首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A theoretical model for the effect of the dielectric constant (c) of the solvent medium on ferrocytochrome c oxidation by ferricyanide is developed to account for the observed variations of the rate constant (k) of reactions in aqueous binary mixtures with alcohols (less than 5-10 mol% ethanol and propranolol). A correlation between k and c is found if ln k is expressed as a function of the Kirkwood parameter (c-1)(2c+1). The results of calculations indicate that the use of the 'overall dipole moment' of cytochrome c in oxidoreduction studies is likely to be unreliable. Instead, the decrease in k in alcohol/water mixtures is best explained--in conformity with Onsager's theory of the reaction field--by a polarity effect on the dipole moment of the cytochrome c heme upon diffusion of the polar solvent molecules into the low dielectric constant heme crevice.  相似文献   

2.
The influence of some aliphatic alcohols on oxygen uptake, carbon dioxide production, acid formation and lactate and pyruvate concentrations of rat liver slices was studied. At the concentrations used, none of the alcohols was found to influence oxygen uptake. Of the alcohols that are not oxidized by liver alcohol dehydrogenase, methanol increased carbon dioxide production, propan-2-ol decreased it and 2-methylpropan-2-ol was without influence. All the alcohols that are oxidized by the enzyme strongly decreased carbon dioxide production. The alcohols that are not oxidized had no marked effect on the lactate/pyruvate concentration ratio, whereas the other alcohols strongly increased the ratio. A highly significant correlation was found between the effects of the alcohol on pyruvate concentration and carbon dioxide production. It is assumed that the shift in the redox potential inhibits the function of the tricarboxylic acid cycle of the liver.  相似文献   

3.
Alcohols inhibit the thermolysin-catalyzed hydrolysis of N-[3-(2-furyl)acryloyl]-Gly-L-Leu-NH(2) and decrease the NaCl-induced activation of thermolysin in a concentration-dependent manner [K. Inouye et al. (1997) J. Biochem. 122, 358-364]. In this study, the inhibitory effects of alcohols on thermolysin activity were examined in detail using 10 different alcohols and a fluorescent substrate, (7-methoxycoumarin-4-yl) acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2). The inhibition by all alcohols examined is completely reversible, and thermolysin activity is recovered by dilution. The inhibitor constants (K(i)) are in the range of 35-430 mM, and the order of the inhibitory effect is 1-pentanol, 1-propanol, 2-butanol, 2-methyl-1-propanol > 1-butanol > 2-propanol > ethanol, tert-amyl alcohol > tert-butyl alcohol > methanol. Linear and secondary alcohols whose mains chains consist of more than 3 carbons inhibit thermolysin effectively. Thermolysin activity is decreased by decreasing the dielectric constant, D, of the reaction medium containing the alcohol, and the decrease depending on the D value was almost the same manner for all alcohols except methanol, tert-butyl alcohol, and tert-amyl alcohol. Alcohols may inhibit thermolysin activity both by binding to the active site, most possibly to the S1' subsite, of thermolysin and by altering the electrostatic and hydrophobic environment around the thermolysin molecule.  相似文献   

4.
The effect of alcohols on the spectral properties of riboflavin derivatives in non-polar solvent was studied by various spectroscopic methods in order to support the view point that alcohol may directly interact with the isoalloxazine moiety of FAD and enhance the catalytic activity of D-amino acid oxidase (DAAO). The most likely association complex between alcohol and riboflavin is 1 : 1 stoichiometric complex through the 3-N imino and the 2-C carbonyl groups of the isoalloxazine ring and the hydroxyl group of alcohols. It appears that methanol has a larger association constant than any other alcohols, and the association constant decreases with the increase in carbon number and with the steric requirement of the alkyl group of alcohols.  相似文献   

5.
Four spin-labeled probes (5-doxylstearic acid (5-NS), its methyl ester (5-NMS), 16-doxylmethylstearate (16-NMS) and 4-(N,N-dimethyl-N-pentadecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-ox yl (CAT-15)) were used to monitor membrane fluidity change in bovine platelets induced by three alkyl alcohols, benzyl alcohol and two phenolic compounds. The relationship between the increase in membrane fluidity induced by these compounds and their inhibitory effects on platelet aggregation was observed. Experiments with the four probes showed that n-hexyl alcohol induced decreases in the order parameter of 5-NS and apparent rotational correlation times of the other probes at the same minimal alcohol concentration. The decreases were observed in the concentration range that inhibited aggregation. n-Amyl alcohol and n-butyl alcohol decreased the values of the parameters of the above mentioned only at higher concentrations that were dependent on their hydrophobicities. Like alkyl alcohols, benzyl alcohol and phenolic compounds decreased the values of the parameters in the concentration ranges in which these compounds inhibited platelet aggregation. The concentration of these compounds causing 50% inhibition of platelet aggregation, the IC50 values, and data on 5-NS-labeled platelets indicated that they inhibited aggregation and decreased the value of the order parameter at lower concentrations relative to their Poct values in comparison to the effective concentrations of alcohols. Phenolic compounds also decreased the values of the apparent rotational correlation times of 5-NMS and 16-NMS. These results indicate that the inhibition of platelet aggregation by alcohols and phenolic compounds is due to membrane perturbation in wide range in depths within the lipid bilayer.  相似文献   

