首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
S Ebisu  K Kato  S Kotani    A Misaki 《Journal of bacteriology》1975,124(3):1489-1501
Studies were made on the physical and chemical properties of polysaccharides synthesized by cell-free extracts of Streptococcus mutans, Streptococcus sanguis, and Streptococcus sp. and their susceptibilities to dextranases. Among the polysaccharides examined, insoluble glucans were rather resistant to available dextranase preparations, and the insoluble, sticky glucan produced by S. mutans OMZ 176, which could be important in formation of dental plaques, was the most resistant. By enrichment culture of soil specimens, using OMZ 176 glucans as the sole carbon source, an organism was isolated that produced colonies surrounded by a clear lytic zone on opaque agar plates containing the OMZ 176 glucan. The organism was identified as a strain of Flavobacterium and named the Ek-14 bacterium. EK-14 bacterium was grown in Trypticase soy broth, and an enzyme capable of hydrolyzing the OMZ 176 glucan was concentrated from the culture supernatant and purified by negative adsorption on a diethylaminoethyl-cellulose (DE-32) column and gradient elution chromatography with a carboxymethyl-cellulose (CM-32) column. The enzyme was a basic protein with an isoelectric point of pH 8.5 and molecular weight of 65,000. Its optimum pH was 6.3 and its optimal temperature was 42 C. The purified enzyme released 11% of the total glucose residues of the OMZ 176 glucan as reducing sugars and solubilized about half of the substrate glucan. The products were found to be isomaltose, nigerose, and nigerotriose, with some oligosaccharides. The purified enzyme split the alpha-1,3-glucan endolytically and was inactive toward glucans containing alpha-1,6, alpha-1,4, beta-1,3, beta-1,4, and/or beta-1,6 bonds as the main linkages.  相似文献   

2.
Isoamylases are debranching enzymes that hydrolyze alpha-1,6 linkages in alpha-1,4/alpha-1,6-linked glucan polymers. In plants, they have been shown to be required for the normal synthesis of amylopectin, although the precise manner in which they influence starch synthesis is still debated. cDNA clones encoding three distinct isoamylase isoforms (Stisa1, Stisa2, and Stisa3) have been identified from potato. The expression patterns of the genes are consistent with the possibility that they all play roles in starch synthesis. Analysis of the predicted sequences of the proteins suggested that only Stisa1 and Stisa3 are likely to have hydrolytic activity and that there probably are differences in substrate specificity between these two isoforms. This was confirmed by the expression of each isoamylase in Escherichia coli and characterization of its activity. Partial purification of isoamylase activity from potato tubers showed that Stisa1 and Stisa2 are associated as a multimeric enzyme but that Stisa3 is not associated with this enzyme complex. Our data suggest that Stisa1 and Stisa2 act together to debranch soluble glucan during starch synthesis. The catalytic specificity of Stisa3 is distinct from that of the multimeric enzyme, indicating that it may play a different role in starch metabolism.  相似文献   

3.
A soluble enzyme preparation (20,000 X g supernatant fraction), prepared from the mycelia of wild-type Neurospora crassa, was capable of transferring [14C]glucose from UDP-[14C]glucose into both trichloroacetic acid (TCA)-soluble and TCA-insoluble macromolecule products in the absence of added primer. These reactions did not require either high concentrations of salts or any other chemical reagents. Two labeled products were formed; one was a glycogen-like polysaccharide and the other was a glycoprotein with glucosyl chains bound to protein through an acid-labile bond. After mild treatment of the glucoprotein with acid, the product liberated from the protein behaved as a mixture of malto-oligosaccharides and alpha-1,4-glucan with branches. The carbohydrate moiety of the glucoprotein seemed to be released upon prolonged incubation with the enzyme preparation. The glucan thus liberated from the glucoprotein may serve as a primer for the glycogen synthase. The results obtained are therefore suggestive of the existence of a glucoproteic intermediate in the initiation of glycogen biosynthesis.  相似文献   

