelles did not differ significantly from that observed in aqueous AOT. NMR studies of D(AOT) in reverse micelles indicated that the structure is characteristic of a molten globule, consistent with the CD and fluorescence data.  相似文献   

16.
Six different substrates have been used for measuring the activity of alpha-chymotrypsin in reverse micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in isooctane. The substrates were glutaryl-Phe p-nitroanilide, succinyl-Phe p-nitroanilide, acetyl-Phe p-nitroanilide, succinyl-Ala-Ala-Phe p-nitroanilide, succinyl-Ala-Ala-Pro-Phe p-nitroanilide and acetyl-Trp methyl ester. It has been shown that the dependence of the kinetic constants (kcat and Km) on the water content of the system, on wo (= [H2O]/[AOT]), is different for the different substrates. This indicates that activity-wo profiles for alpha-chymotrypsin in reverse micelles not only reflect an intrinsic feature of the enzyme alone. For the p-nitroanilides it was found that the lower kcat (and the higher Km) in aqueous solution, the higher kcat as well as Km in reverse micelles. "Superactivity" of alpha-chymotrypsin could only be found with the ester substrate and with relatively "poor" p-nitroanilides. The presence of a negative charge in the substrate molecule is not a prerequisite for alpha-chymotrypsin to show "superactivity".  相似文献   

17.
Tyrosinase activity in reversed micelles   总被引:1,自引:0,他引:1  
The hydroxylase and oxidase activities of mushroom tyrosinase were studied in both sodium di-2-ethylhexylsulfosuccinate (AOT)/isooctane and cetyltrimethylammonium bromide (CTAB)/hexane/chloroform reversed micelles. The enzyme presented its highest activity when the water to surfactant molar ratio (W 0) was 20 for both systems. When entrapped in the AOT reversed micelles, the enzyme activity decreased with the increase in AOT concentration at a constant W 0, and the enzyme not only presented a higher reaction rate related to its oxidase activity but also a shorter lag period related to its hydroxylase activity. The relation between water activity and W 0 revealed that enzyme activity in reversed micelles was more related to the size of the micelles which was determined by W 0 and less to the water activity. Tyrosinase in CTAB reversed micelles showed potential for the analysis of o-diphenols.  相似文献   

18.
The extraction of flexibly-structured protein in Aerosol-OT (AOT)/isooctane reverse micelles was investigated. A flexibly-structured lysozyme was prepared by reduction and carboxymethylation of the disulfide bonds in the lysozyme molecule. For a comparison, lysozymes whose surface hydrophobicity was modified by monoacylation of the amino groups were also used. The extraction rate of the flexibly-structured lysozyme into the micellar phase was greater than that of the native and monoacylated lysozymes, although the free energy change of the lysozyme prepared by breaking the disulfide bonds was smaller than that of the lysozymes whose surfaces were monoacylated. Viscosity measurement of the micellar organic phase containing the modified lysozymes indicated that extraction of the flexibly-structured lysozyme changed the micelle–micelle interaction, while measurement of the interfacial tension between the AOT/isooctane and protein aqueous systems showed the flexibly-structured lysozyme to be the most amphiphilic in character. These results indicated that the flexible structure of a protein was more dominant than its surface hydrophobicity for its incorporation into reverse micelles, and that it leads to greater micelle–micelle interaction.  相似文献   

19.
1H-NMR spectra of Aerosol-OT (AOT) reverse micelles in isooctane are reported at various water contents and several temperatures. The resonances from the AOT protons near the polar head are completely assigned. The NMR parameters (chemical shift and linewidth) appear to be suitable probes for characterizing the physico-chemical state of micelles, in particular in order to define the range in which the system is fully homogeneous and transparent. The results correlate well with those obtained from optical density measurements. Lanthanide ions dissolved in the water phase selectively perturb the AOT resonances from the protons nearest to the polar head; conversely, non-polar shift reagents soluble in the organic phase do not cause appreciable effects on any of the observable signals.  相似文献   

20.
The enzymatic conversion of cholesterol to cholestenone by cholesterol oxidase (Brevibacterium sp.)in reversed micelles in a system composed of AOT/isooctane/water/cholesterol has been examined. The catalytic activity of the enzyme was correlated with the physicochemical properties of water in water-in-oil (w/o) microemulsion systems. In a system consisting of 3 wt % AOT in isooctane, reversed micelles started to form as the [H(2)O]/[AOT] (e.g., the w(0)) ratio increased above 4-5. The formation of reversed micelles with a core of neat (bulk) water was verified from determinations of both the partial molar volume of water and the scissors vibration of water [with Fourier transform infrared (FTIR) spectroscopy] in the w/o microemulsion systems. A plot of enzyme activity vs. w(0) indicated that the hydration of enzyme molecules per se was not sufficient to give rise to catalytic activity. Instead, it appeared that the formation of an aqueous micellar core was necessary for full activation of the enzyme. Based on micelle size distribution analysis, it was estimated that about one micelle per one thousand contained an enzyme molecule. Since the apparent reaction rate could be markedly enhanced by increasing the enzyme/water ratio, we conclude that the number of enzyme-containing micelles was an important rate-limiting factor in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号