6.
Summary The inhibitory effect of various alkanols, benzyl alcohol and phenethyl alcohol on the growth rate of Clostridium acetobutylicum ATCC 824 was investigated. Inhibition of cell growth was studied by treating cultures with varied concentrations of alcohols. There was a threshold concentration above which growth inhibition occurred. The degree of inhibition was a linear function of the alcohol concentration used. The natural logarithm of the inhibition constant was shown to be: (1) a linear function of the chain length of the alkanols, (2) a linear function of the natural logarithm of the octanol/water partition coefficient for both aliphatic and cyclic alcohols.  相似文献   

7.
Wax biosynthetic pathways proceed via the elongation of 16:0 acyl-CoA to very long-chain fatty acids (VLCFA), and by further modifications that include reduction to primary alcohols and formation of alkyl esters. We have analyzed the alkyl esters in the stem wax of ten cer mutants of Arabidopsis thaliana together with the corresponding wild types. Alkyl esters with chain lengths between C(38) and C(52) were identified, and the levels of esters ranged from 0.15 microg cm(-2) in Wassilewskija (WS) to 1.20 microg cm(-2) in cer2. Esters with even numbers of carbons prevailed, with C(42), C(44) and C(46) favoured in the wild types, a predominance of C(42) in cer2 and cer6 mutants, and a relative shift towards C(46) in cer3 and cer23 mutants. The esters of all mutants and wild types were dominated by 16:0 acyl moieties, whereas the chain lengths of esterified alcohols were between C(20) and C(32). The alkyl chain-length distributions of the wild-type esters had a maximum for C(28) alcohol, similar to the free alcohols accompanying them in the wax mixtures. The esterified alcohols of cer2, cer6 and cer9 had largely increased levels of C(26) alcohol, closely matching the patterns of the corresponding free alcohols and, therefore, differing drastically from the corresponding wild type. In contrast, cer1, cer3, cer10, cer13 and cer22 showed ester alcohol patterns with increased levels of C(30), only partially following the shift in chain lengths of the free alcohols in stem wax. These results provide information on the composition of substrate pools and/or the specificity of the ester synthase involved in wax ester formation. We conclude that alcohol levels at the site of biosynthesis are mainly limiting the ester formation in the Arabidopsis wild-type epidermis.  相似文献   

8.
J T McFarland  Y H Chu 《Biochemistry》1975,14(6):1140-1146
New transient kinetic methods, which allow kinetics to be carried out under conditions of excess substrate, have been employed to investigate the kinetics of hydride transfer from NADH to aromatic aldehydes and from aromatic alcohols to NAD+ as a function of pH. The hydride transfer rate from 4-deuterio-NADH to beta-naphthaldehyde is nearly pH independent from pH 6.0 to pH 9.9; the isotope effect is also pH independent with kappa-H/kappaD congruent to 2.3. Likewise, the rate of oxidation of benzyl alcohol by NAD+ changes little with pH between pH 8.75 and pH 5.9; the isotope effect for this process is between 3.0 and 4.4. Earlier substituent effect studies on the reduction of aromatic aldehydes were consistent with electrophilic catalysis by either zinc or a protonic acid. The pH independence of hydride transfer is consistent with electrophilic catalysis by zinc since such catalysis by protonic acid (with a pK between 6.0 and 10.0) would show strong pH dependence. However, protonic acid catalysis cannot be excluded if the pKa of the acid catalyst in the ternary NADH-E-RCOH complex were smaller than 6.0 or smaller than 10.0. The two kinetic parameters changing significantly with pH are the kinetic binding constant for ternary complex formation with aromatic alcohol and the rate of dissociation of aromatic alcohols from enzyme. This is consistent with base-catalyzed removal of a proton from alcohol substrated and consequent acid catalysis of protonation of a zinc-alcoholate complex. The equilibrium constant for hydride transfer from benzaldehyde to benzyl alcohol at pH 8.75 is K-eq equals kappa-H/kappa-H equals 42; this constant has important consequences concerning subunit interactions during liver alcohol dehydrogenase catalysis.  相似文献   