4.
Transglucosylation activities of spinach alpha-glucosidase I and IV, which have different substrate specificity for hydrolyzing activity, were investigated. In a maltose mixture, alpha-glucosidase I, which has high activity toward not only maltooligosaccharides but also soluble starch and can hydrolyze isomaltose, produced maltotriose, isomaltose, and panose, and alpha-glucosidase IV, which has high activity toward maltooligosaccharides but faint activity toward soluble starch and isomaltose, produced maltotriose, kojibiose, and 2,4-di-alpha-D-glucosyl-glucose. Transglucosylation to sucrose by alpha-glucosidase I and IV resulted in the production of theanderose and erlose, respectively, showing that spinach alpha-glucosidase I and IV are useful to synthesize the alpha-1,6-glucosylated and alpha-1,2- and 1,4-glucosylated products, respectively.  相似文献   

5.
Mycobacterium tuberculosis and other pathogenic mycobacterial species produce large amounts of a glycogen-like alpha-glucan that represents the major polysaccharide of their outermost capsular layer. To determine the role of the surface-exposed glucan in the physiology and virulence of these bacteria, orthologues of the glg genes involved in the biosynthesis of glycogen in Escherichia coli were identified in M. tuberculosis H37Rv and inactivated by allelic replacement. Biochemical analyses of the mutants and complemented strains indicated that the synthesis of glucan and glycogen involves the alpha-1,4-glucosyltransferases Rv3032 and GlgA (Rv1212c), the ADP-glucose pyrophosphorylase GlgC (Rv1213) and the branching enzyme GlgB (Rv1326c). Disruption of glgC reduced by half the glucan and glycogen contents of M. tuberculosis, whereas the inactivation of glgA and Rv3032 affected the production of capsular glucan and glycogen, respectively. Attempts to disrupt Rv3032 in the glgA mutant were unsuccessful, suggesting that a functional copy of at least one of the two alpha-1,4-glucosyltransferases is required for growth. Importantly, the glgA mutant was impaired in its ability to persist in mice, suggesting a role for the capsular glucan in the persistence phase of infection. Unexpectedly, GlgB was found to be an essential enzyme.  相似文献   

6.
1. Branching enzymes from rat and rabbit liver, as well as from potato and maize were prepared. They were almost free from contaminating glucan-degrading enzymes. 2. In 'sweet corn' maize, two separate fractions with (alpha 1,4)glucan: (alpha 1,4)glucan alpha 6-glycosyltransferase activities were obtained. One of them synthesized amylopectin, the branched component of starch, in the presence of phosphorylase and Glc1P, while the other fraction synthesized phytoglycogen. Furthermore, in a maize variety which does not accumulate phytoglycogen, only one fraction of branching activity was found, that formed amylopectin under the above-mentioned conditions. 3. Comparative analyses performed with native (alpha 1,4)-(alpha 1,6)glucopolysaccharides, and those synthesized in vitro with the branching enzyme from the same tissue, demonstrated a close similarity between both glucans. 4. It may be concluded that the branching enzyme is responsible for the specific degree of (alpha 1,6) branch linkages found in the native polysaccharide.  相似文献   

7.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10-minus 3 M Na2 MoO4 was active in the restoration assay. Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxE-14, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract. The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 mu g molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

8.
Glucan synthase activity of Neurospora crassa was isolated by treatment of protoplast lysates with 0.1% 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate and 0.5% octylglucoside in 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer, pH 7.4, containing 5 mM EDTA, 1 mM phenylmethylsulfonylfluoride, 200 mM inorganic phosphate, 10 microM GTP, 1 mM DTT, 10 mM sodium fluoride, and 600 mM glycerol. Resulting activity was partially purified by sucrose gradient density sedimentation. Approximately 70% of enzyme activity in the sucrose gradient peak fraction was soluble and enzyme activity was purified 7.3-fold. Partially purified enzyme activity had a half-life of several weeks at 4 degrees C, and a Km(app) of 1.66 +/- 0.28 mM. Inhibitors (Cilofungin, papulacandin B, aculeacin A, echinocandin B, sorbose and UDP) of 1,3-beta-D-glucan synthase activity were tested against crude particulate and detergent treated enzyme fractions and the Ki(app) of each inhibitor determined. It seems likely that this stable preparation of glucan synthase activity may be useful for in vitro enzyme screens for new glucan synthase inhibitors.  相似文献   

