首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At the glutamatergic synapse the neurotransmitter is removed from the synaptic cleft by high affinity amino acid transporters located on neurons (EAAC1) and astrocytes (GLAST and GLT1), and a coordinated action of these cells is necessary in order to regulate glutamate extracellular concentration. We show here that treatment of neuronal cultures with glial soluble factors (GCM) is associated with a redistribution of EAAC1 and GLAST to the cell membrane and we analysed the effect of membrane cholesterol depletion on this regulation.

In enriched neuronal culture (90% neurons and 10% astrocytes), GCM treatment for 10 days increases EAAC1 and GLAST cell surface expression with no change in total expression. In opposite, GLT1 surface expression is not modified by GCM but total expression is increased. When cholesterol is acutely depleted from the membrane by 10 mM methyl-beta-cyclodextrin (β5-MCD, 30 min), glutamate transport activity and cell surface expressions of EAAC1 and GLAST are decreased in the enriched neuronal culture treated by GCM. In pure neuronal culture addition of GCM also increases EAAC1 cell membrane expression but surprisingly acute treatment with β5-MCD decreases glutamate uptake activity but not EAAC1 cell membrane expression. By immunocytochemistry a modification in the distribution of EAAC1 within neurons was undetectable whatever the treatment but we show that EAAC1 was no more co localized with Thy-1 in the enriched neuronal culture treated by GCM suggesting that GCM have stimulated polarity formation in neurons, an index of maturation.

In conclusion we suggest that different regulatory mechanisms are involved after GCM treatment, glutamate transporter trafficking to and from the plasma membrane in enriched neuronal culture and modulation of EAAC1 intrinsic activity and/or association with regulatory proteins at the cell membrane in the pure neuronal culture. These different regulatory pathways of EAAC1 are associated with different neuronal maturation stages.  相似文献   


2.
Chronic loss of intracellular K+ can induce neuronal apoptosis in pathological conditions. However, the mechanism by which the K+ channels are regulated in this process remains largely unknown. Here, we report that the increased membrane expression of Kv2.1 proteins in cortical neurons deprived of serum, a condition known to induce K+ loss, promotes neuronal apoptosis. The increase in I K current density and apoptosis in the neurons deprived of serum were inhibited by a dominant negative form of Kv2.1 and MK801, an antagonist to NMDA receptors. The membrane level of Kv2.1 and its interaction with SNAP25 were increased, whereas the Kv2.1 phosphorylation was inhibited in the neurons deprived of serum. Botulinum neurotoxin, an agent known to prevent formation of soluble N -ethylmaleimide-sensitive factor attachment protein receptor complex, suppressed the increase in I K current density. Together, these results suggest that NMDA receptor-dependent Kv2.1 membrane translocation is regulated by a soluble N -ethylmaleimide-sensitive factor attachment protein receptor-dependent vesicular trafficking mechanism and is responsible for neuronal cell death induced by chronic loss of K+.  相似文献   

3.
A number of findings suggest that lipophilic monomeric Abeta peptides can interact with the cellular lipid membranes. These interactions can affect the membrane integrity and result in the initiation of apoptotic cell death. The secondary structure of C-terminal Abeta peptides (29-40) and the longer (29-42) variant have been investigated in solution by circular dichroism measurements. The secondary structure of lipid bound Abeta (29-40) and (29-42) peptides prepared at different lipid/peptide ratio's, was investigated by ATR-FTIR spectroscopy. Finally, the changes in secondary structure (i.e. the transition of alpha-helix to beta-sheet) of the lipid bound peptides were correlated with the induction of neurotoxic and apoptotic effects in neuronal cells. The data suggest that the C-terminal fragments of the Abeta peptide induce a significant apoptotic cell death, as demonstrated by caspase-3 measurements and DNA laddering, with consistently a stronger effect of the longer Abeta (29-42) variant. Moreover, the induction of apoptotic death induced by these peptides can be correlated with the secondary structure of the lipid bound amyloid beta peptides. Based on these observations, it is proposed that membrane bound aggregated Abeta peptides (produced locally as the result of gamma-secretase cleavage) can accumulate and aggregate in the membrane. These membrane bound beta-sheet aggregated amyloid peptides induce neuronal apoptotic cell death.  相似文献   