9.
BACKGROUND: Maternal alcohol consumption has been associated with an increased risk of nonsyndromic oral clefts in some studies. Study of gene-environment interaction may provide insight into the reasons for their discrepancies observed. We focused on a polymorphism of the ADH1C gene (third gene of the class I alcohol dehydrogenase family), involved in the metabolism of ethanol and other alcohols. METHODS: Data come from a French case-control study (1998-2001), which tested the association between maternal alcohol consumption during the first trimester of pregnancy and the risk of nonsyndromic oral clefts (240 cases, 236 controls). A case-parent study design looked at the association with an ADH1C polymorphism (Ile349Val site) and potential gene-environment interaction effects. A log-linear model was used to distinguish the direct effect of the child's genotype from the maternally mediated effects. RESULTS: An increased risk of nonsyndromic oral clefts was observed for women who reported drinking alcohol during the first trimester, compared with women who did not. The mutated ADH1C allele carried by the child seemed to have a protective effect against the risk of oral clefts (RRone copy, 0.71; 95% confidence interval [CI], 0.50-1.02; RRtwo copies, 0.63; 95% CI, 0.3-1.3). The maternal genotype played a less important role than the child's, and its action remains unclear. No significant evidence of interaction effects between the ADH1C genotype and maternal alcohol consumption was observed. CONCLUSIONS: Because the ADH1C gene is involved in the metabolic pathways of many alcohols, we propose several hypotheses about the causal pathway, including ethanol oxidation activity and, more probably, retinol oxidation.  相似文献   

10.
Candida albicans, grown aerobically in glucose-containing media, produced C14, C16 and C18 saturated long-chain alcohols only after the end of exponential growth. Contents of C14 alcohols were always lowest, and C16 and C18 alcohol contents about equal. Contents of all three classes of alcohol increased as the concentration of glucose in aerobic cultures harvested after 168 h incubation was raised from 1.0 to 30.0% (w/v). However, in 168 h anaerobic cultures, greatest long-chain alcohol contents in organisms were obtained using media containing 10% (w/v) glucose. Substituting glucose (10%, w/v) with the same concentration of galactose in aerobic cultures greatly decreased contents of long-chain alcohols, while inclusion of 10% (w/v) glycerol virtually abolished their synthesis. Supplementing anaerobic cultures with odd-chain fatty acids induced synthesis of odd-chain alcohols. Maximum conversion of fatty acid to the corresponding long-chain alcohol was observed with heptadecanoic acid. The effect of glucose on production of heptadecanol from exogenously provided heptadecanoic acid was similar to that observed on synthesis of the three major even-chain alcohols in media lacking a fatty-acid supplement. Cell-free extracts of organisms catalysed in vitro conversion of palmitoyl-CoA to 1-hexadecanol.  相似文献   

11.
L-Alanine-initiated germination of Bacillus subtilis spores was inhibited by various kinds of hydrophobic compounds. Good correlation of inhibitory effect with hydrophobicity of the compound was demonstrated by using regression analysis in which the hydrophobic character was expressed by the partition coefficient in an octyl alcohol-water system. The correlation coefficient for 20 alcohols was 0.959, and that for 19 miscellaneous compounds was 0.906. Regression lines of the alcohols and other hydrophobic compounds were almost identical, showing that hydrophobic interaction played an important role in inhibition. Diphenylamine was one of the most effective inhibitors examined. n-Octyl, n-nonyl, and n-decyl alcohols were the most effective alcohols. The mode of inhibition by diphenylamine and n-octyl alcohol was a "mixed type" (competitive plus noncompetitive type) with respect to L-alanine; that by D-alanine was competitive inhibition. Sites for diphenylamine, n-octyl alcohol, and D-alanine may have overlapped. Inhibition was reversible by washing; heat resistance, stainability, and germination rate of the washed spores remained unaltered. Thus, we confirmed that the inhibition may occur before the initial trigger reaction of germination and that it may be due to the interaction between a hydrophobic compound and a hydrophobic region closely associated with the L-alanine receptor site on the spore.  相似文献   