9.
One isoform of the branching enzyme (BE; EC 2.4.1.18) of potato (Solarium tuberosum L.) is known and catalyses the formation of α-1,6 bonds in a glucan chain, resulting in the branched starch component amylopectin. Constructs containing the antisense or sense-orientated distal 1.5-kb part of a cDNA for potato BE were used to transform the amylose-free (amf) mutant of potato, the starch of which stains red with iodine. The expression of the endogenous BE gene was inhibited either largely or fully as judged by the decrease or absence of the BE mRNA and protein. This resulted in a low percentage of starch granules with a small blue core and large red outer layer. There was no effect on the amylose content, degree of branching or λmax of the iodine-stained starch. However, when the physico-chemical properties of the different starch suspensions were assessed, differences were observed, which although small indicated that starch in the transformants was different from that of theamf mutant.  相似文献   

10.
Lactobacillus reuteri strain ATCC 55730 (LB BIO) was isolated as a pure culture from a Reuteri tablet purchased from the BioGaia company. This probiotic strain produces a soluble glucan (reuteran), in which the majority of the linkages are of the alpha-(1-->4) glucosidic type ( approximately 70%). This reuteran also contains alpha-(1-->6)- linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. The LB BIO glucansucrase gene (gtfO) was cloned and expressed in Escherichia coli, and the GTFO enzyme was purified. The recombinant GTFO enzyme and the LB BIO culture supernatants synthesized identical glucan polymers with respect to linkage type and size distribution. GTFO thus is a reuteransucrase, responsible for synthesis of this reuteran polymer in LB BIO. The preference of GTFO for synthesizing alpha-(1-->4) linkages is also evident from the oligosaccharides produced from sucrose with different acceptor substrates, e.g., isopanose from isomaltose. GTFO has a relatively high hydrolysis/transferase activity ratio. Complete conversion of 100 mM sucrose by GTFO nevertheless yielded large amounts of reuteran, although more than 50% of sucrose was converted into glucose. This is only the second example of the isolation and characterization of a reuteransucrase and its reuteran product, both found in different L. reuteri strains. GTFO synthesizes a reuteran with the highest amount of alpha-(1-->4) linkages reported to date.  相似文献   

11.
A branching enzyme was extracted from the mycelia of Neurospora crassa and was purified to electrophoretic homogeneity by procedures including DEAE-Sephacel column chromatography, 6-aminohexyl-Sepharose 4B column chromatography and gel filtration on Toyopearl HW-55S. The final yield of the branching enzyme activity was 15.1%, and the final purified enzyme preparation showed a specific activity of 702 units per mg of protein. The molecular weight of this enzyme was estimated to be 80,000 by electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. The amino acid composition and the carbohydrate content of this enzyme were analyzed. The isoelectric point of this enzyme determined by polyacrylamide gel isoelectrofocusing was 5.6. The branching activity of the enzyme was confirmed by its action on amylopectin as well as by the combined action of this enzyme and N. crassa glycogen synthase. The action of this enzyme on amylopectin decreased the wavelength of the absorption maximum of the glucan-iodine complex, and increased the amount of the short unit chains of the debranched product. The product obtained by the combined action yielded beta-limit dextrin upon hydrolysis with beta-amylase. No multiplicity was found for the branching activity either by chromatography or by electrophoresis.  相似文献   

12.
13.
Neurospora crassa branching enzyme [EC 2.4.1.18] acted on potato amylopectin or amylose to convert them to highly branched glycogen-type molecules which consisted of unit chains of six glucose units. The enzyme also acted on the amylopectin beta-limit dextrin, indicating that the enzyme acted on internal glucose chains as well as outer chains. By the combined action of N. crassa glycogen synthase [EC 2.4.1.11] and the branching enzyme, a glycogen-type molecule was formed from UDP-glucose. In the presence of primer glycogen, the glucose transfer reaction was accelerated by the addition of branching enzyme. On the other hand, the glucose transfer reaction by glycogen synthase did not occur without primers. When the branching enzyme was added, the glucose transfer occurred after a short time lag. This recovery of the glucose transfer reaction did not occur upon addition of the inactivated branching enzyme. The structure of the product formed by the combined action of the two enzymes was different from that of the intact N. crassa glycogen with respect to the distribution patterns of the unit chains.  相似文献   