4.
5.
Sex steroids affect adrenal chromaffin cell function. In the present work, we have examined the expression and functional significance of membrane androgen receptor sites in normal rat adrenal chromaffin cells and in the PC12 rat pheochromocytoma cell line which can differentiate to either a neuronal or to an epithelial phenotype and expresses membrane estrogen receptor sites. Our data are as follows: (a) no cytosolic androgen receptors were found in both normal chromaffin and PC12 cells; (b) both types of chromaffin cells expressed high affinity membrane testosterone binding sites; (c) activation of these sites increased cytosolic Ca2+, decreased catecholamine secretion and induced apoptosis; (d) NGF-induced neuronal differentiation of PC12 cells resulted in the suppression of the number of membrane testosterone sites. In conclusion, our data provide evidence for the existence of specific membrane testosterone receptors on adrenal chromaffin cells via which androgens, (some of them originating in the cortex) modulate their function. Neuronal differentiation of chromaffin cells results in a significant attenuation of these effects, via suppression of the expression of membrane androgen receptors suggesting, that the latter are specific for epithelioid chromaffin cells.  相似文献   

6.
Small polybasic peptides derived from the transduction domains of certain proteins, such as the third alpha-helix of the Antennapedia (Antp) homeodomain, can cross the cell membrane through a receptor-independent mechanism. These cell-permeable molecules have been used as 'Trojan horses' to introduce biologically active cargo molecules such as DNA, peptides or proteins into cells. Using these cell-permeable peptides, we have developed an efficient and simple method to increase virally mediated gene delivery and protein expression in vitro and in vivo. Here, we show that cell-permeable peptides increase viral cell entry, improve gene expression at reduced titers of virus and improve efficacy of therapeutically relevant genes in vivo.  相似文献   

7.
Peptide YY (PYY) and neuropeptide Y (NPY) are regulatory peptides synthesized in the intestine and brain, respectively, that modify physiological functions affecting nutrient assimilation and feeding behavior. Because PYY and NPY also alter the expression of intestine-specific differentiation marker proteins and the tetraspanin CD63, which is involved in cell adhesion, we investigated whether intestinal cell differentiation could be linked to mucosal cell adhesion and migration through these peptides. PYY and NPY significantly decreased cell adhesion and increased cell migration in a dose-dependent manner prior to cell confluency in our model system, non-tumorigenic small intestinal hBRIE 380i cells. Both peptides reduced CD63 expression and CD63-dependent cell adhesion. CD63 overexpression increased and antisense CD63 cDNA decreased intestinal cell adhesion. In parallel, both PYY and NPY increased expression of matrix metalloproteinase-3 (MMP-3) to a level sufficient to induce cell migration by activating the Rho GTPase Cdc42. The effects of both peptides on cell migration were blocked in cells constitutively overexpressing dominant-negative Cdc42. PYY and NPY also significantly induced the expression of the differentiation marker villin, which could be eliminated by an MMP inhibitor at a concentration that inhibits cell migration. Increased MMP-3 activity, which enhanced cell migration, also induced villin mRNA levels. Therefore, these data indicate that the alteration of adhesion and migration by PYY and NPY occurs in part by synchronous modulation of three proteins that are involved in extracellular matrix-basolateral membrane interactions, CD63, MMP-3 and Cdc42, and that PYY/NPY regulation of expression of mucosal proteins such as villin is linked to the process of cell migration and adhesion.  相似文献   