12.
Rhizomorph Formation in Fungi   总被引:1,自引:0,他引:1  
The effect on growth and rhizomorph formation of 12 alcohols (methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, iso-butyl alcohol, tert-butyl alcohol, 1-pentanol, iso-amyl alcohol, ethylene glycol and glycerol) at different concentrations has been examined for 2 isolates of Armillaria mellea (Vahl ex Fr.) Quél. and 1 of Clitocybe geotropa (Bull. ex Fr.) Quél. The fungi were cultivated for 28 days on a synthetic, liquid glucose medium with the alcohols as supplement. The following alcohols strongly stimulated growth and rhizomorph formation: ethanol, 1-propanol and 1-butanol. A great variation was demonstrated between the isolates in relation to rhizomorph production, morphology, and ability to be stimulated by different alcohols.  相似文献   

13.
The influence of polyhydric alcohols (sorbitol, xylitol, erythritol, glycerol) on the thermal stability of Rhizomucor miehei lipase has been studied at high hydrostatic pressure (up to 500 MPa). In the absence of additives, a protective effect (PE) (the ratio between the residual activities determined at 480 MPa for the enzyme in the presence or absence of polyhydric alcohols) of low-applied pressures (from 50 MPa to 350 MPa) against thermal deactivations (at 50°C and 55°C) has been noticed. In the presence of additives, a strong correlation between PE and the total hydroxyl group concentration has been obtained, for the first time, under treatments of combining denaturing temperatures and high hydrostatic pressures. This relationship does not seem to be dependent on the nature polyhydric alcohols as the same effect could be observed with 1 M sorbitol and 2 M glycerol. This PE, against thermal and high pressure combined lipase deactivation, increases with polyhydric alcohol concentrations, and when temperature increases from 25°C to 55°C.  相似文献   

14.
The effects of several short chain alcohols on protein synthesis by intact Saccharomyces cerevisiae var. ellipsoideus cells were studied. The results show that the relative inhibitory potencies correlate well with the size of the carbon backbone, thus suggesting that a hydrophobicity-related effect is involved in the inhibitory action of these alcohols. Additionally, the branching nature of the carbon backbone contributes to determining the action of the alcohol, as proved by the relative potencies of the four-carbon alcohol series.  相似文献   

15.
Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested.  相似文献   

16.
The slow, non-mediated transmembrane movement of the lipid probes lysophosphatidylcholine, NBD-phosphatidylcholine and NBD-phosphatidylserine in human erythrocytes becomes highly enhanced in the presence of 1-alkanols (C2-C8) and 1,2-alkane diols (C4-C8). Above a threshold concentration characteristic for each alcohol, flip rates increase exponentially with the alcohol concentration. The equieffective concentrations of the alcohols decrease about 3-fold per methylene added. All 1-alkanols studied are equieffective at comparable calculated membrane concentrations. This is also observed or the 1,2-alkane diols, albeit at a 5-fold lower membrane concentration. At low alcohol concentrations, flip enhancement is reversible to a major extent upon removal of the alcohol. In contrast, a residual irreversible flip acceleration is observed following removal of the alcohol after a treatment at higher concentrations. The threshold concentrations to produce irreversible flip acceleration by 1-alkanols and 1,2-alkane diols are 1.5- and 3-fold higher than those for flip acceleration in the presence of the corresponding alcohols. A causal role in reversible flip-acceleration of a global increase of membrane fluidity or membrane polarity seems to be unlikely. Alcohols may act by increasing the probability of formation of transient structural defects in the hydrophobic barrier that already occur in the native membrane. Membrane defects responsible for irreversible flip-acceleration may result from alterations of membrane skeletal proteins by alcohols.  相似文献   

17.
Activation parameters for each reaction step in the kinetic mechanism of liver alcohol dehydrogenase have been measured for the oxidation of ethanol and the reduction of acetaldehyde. In the oxidation process, the highest enthalpy of activation, 9.7 kcal/mol, occurs for the turnover of the liver alcohol dehydrogenase-NAD(+)-ethanol ternary complex. To investigate if this enthalpy requirement represents a change in the ionization state of ethanol bound in the ternary complex, inhibition of ethanol oxidation was determined using the following series of small, electronegative alcohols with pKa values ranging from 12.37 to 15.5: 2,2,2-trifluoroethanol, 2,2,2-trichloroethanol, 2,2,2-tribromoethanol, 2,2-dichloroethanol, 2,2-difluoroethanol, propargyl alcohol, 3-hydroxypropionitrile, 2-chloroethanol, 2-iodoethanol, 2-methoxyethanol, ethylene glycol, and methanol. The observed inhibition patterns were analyzed according to several kinetic inhibition models; in each case, the best fit model was used to determine the substrate competitive inhibition constant. A plot of the logarithm of these inhibition constants is shown to be dependent on the pKa values of the inhibiting alcohols with a slope approaching -1, indicating that inhibition is controlled by a proton loss from the alcohol. The observed competitive inhibition behavior, coupled with crystallographic studies depicting a direct ligation of an alcohol oxygen to the catalytic zinc ion, indicates that inhibition is controlled by the formation of a zinc-bound alkoxide. Because the inhibiting alcohols are structurally homologous to ethanol, a relationship between the inhibition constant and the inhibiting alcohol's pKa can be derived to show that the pKa of an alcohol bound in a ternary complex is also dependent on its pKa as a free alcohol. Ternary complex pKa values have been determined for ethanol and the inhibiting alcohols.  相似文献   

