首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The distal portion of the short arm of the human X chromosome (Xp) exhibits many unique and interesting features. Distal Xp contains the pseudoautosomal region, a number of disease loci, and several cell-surface markers. Several genes in this area have also been observed to escape X-chromosomal inactivation. The characterization of new polymorphic loci in this region has permitted the construction of a refined multipoint linkage map extending 15 cM from the Xp telomere. This interval is known to contain the loci for the diseases X-linked ichthyosis, chondrodysplasia punctata, and Kallmann syndrome, as well as the cell-surface markers Xg and 12E7. This region also contains the junction between the pseudoautosomal region and strictly X-linked sequences. The locus MIC2 has been demonstrated by linkage analysis to be indistinguishable from the pseudoautosomal junction. The steroid sulfatase locus has been mapped to an interval adjacent to the DXS278 locus and 6 cM from the pseudoautosomal junction. The polymorphic locus (STS) DXS278 was shown to be informative in all families studied, and linkage analysis reveals that the locus represents a low-copy repeat with at least one copy distal to the STS gene. The generation of a multipoint linkage map of distal Xp will be useful in the genetic dissection of many of the unique features of this region.  相似文献   

2.
A comprehensive male linkage map was generated by adding 359 new, informative microsatellites to the International Equine Gene Map half-sibling reference families and by combining genotype data from three independent mapping resources: a full sibling family created at the Animal Health Trust in Newmarket, United Kingdom, eight half-sibling families from Sweden and two half-sibling families from the University of California, Davis. Because the combined data were derived primarily from half-sibling families, only autosomal markers were analyzed. The map was constructed from a total of 766 markers distributed on the 31 equine chromosomes. It has a higher marker density than that of previously reported maps, with 626 markers linearly ordered and 140 other markers assigned to a chromosomal region. Fifty-nine markers (7%) failed to meet the criteria for statistical evidence of linkage and remain unassigned. The map spans 3,740 cM with an average distance of 6.3 cM between markers. Fifty-five percent of the intervals are < or = 5 cM and only 3% > or = 20 cM. The present map demonstrates the cohesiveness of the different data sets and provides a single resource for genome scan analyses and integration with the radiation hybrid map.  相似文献   

3.
A comprehensive linkage map, including 236 linked markers with a total sex-average map length of about 2300 cM, covering nearly all parts of the pig genome has been established. Linkage groups were assigned to all 18 autosomes, the X chromosome and the X/Y pseudoautosomal region. Several new gene assignments were made including the assignment of linkage group U1 (EAK-HPX) to chromosome 9. The linkage map includes 77 type I loci informative for comparative mapping and 72 in situ mapped markers physically anchoring the linkage groups on chromosomes. A highly significant heterogeneity in recombination rates between sexes was observed with a general tendency towards an excess of female recombination. The average ratio of female to male recombination was estimated at 1–4:1 but this parameter varied between chromosomes as well as between regions within chromosomes. An intriguing finding was that blood group loci were overrepresented at the distal ends of linkage groups.  相似文献   

4.
The pseudoautosomal region of the human X and Y chromosomes is subject to frequent X-Y recombination during male meiosis. We report the finding of two pseudoautosomal loci, DXYS20 and DXYS28, characterized by highly informative restriction fragment length polymorphisms (RFLPs). The pseudoautosomal character of DXYS20 and DXYS28 was formally demonstrated by comparing their transmission to 45,X and to normal individuals. Studies of the inheritance of these loci reveal that the pseudoautosomal region, though highly recombinogenic, is subject to marked recombinational interference in male meiosis; no double recombinants were observed in 143 triply informative meioses, and the coefficient of coincidence is likely less than 0.45. In female meiosis, linkage of these pseudoautosomal RFLPs to strictly sex-linked RFLPs on the short arm of the X is readily detected; the genetic length of the pseudoautosomal region in female meiosis is at least 4 cM but not more than 18 cM. The genetic map of the human X chromosome is now defined from near the short-arm telomere to band q28 on the long arm. Locus DXYS20, which maps near the X and Y short-arm telomeres, is composed of long tandem arrays of 61-bp repeats. Occasional, seemingly random base-pair substitutions within these arrays of 61-bp repeats, in combination with marked variation in the size of the array, generate the high degree of DNA polymorphism at DXYS20.  相似文献   