8.
Abstract: Peroxidation of membrane lipids results in release of the aldehyde 4-hydroxynonenal (HNE), which is known to conjugate to specific amino acids of proteins and may alter their function. Because accumulating data indicate that free radicals mediate injury and death of neurons in Alzheimer's disease (AD) and because amyloid β-peptide (Aβ) can promote free radical production, we tested the hypothesis that HNE mediates Aβ25-35-induced disruption of neuronal ion homeostasis and cell death. Aβ induced large increases in levels of free and protein-bound HNE in cultured hippocampal cells. HNE was neurotoxic in a time- and concentration-dependent manner, and this toxicity was specific in that other aldehydic lipid peroxidation products were not neurotoxic. HNE impaired Na+,K+-ATPase activity and induced an increase of neuronal intracellular free Ca2+ concentration. HNE increased neuronal vulnerability to glutamate toxicity, and HNE toxicity was partially attenuated by NMDA receptor antagonists, suggesting an excitotoxic component to HNE neurotoxicity. Glutathione, which was previously shown to play a key role in HNE metabolism in nonneuronal cells, attenuated the neurotoxicities of both Aβ and HNE. The antioxidant propyl gallate protected neurons against Aβ toxicity but was less effective in protecting against HNE toxicity. Collectively, the data suggest that HNE mediates Aβ-induced oxidative damage to neuronal membrane proteins, which, in turn, leads to disruption of ion homeostasis and cell degeneration.  相似文献   

9.
Abstract: Activation of immediate early gene expression is a key event in stress-induced neuronal cell injury. To study whether changes in cytoplasmic calcium activity are necessary to activate neuronal immediate early gene expression, endoplasmic reticulum (ER) calcium stores of primary neurons were depleted by exposing cells to thapsigargin (Tg), an irreversible inhibitor of ER Ca2+-ATPase. Tg-induced rise in [Ca2+]i and the effect of loading neurons with the cell-permeable calcium chelator BAPTA-AM on this increase in [Ca2+]i were measured in fura-2-loaded cells by fluorescence microscopy. Changes in c- fos mRNA levels were evaluated by quantitative PCR. Tg treatment of neurons produced a pronounced rise in c- fos mRNA levels (∼10-fold more than DMSO) which peaked at 1 h after exposure. The Tg-induced rise in c- fos mRNA content was unchanged (hippocampal neurons) or even increased further (cortical neurons) by preloading cells with BAPTA before incubation with Tg. It is concluded that in neuronal cells an increase in cytoplasmic calcium activity is not a prerequisite for a rise in mRNA levels of c- fos . Thus, stress-induced changes in mRNA levels of immediate early genes of neurons may also result from disturbances in ER calcium homeostasis and not necessarily by an overload of cells with calcium ions. The results of the present series of experiments cast further doubt on the widely accepted hypothesis that the stress-induced cytoplasmic overload of neurons with calcium ions is the primary event triggering cell injury.  相似文献   

10.
11.
Intracellular calcium (Ca2+) concentration determines neuronal dependence on neurotrophic factors (NTFs) and susceptibility to cell death. Ca2+ overload induces neuronal death and the consequences are thought to be a probable cause of motoneuron (MN) degeneration in neurodegenerative diseases. In the present study, we show that membrane depolarization with elevated extracellular potassium (K+) was toxic to cultured embryonic mouse spinal cord MNs even in the presence of NTFs. Membrane depolarization induced an intracellular Ca2+ increase. Depolarization-induced toxicity and increased intracellular Ca2+ were blocked by treatment with antagonists to some of the voltage-gated Ca2+ channels (VGCCs), indicating that Ca2+ influx through these channels contributed to the toxic effect of depolarization. Ca2+ activates the calpains, cysteine proteases that degrade a variety of substrates, causing cell death. We investigated the functional involvement of calpain using a calpain inhibitor and calpain gene silencing. Pre-treatment of MNs with calpeptin (a cell-permeable calpain inhibitor) rescued MNs survival; calpain RNA interference had the same protective effect, indicating that endogenous calpain contributes to the cell death caused by membrane depolarization. These findings suggest that MNs are especially vulnerable to extracellular K+ concentration, which induces cell death by causing both intracellular Ca2+ increase and calpain activation.  相似文献   

12.
Among several monoclonal antibodies obtained by immunizing Balb/c mice with cerebellar synaptic membrane fractions from E20 chick embryos, the antibody, named M35, suppressed Ca-spikes in immature cultured chick cerebellar neurons. M35 immunoprecipitated 43kDa protein from a 125I-labeled embryonic crude cerebellar membrane fraction. Immunohistochemically, the M35 antigen was expressed most intensively in Purkinje cells, but its expression was limited to highly motile structures at developmental neuronal remodeling. Electrophysiologically, M35 facilitated current responses to AMPA and inhibited the responses to GABA in cultured cerebellar Purkinje neurons. The several peptides derived from the affinity-purified 43kDa protein were found to have homologous amino acid sequences to non-muscle actins. These results suggest that the antigen recognized by M35 may play an essential role probably as membrane ion channels modulating synaptic functions in not only the development and growth but also the neuronal activity of chick cerebellar Purkinje cells.  相似文献   