18.
The interaction of low molecular weight alcohols with low density lipoprotein (LDL) has been studied using amide I band-fitting, thermal profiling and two-dimensional infrared correlation spectroscopy (2D-IR). At 0.3 M alcohol, no changes in secondary structure are observed. In the presence of 1 M alcohol, ethanol and propanol decreases protein denaturation temperature and produces changes in the amide I thermal profiles of protein components and in the lipid bands. The 2D-IR synchronous map corresponding to protein or lipid component at 20-37 degrees C suggests differences in the presence of propanol. The asynchronous map corresponding to the lipid component indicates changes in bandwidth, compatible with a more fluid environment. In the 37-80 degrees C temperature range the thermal profile is different in the presence of propanol, both for the lipid and protein components. The results presented show that when alcohols affect the protein component, the lipid spectrum also varies pointing to an effect on the lipid-protein interaction.  相似文献   

19.
Otzen DE  Sehgal P  Nesgaard LW 《Biochemistry》2007,46(14):4348-4359
Alcohols modulate the oligomerization of membrane proteins in lipid bilayers. This can occur indirectly by redistributing lateral membrane pressure in a manner which correlates with alcohol hydrophobicity. Here we investigate the direct impact of different alcohol-water mixtures on membrane protein stability and solubility, using the two detergent-solubilized alpha-helical membrane proteins DsbB and NhaA. Both proteins precipitate extensively at intermediate concentrations of alcohols, forming states with extensive (40-60%) beta-sheet structure and affinity for the fibril-specific dye thioflavin T, although atomic force microscopy images reveal layer-like and spherical deposits, possibly early stages in a fibrillation process trapped by strong hydrophobic contacts. At higher alcohol concentrations, both DsbB and NhaA are resolubilized and form non-native structures with increased (DsbB) or decreased (NhaA) helicity compared to the native state. The alternative conformational states cannot be returned to the functional native state upon dilution of alcohol. The efficiency of precipitation and the degree to which DsbB is destabilized at low alcohol concentrations show the same correlation with alcohol hydrophobicity. Thus, in addition to their effect on the membrane, alcohols perturb membrane proteins directly by solvating the hydrophobic regions of the protein. At intermediate concentrations, this perturbation exposes hydrophobic segments but does not provide sufficient solvation to avoid intermolecular association. Resolubilization requires a reduction in the relative dielectric constant below 65 in conjunction with specific properties of the individual alcohols. We conclude that alcohols provide access to a diversity of conformations for membrane proteins but are not a priori suitable for solution studies requiring reversible denaturation of monomeric proteins.  相似文献   

20.
Two-phase partitioning bioreactors (TPPBs) comprise an aqueous phase containing all non-carbon nutrients necessary for microbial growth and a solvent phase containing high concentrations of inhibitory or toxic substrates that partition at sub-inhibitory levels to the aqueous phase in response to cellular demand. This work aimed at eliminating the growth of Pseudomonas putida ATCC 11172 on medium-chain-length (C8-C12) aliphatic alcohols, hence enabling their use as xenobiotic delivery solvents within two-phase partitioning bioreactors. Experiments resulted in the isolation of a mini-Tn5 mutant unable to utilize these alcohols. The mutation, which also eliminated growth on glycerol and ethanol, was identified to be within a homologue of the P aeruginosa agmR gene, which encodes a response regulator. Enzyme analysis of the agmR::Tn5Km mutant cell extracts revealed a 10-fold decrease in pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase activity. A knockout in a gene (exaA) encoding a PQQ-linked alcohol dehydrogenase slowed but did not eliminate growth on medium-chain-length alcohols or ethanol, suggesting metabolic redundancy within P. putida ATCC 11172. Analysis of P. putida KT2440 genome sequence data indicated the presence of two PQQ-linked alcohol dehydrogenase-encoding genes. The successful elimination of alcohol utilization in the agmR mutant indicates control by AgmR on multiple pathways and presents a useful strain for biotechnological applications requiring alcohol non-utilizing microbial catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号