5.
Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene (Hoth and Engel, 1991). These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers.  相似文献   

6.
A second-generation linkage map of the sheep genome   总被引:32,自引:0,他引:32  
A genetic map of Ovis aries (haploid n = 27) was developed with 519 markers (504 microsatellites) spanning ∼3063 cM in 26 autosomal linkage groups and 127 cM (female specific) of the X Chromosome (Chr). Genotypic data were merged from the IMF flock (Crawford et al., Genetics 140, 703, 1995) and the USDA mapping flock. Seventy-three percent (370/504) of the microsatellite markers on the map are common to the USDA-ARS MARC cattle linkage map, with 27 of the common markers derived from sheep. The number of common markers per homologous linkage group ranges from 5 to 22 and spans a total of 2866 cM (sex average) in sheep and 2817 cM in cattle. Marker order within a linkage group was consistent between the two species with limited exceptions. The reported translocation between the telomeric end of bovine Chr 9 (BTA 9) and BTA 14 to form ovine Chr 9 is represented by a 15-cM region containing 5 common markers. The significant genomic conservation of marker order will allow use of linkage maps in both species to facilitate the search for quantitative trait loci (QTLs) in cattle and sheep. Received: 20 September 1992 / Accepted: 18 November 1997  相似文献   

7.
Construction of a GT polymorphism map of human 9q.   总被引:31,自引:0,他引:31  
To construct a framework map of human chromosome 9 consisting of highly informative markers, we identified 36 cosmid clones from chromosome 9 that contained long GT repeat sequences. The cosmids were found to cluster on the long arm of the chromosome, particularly in the q32-34 region. Thirteen highly informative polymorphisms from 9q were identified, with median observed heterozygosity 0.75 and median calculated heterozygosity based upon allele frequencies of 0.75. These new GT repeat polymorphisms (D9S56, D9S58-67), as well as anchor GT polymorphisms for D9S15 (MCT112, 9q13), and ABL and ASS (both 9q34.1) were utilized to construct a linkage map of human 9q by the typing of the Venezuelan Reference Pedigree. Care was taken to avoid errors, including analysis of the data with CHROMLOOK and verification of all double crossover events detected within a 30 cM interval by repetition of the marker analysis. The map was generated using the MAPMAKER program. All positions in the resulting map are favored by odds of greater than 10(4):1. The map has a sex-averaged length of 90 cM (Kosambi function) with a single maximum intermarker recombination fraction of 26%. All other intermarker recombination fractions are less than 15%. As D9S15 is known to be closely linked to markers on proximal 9p, and ASS/ABL are in band 34.1, this set of GT polymorphisms spans the length of 9q and provides a useful panel for linkage analysis of disease genes to this region. The marker order was confirmed by in situ hybridization of the cosmid clones to metaphase spreads of normal human chromosomes, which indicated an excess of recombination in the telomeric region in comparison to centromeric 9q, in agreement with previous chiasmata distribution observations. Two spontaneous new mutations for these GT repeat markers were identified, giving an overall observed spontaneous mutation rate of 0.00045 per locus per gamete. Direct observation of new mutations has not been previously reported for dinucleotide polymorphisms, but the observed rate is consistent with frequencies observed for other VNTR polymorphisms.  相似文献   