13.
The ECL cells constitute the predominant endocrine cell population in the mucosa of the acid-secreting part of the stomach (fundus). They are rich in chromogranin A (CGA), histamine and histidine decarboxylase (HDC). They secrete CGA-derived peptides and histamine in response to gastrin. The objective of this investigation was to examine the expression of pancreastatin (rat CGA266-314) and WE14 (rat CGA343-356) in rat stomach ECL cells. The distribution and cellular localisation of pancreastatin- and WE14-like immunoreactivities (LI) were analysed by radioimmunoassay and immunohistochemistry with antibodies against pancreastatin, WE14 and HDC. The effect of food deprivation on circulating pancreastatin-LI was examined in intact rats and after gastrectomy or fundectomy. Rats received gastrin-17 (5 nmol/kg/h) by continuous intravenous infusion or omeprazole (400 μmol/kg) once daily by the oral route, to induce hypergastrinemia. CGA-derived peptides in the ECL cells were characterised by gel permeation chromatography. The expression of CGA mRNA was examined by Northern blot analysis. Among all of the endocrine cells in the body, the ECL cell population was the richest in pancreastatin-LI, containing 20–25% of the total body content. Food deprivation and/or surgical removal of the ECL cells lowered the level of pancreastatin-LI in serum by about 80%. Activation of the ECL cells by gastrin infusion or omeprazole treatment raised the serum level of pancreastatin-LI, lowered the concentrations of pancreastatin- and WE14-LI in the ECL cells and increased the CGA mRNA concentration. Chromatographic analysis of the various CGA immunoreactive components in the ECL cells of normal and hypergastrinemic rats suggested that these cells respond to gastrin with a preferential release of the low-molecular-mass forms.  相似文献   

14.
Abstract: Bidirectional communication occurs between neuroendocrine and immune systems through the action of various cytokines. Responses to various inflammatory mediators include increases in intracellular reactive oxygen species (ROS), notably, superoxide anion (O2) and nitric oxide (NO). Neurotoxicity mediated by NO may result from the reaction of NO with O2, leading to formation of peroxynitrite (ONOO). ROS are highly toxic, potentially contributing to extensive neuronal damage. We, therefore, evaluated the effects of a variety of inflammatory mediators on the regulation of mRNA levels for manganese superoxide dismutase (MnSOD) and inducible nitric oxide synthase (iNOS) in primary cultures of rat neuronal and glial cells. To determine age-dependent variation of mRNA expression, we used glial cells derived from newborn, 3-, 21-, and 95-day-old rat brains. Interleukin-1β, interferon-γ (IFN-γ), bacterial lipopolysaccharide (LPS), and tumor necrosis factor-α showed significant induction of MnSOD in both glial and neuronal cells. However, only LPS and IFN-γ increased iNOS mRNA. These data demonstrate that these two genes are similarly regulated in two cells of the nervous system, further suggesting that the oxidative state of a cell may dictate a neurotoxic or neuroprotective outcome.  相似文献   

15.
Increasing evidence implicates interactions between Aβ-peptides and membrane lipids in Alzheimer's disease. To gain insight into the potential role of the free amino group of the N-terminus of Aβ29-42 fragment in these processes, we have investigated the ability of Aβ29-42 unprotected and Aβ29-42 N-protected to interact with negatively-charged liposomes and have calculated the interaction with membrane lipids by conformational analysis. Using vesicles mimicking the composition of neuronal membranes, we show that both peptides have a similar capacity to induce membrane fusion and permeabilization. The fusogenic effect is related to the appearance of non-bilayer structures where isotropic motions occur as shown by 31P and 2H NMR studies. The molecular modeling calculations confirm the experimental observations and suggest that lipid destabilization could be due to the ability of both peptides to adopt metastable positions in the presence of lipids. In conclusion, the presence of a free or protected (acetylated) amino group in the N-terminus of Aβ29-42 is therefore probably not crucial for destabilizing properties of the C-terminal fragment of Aβ peptides.  相似文献   