14.
植物淀粉合成的调控酶   总被引:6,自引:0,他引:6  
淀粉是植物中最普通的碳水化合物,是人类最主要的食品来源与重要的工业原料。植物淀粉的生物合成主要涉及了4种酶—ADPG焦磷酸化酶、淀粉合成酶、淀粉分支酶和淀粉去分支酶,它们在淀粉的生物合成中发挥着不同作用。近年来,随着基因工程技术的迅速发展及与这些酶有关的众多突变体的发现,使人们对这些酶的结构、特性、功能及表达调控等方面的研究取得了重要进展。并且,人们已开始利用基因工程技术调控植物淀粉的数量与特性,取得了一定成效。在此,文章介绍了调控植物淀粉合成关键酶的生化特性、基因调控及利用基因工程改良植物淀粉等方面所取得进展。  相似文献   

15.
In vitro assembly of Neurospora crassa NADPH-nitrate reductase (EC1.6.6.2) could be effected by combing the nitrate induced Neurospora crassa mutant nit-1 with the extract of any known molybdenum-containing enzyme. The process involves the participation of a molybdenum-cofactor contributed by the molybdenum-enzyme fraction. This paper emphasizes two points: Firstly, the indispensable role played by EDTA in the viability of Mo-cofactor and secondly, the nature of Mo-cofactor predicated by our previous work is supported by concrete experimental results. Recent experiments with Chelax-100 column provide evidence that the in vitro formation of Neurospora NADPH-nitrate reductase involves EDTA and the latter may take part in the formation of a molybdenum, labile sulfide and EDTA complex. In addition to 10(-2) M sodium molybdate, both EDTA and reducing agent are required to activate the cofactor in the Chelax-100 column eluate. The cofactor is of low molecular weight and devoid of protein as was predicated. To substantiate those predications, concrete experimental results are provided.  相似文献   

16.
Conidiation is an asexual sporulation pathway that is a response to adverse conditions and is the main mode of dispersal utilized by filamentous fungal pathogens for reestablishment in a more favorable environment. Heterotrimeric G proteins (consisting of α, β, and γ subunits) have been shown to regulate conidiation in diverse fungi. Previous work has demonstrated that all three of the Gα subunits in the filamentous fungus Neurospora crassa affect the accumulation of mass on poor carbon sources and that loss of gna-3 leads to the most dramatic effects on conidiation. In this study, we used (1)H nuclear magnetic resonance (NMR) to profile the metabolome of N. crassa in extracts isolated from vegetative hyphae and conidia from cultures grown under conditions of high or low sucrose. We compared wild-type and Δgna-3 strains to determine whether lack of gna-3 causes a significant difference in the global metabolite profile. The results demonstrate that the global metabolome of wild-type hyphae is influenced by carbon availability. The metabolome of the Δgna-3 strain cultured on both high and low sucrose is similar to that of the wild type grown on high sucrose, suggesting an overall defect in nutrient sensing in the mutant. However, analysis of individual metabolites revealed differences in wild-type and Δgna-3 strains cultured under conditions of low and high sucrose.  相似文献   

17.
UDPglucuronic acid and erythroascorbic acid were identified in extracts of the fungus Neurospora crassa. The concentrations of these two compounds are estimated, in growing wild type N. crassa, to be about 0.10 and 0.28 mumol/ml of cell water, respectively. The pools of these two compounds are regulated by cyclic AMP in Neurospora, both being elevated in the cr-1, adenylate cyclase deficient mutant and both being lowered by exogenous cyclic AMP. The pools of these two compounds are also elevated on nitrogen deprivation. The pools of a large number of other nucleotides are not influenced by cyclic AMP. Possible relationships between the metabolism of UDPglucuronic acid and erythroascorbic acid are discussed. It was found that exogenous cyclic AMP was much more effective in influencing cultures grown at 30-37 degrees C than those grown at 25 degrees C. We suggest that higher temperatures may render Neurospora more permeable to a variety of different compounds.  相似文献   