8.
A medium density microsatellite map of BTA10: reassignment of INRA69   总被引:1,自引:0,他引:1  
We have developed a genetic map of BTA10 based on 8952 informative meioses for 13 microsatellite markers and the erythrocyte antigen Z. With the exception of OarAE64 , the support for the order of all loci in the map exceeded a LOD > 3·0. The length of the BTA10 genetic map was 87·0 centimorgans (cM). The 14-marker, sex-average map in Kosambi cM was: CSSM38 –8·9- BM1237 –5·2- HH8A –2·6- INRA69 –10·6- TGLA378 –0·8- BM6305 –17·2- TGLA102 –17·9- INRA96 –0·3- CSRM60 –9·2- DIK20 –3·0- EAZ –6·7- CSSM46 –3·7- SRCRSP3 –1·0- OarAE64 with an average interval of 6·70 cM. The microsatellite INRA69 was recently assigned to the pseudoautosomal region of the bovine X chromosome by linkage analysis. However, we found that twopoint support for linkage between INRA69 and 15 X-linked bovine microsatellites was LOD < 0·50 in 529 reciprocal backcross and F2 fullsib progeny. We performed twopoint analyses of INRA69 against 275 markers distributed throughout the bovine genome and found significant associations with a LOD > 3·0 only between INRA69 and eight BTA10 microsatellite loci. Consequently, we excluded INRA69 from the genetic map of the X chromosome and reassign this microsatellite to BTA10.  相似文献   

9.
To assess the possible association between aberrant recombination and XY chromosome nondisjunction, we compared pseudoautosomal region recombination rates in male meiosis resulting in 47,XXY offspring with those resulting in 46,XY and 46,XX offspring. Forty-one paternally derived 47,XXYs and their parents were tested at six polymorphic loci spanning the pseudoautosomal region. We were able to detect crossing-over in only six of 39 cases informative for the telomeric DXYS14/DXYS20 locus. Subsequently, we used the data to generate a genetic linkage map of the pseudoautosomal region and found it to be significantly shorter than the normal male map of the region. From these analyses we conclude that most paternally derived 47,XXYs result from meiosis in which the X and Y chromosomes did not recombine.  相似文献   

10.
A low-density, male-based linkage map was constructed as one of the objectives of the International Equine Gene Mapping Workshop. Here we report the second generation map based on testing 503 half-sibling offspring from 13 sire families for 344 informative markers using the CRIMAP program. The multipoint linkage analysis localized 310 markers (90%) with 257 markers being linearly ordered. The map included 34 linkage groups representing all 31 autosomes and spanning 2262 cM with an average interval between loci of 10.1 cM. This map is a milestone in that it is the first map with linkage groups assigned to each of the 31 automosomes and a single linkage group to all but three chromosomes.  相似文献   

11.
Liu L  Ma X  Wei J  Qin J  Mo C 《Génome》2011,54(1):19-25
In this study, the first genetic map of Luohanguo (Siraitia grosvenorii (Swingle) C. Jeffrey) was constructed with 150 F? population individuals using inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers. A total of 100 ISSRs and 196 SRAP primer combinations generated 51 and 222 polymorphic markers, respectively. Among the 273 markers obtained, 199 markers (29 ISSRs and 170 SRAPs) were mapped to 25 linkage groups. The map covered 1463.3 cM with a mean map distance of 7.35 cM between adjacent markers and a maximum map distance of 52.6 cM between two markers. The markers were distributed randomly in 25 groups except for minor clusters in the distal region of linkage groups. All 25 linkage groups consisted of 2-36 loci ranging in length from 19.5 to 152.6 cM and accounted for 59.8% of the total map distance. This map provides reference information for future molecular breeding work on Luohanguo.  相似文献   

12.
An index marker map of chromosome 9 has been constructed using the Centre d'Etude du Polymorphisme Humain reference pedigrees. The map comprises 26 markers, with a maximum intermarker interval of 13.1 cM and only two intervals > 10 cM. Placement of all but one marker into the map was achieved with > 10,000:1 odds. The sex-equal length is 151 cM, with male length of 121 cM and female length of 185 cM. The map extends to within 2%-3% of physical length at the telomeres, and its coverage therefore is expected to be within 20-30 cM of full map length. The markers are all of the GT/CA repeat type and have average heterozygosity .77, with a range of .60-.89. The map shows both marked contraction of genetic distance relative to physical distance in the pericentromeric region and expansion in the telomeric regions. Genotypic data were carefully examined for errors by using the crossover routine of the program DATAMAN. Five new mutations were observed among 17,316 meiotic events examined. There were two double-crossover events occurring within an interval of 0-10 cM, and another eight were observed within an interval of 10-20 cM. Many of these could be due to additional mutational events in which one parental allele converted to the other by either gene conversion or random strand slippage. When there was no correction for these possible mutational events, the number of crossovers displayed by the maternal and paternal chromosomes was significantly different (P < .001) from that predicted by the Poisson distribution, which would be expected in the absence of interference. In addition, the observed crossover distribution for paternally derived chromosomes was similar to that predicted from cytogenetic chiasma frequency observations. In all, the data strongly support the occurrence of strong positive interference on human chromosome 9 and suggest that flanking markers at an interval of < or = 20 cM are generally sufficient for disease gene inheritance predictions in presymptomatic genetic counseling by linkage analysis.  相似文献   