16.
The actin-binding protein filamin A (FLNa) regulates neuronal migration during development, yet its roles in the mature brain remain largely obscure. Here, we probed the effects of FLNa on the regulation of ion channels that influence neuronal properties. We focused on the HCN1 channels that conduct Ih, a hyperpolarization-activated current crucial for shaping intrinsic neuronal properties. Whereas regulation of HCN1 channels by FLNa has been observed in melanoma cell lines, its physiological relevance to neuronal function and the underlying cellular pathways that govern this regulation remain unknown. Using a combination of mutational, pharmacological, and imaging approaches, we find here that FLNa facilitates a selective and reversible dynamin-dependent internalization of HCN1 channels in HEK293 cells. This internalization is accompanied by a redistribution of HCN1 channels on the cell surface, by accumulation of the channels in endosomal compartments, and by reduced Ih density. In hippocampal neurons, expression of a truncated dominant-negative FLNa enhances the expression of native HCN1. Furthermore, acute abrogation of HCN1-FLNa interaction in neurons, with the use of decoy peptides that mimic the FLNa-binding domain of HCN1, abolishes the punctate distribution of HCN1 channels in neuronal cell bodies, augments endogenous Ih, and enhances the rebound-response (“voltage-sag”) of the neuronal membrane to transient hyperpolarizing events. Together, these results support a major function of FLNa in modulating ion channel abundance and membrane trafficking in neurons, thereby shaping their biophysical properties and function.  相似文献   

17.
Interactions between the cell basal membrane domain and the basement membrane are involved in several cell functions including proliferation, migration and differentiation. Intestinal epithelial cells can interact with laminin, a major intestinal basement membrane glycoprotein, via several cell-surface laminin-binding proteins including integrin and non-integrin receptors. The 37/67kDa laminin receptor (37/67LR) is one of these but its role in normal epithelial cells is still unknown. The aim of this study was to characterise the expression pattern and determine the main function of 37/67LR in the normal human small intestinal epithelium. Immunolocalization studies revealed that 37/67LR was predominantly present in the undifferentiated/proliferative region of the human intestinal crypt in both the immature and adult intestine. Using a human intestinal epithelial crypt (HIEC) cell line as experimental model, we determined that 37/67LR was expressed in proliferative cells in both the cytoplasmic and membrane compartments. Small-interfering RNA-mediated reduction of 37/67LR expression led to HIEC cell-cycle reduction and loss of the ability to adhere to laminin-related peptides under conditions not altering ribosomal function. Taken together, these findings indicate that 37/67LR regulates proliferation and adhesion in normal intestinal epithelial cells independently of its known association with ribosomal function.  相似文献   

18.
19.
20.
Beinfeld MC  Wang W 《Life sciences》2002,70(11):1251-1258
Human teratocarcinoma Ntera2/c 1.D1 (NT2) cells express very low levels of the prohormone convertase enzyme PC1, moderate levels of PC2 and significant levels of PC5. When infected with an adenovirus which expresses rat CCK mRNA, several glycine-extended forms were secreted that co-eluted with CCK 33, 22 and 12. Amidated CCK is not produced because these cells appear to lack the amidating enzyme. Pituitary GH3 cells express high levels of PC2 and PC5. CCK adenovirus-infected GH3 cells secrete amidated versions of the same peptides as NT2 cells. Differentiation of NT2 cells into hNT cells with retinoic acid and mitotic inhibitors increased expression of PC5 and decreased expression of PCI and PC2. CCK adenovirus-infected differentiated hNT cells also secrete glycine extended CCK products and the major molecular form produced co-eluted with CCK 8 Gly. These experiments demonstrate that the state of differentiation of this neuronal cell line influences its expression of PC 1,2, and 5 and its cleavage of pro CCK and suggests that these cells may make an interesting model to study how differentiation alters prohormone processing. These results also support the hypothesis that PC5 in differentiated neuronal cells is capable of processing pro CCK to glycine-extended CCK 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号