18.
Nitrogen regulation of glutamine synthetase in Neurospora crassa.   总被引:7,自引:0,他引:7  
A higher activity of glutamine synthetase (EC 6.3.1.2) was found in Neurospora crassa when NH4+ was limiting as nitrogen source than when glutamate was limiting. When glutamate, glutamine or NH4+ were in excess, a lower activity was found. Immunological titration and sucrose gradient sedimentation of the enzyme established that under all these conditions enzyme activity corresponded to enzyme concentration and that the octamer was the predominant oligomeric form. When N. crassa was shifted from nitrogen-limiting substrates to excess product as nitrogen source, the concentration of glutamine synthetase was adjusted with kinetics that closely followed dilution by growth. When grown on limiting amounts of glutamate, a lower oligomer was present in addition to the octameric form of the enzyme. When the culture was shifted to excess NH4+, glutamine accululated at a high rate; nevertheless, there was only a slow decrease in enzyme activity and no modification of the oligomeric pattern.  相似文献   

19.
The cytoplasmic leucyl-tRNA synthetases of Neurospora crassa wild type (grown at 37 degrees C) and mutant (grown at 28 degrees C) were purified approximately 1770-fold and 1440-fold respectively. Additional enzyme preparations were carried out with mutant cells grown for 24 h at 28 degrees C and transferred then to 37 degrees C for 10-70 h of growth. The mitochondrial leucyl-tRNA synthetase of the wild type was purified approximately 722-fold. The mitochondrial mutant enzyme was found only in traces. The cytoplasmic leucyl-tRNA synthetase from the mutant (grown at 37 degrees C) in vivo is subject of a proteolytic degradation. This leads to an increased pyrophosphate exchange, without altering aminoacylation. Proteolysis in vitro by trypsin or subtilisin of isolated cytoplasmic wild-type and mutant leucyl-tRNA synthetases, however, did not establish and difference in the degradation products and in their catalytic properties. Comparing the cytoplasmic wild-type and mutant enzymes (grown at 28 degrees C) via steady-state kinetics did not show significant differences between these synthetases either. The rate-determining step appears to be after the transfer of the aminoacyl group to the tRNA, e.g. a conformational change or the release of the product. Besides leucine only isoleucine is activated by the enzymes with a discrimination of approximately 1:600; however, no Ile-tRNALeu is released. Similarly these enzymes, when tested with eight ATP analogs, cannot be distinguished. For both enzymes six ATP analogs are neither substrates nor inhibitors. Two analogs are substrates with identical kinetic parameters. The mitochondrial wild-type leucyl-tRNA synthetase is different from the cytoplasmic enzyme, as particularly exhibited by aminoacylating Escherichia coli tRNALeu but not N. crassa cytoplasmic tRNALeu. The presence of traces of the analogous mitochondrial mutant enzyme could be demonstrated. Therefore, the difference between wild-type and mutant leu-5 does not rest in the catalytic properties of the cytoplasmic leucyl-tRNA synthetases. Differences in other properties of these enzymes are not excluded. In contrast the activity of the mitochondrial leucyl-tRNA synthetase of the mutant is approximately 1% of that of the wild-type enzyme.  相似文献   

20.
Starch is made up of amylose (linear alpha-1,4-polyglucans) and amylopectin (alpha-1,6-branched polyglucans). Amylopectin has a distinct fine structure called multiple cluster structure and is synthesized by multiple subunits or isoforms of four classes of enzymes: ADPglucose pyrophosphorylase, soluble starch synthase (SS), starch branching enzyme (BE), and starch debranching enzyme (DBE). In the present paper, based on analyses of mutants and transgenic lines of rice in which each enzyme activity is affected, the contribution of the individual isoform to the fine structure of amylopectin in rice endosperm is evaluated, and a new model referred to as the "two-step branching and improper branch clearing model" is proposed to explain how amylopectin is synthesized. The model emphasizes that two sets of reactions, alpha-1,6-branch formation and the subsequent alpha-1,4-chain elongation, are catalyzed by distinct BE and SS isoforms, respectively, are fundamental to the construction of the cluster structure. The model also assesses the role of DBE, namely isoamylase or in addition pullulanase, to remove unnecessary alpha-1,6-glucosidic linkages that are occasionally formed at improper positions apart from two densely branched regions of the cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号