13.
A chicken linkage map, constructed with the Kobe University (KU) resource family, was used to locate the genetic locus for muscular dystrophy of abnormal muscle type (AM). The KU resource family is a backcross pedigree with 55 offspring produced from the mating of a White Leghorn F-line (WL-F) male and a hybrid female produced from a cross between the WL-F male and a female of the Fayoumi OPN line who was homozygous for the AM gene. In total, 872 loci were genotyped on the pedigree; 749 (86%) were informative and mapped to 38 linkage groups. These informative loci included 649 AFLPs, 93 MS, three functional genes, the AM locus, sex phenotype, and two red blood cell loci. The remaining 123 markers were unlinked. Nineteen of the 38 KU linkage groups were assigned to macrochromosomes 1-8 and 11 microchromosomes including chromosome W, while 19 linkage groups were unassigned. The total map was 3569 cM in length, with an average marker interval of 4.8 cM. The AM locus was mapped 130 cM from the distal end of chromosome 2q.  相似文献   

14.
A mapped set of DNA markers for human chromosome 17   总被引:32,自引:0,他引:32  
We have developed and mapped by genetic linkage a primary set of markers for chromosome 17. The map consists of 21 loci derived from 27 probe/enzyme systems, including eight highly informative markers at loci containing a variable number of tandemly repeated DNA sequences (VNTRs). The map is continuous from the telomeric region of the short arm to the telomeric region of the long arm, covering estimated genetic distances of 218 cM in males and 279 cM in females. The average heterozygosity among all 21 loci in the population sample analyzed is 58%; 77% heterozygosity was observed among the eight VNTR markers that were highly informative. This map will make it possible to detect by linkage the location of genetic defects associated with chromosome 17 and will also provide anchor points for a high-resolution map of this chromosome.  相似文献   

15.
Genomewide linkage scans have traditionally employed panels of microsatellite markers spaced at intervals of approximately 10 cM across the genome. However, there is a growing realization that a map of closely spaced single-nucleotide polymorphisms (SNPs) may offer equal or superior power to detect linkage, compared with low-density microsatellite maps. We performed a series of simulations to calculate the information content associated with microsatellite and SNP maps across a range of different marker densities and heterozygosities for sib pairs (with and without parental genotypes), sib trios, and sib quads. In the case of microsatellite markers, we varied density across 11 levels (1 marker every 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 cM) and marker heterozygosity across 6 levels (2, 3, 4, 5, 10, or 20 equally frequent alleles), whereas, in the case of SNPs, we varied marker density across 4 levels (1 marker every 0.1, 0.2, 0.5, or 1 cM) and minor-allele frequency across 7 levels (0.5, 0.4, 0.3, 0.2, 0.1, 0.05, and 0.01). When parental genotypes were available, a map consisting of microsatellites spaced every 2 cM or a relatively sparse map of SNPs (i.e., at least 1 SNP/cM) was sufficient to extract most of the inheritance information from the map (>95% in most cases). However, when parental genotypes were unavailable, it was important to use as dense a map of markers as possible to extract the greatest amount of inheritance information. It is important to note that the information content associated with a traditional map of microsatellite markers (i.e., 1 marker every ~10 cM) was significantly lower than the information content associated with a dense map of SNPs or microsatellites. These results strongly suggest that previous linkage studies that employed sparse microsatellite maps could benefit substantially from reanalysis by use of a denser map of markers.  相似文献   

16.
Report of the First Workshop on the Genetic Map of Bovine Chromosome 23   总被引:1,自引:0,他引:1  
A report of the first workshop on the genetic map of bovine chromosome 23 (BTA23) is given. Five laboratories contributed data from 29 loci, including a total 11586 informative genotypes. The combined pedigrees represented 1930 potentially informative meioses. Eighteen of the 29 loci were common to two or more data sets and were used to construct a framework linkage map of BTA23. Twelve of the 18 could be ordered on the linkage map with a likelihood ratio of greater than 1000:1. Thus, a low resolution consensus map was constructed with a high level of support for order. The sex-averaged, female and male maps span 54.5, 52.7 and 55.8 cM, respectively. Sex-specific differences in recombination frequency were identified for eight pairs of framework loci. Average genetic distance between framework loci on the sex-averaged map is 5.0 cM.  相似文献   

17.
We recently reported a two-stage genomewide screen of 48 sib pairs affected with intracranial aneurysms (IAs) that revealed suggestive linkage to chromosome 19q13, with a LOD score of 2.58. The region supporting linkage spanned ~22 cM. Here, we report a follow-up study of the locus at 19q13, with a sample size expanded to 139 affected sib pairs, along with 83 other affected relative pairs (222 affected relative pairs in total). Suggestive linkage was observed in both independent sample sets, and linkage was significant in the combined set at 70 cM (LOD score 3.50; P=.00006) and at 80 cM (LOD score 3.93; P=.00002). Linkage was highly significant at 70 cM (LOD score 5.70; P=.000001) and at 80 cM (LOD score 3.99; P=.00005) when a covariate measuring the number of affected individuals in the nuclear family was included. To evaluate further the contribution to the linkage signal from families with more than two affected relatives, we performed model-based linkage analysis with a recessive model and a range of penetrances, and we obtained maximum linkage at 70 cM (LOD score 3.16; P=.00007) with a penetrance of 0.3. We then estimated location by using GENEFINDER. The most likely location for a gene predisposing to IAs in the Finnish population is in a region with a 95% confidence interval of 11.6 cM (P=.00007) centered 2.0 cM proximal to D19S246.  相似文献   

18.
The results of genotypic data contributed to the International Society for Animal Genetics (ISAG) Bovine Chromosome 27 Workshop are presented. Eight laboratories contributed 23 261 informative meioses from 44 loci. Eighteen loci were typed by at least two laboratories and were used to construct a consensus linkage map. Twenty-one loci were subsequently incorporated into a comprehensive map. The sex-averaged consensus map covered 66.9 cM. The sex-averaged comprehensive map was 75.5 cM, while the female and male maps were 73.1 and 63.7 cM, respectively. Five loci were excluded from the analysis because of ambiguous position in the linkage group and a low LOD score (less than 2.0). Average distance between loci in the comprehensive map was 1.98 cM.  相似文献   

19.
Elucidation of the sex‐determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first‐generation linkage map of the M. cephalus in order to identify the sex‐determining region and sex‐determination system. Deep‐sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full‐sib progeny, 156 segregating markers were used to construct a first‐generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter‐marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex‐determination system.  相似文献   

20.
Comprehensive linkage map of bovine chromosome 11   总被引:1,自引:0,他引:1  
The results of genotypic data contributed to the International Society of Animal Genetics (ISAG) Bovine Chromosome 11 (BTA11) Workshop are presented. Six laboratories contributed a total of 26 199 informative meioses from 80 loci. Thirty-six loci were typed by at least two independent laboratories and were used to construct a consensus linkage map of the chromosome. The remaining loci were subsequently incorporated into a comprehensive map. The sex-averaged consensus map covered 128.9 cM. The female consensus map was 101.2 cM, while the male consensus map was 129.8 cM. The comprehensive sex-averaged map was 134.2 cM and the average genetic distance between loci was 1.72 cM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号