首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four types of experiments on milk secretion herein described really fall into one general class so far as the physiological effects produced are concerned. Starvation lowers the blood sugar and raises the osmotic pressure of the blood. The experiment using parathyroid hormone with or without starvation may have its effects interpreted as simply due to starvation since 1000 units of this hormone produced no visible effects on the blood calcium or milk constituents different from those of starvation. Since insulin produces a marked and rapid drop in blood sugar it too may be looked upon as a rapid starvation effect. It has some other important effects, however. Briggs et al. (21) have shown that potassium and phosphorus of the blood are decreased and Luck, Morrison, and Wilbur (22) indicate a reduction in the amino acids of the blood in insulin treatment. Phloridzin lowers the threshold for sugar retention with the consequence that in time it tends to lower the sugar of the blood to an even greater extent than that noted in starvation. It tends to depress the potassium, to increase the phosphorus content of the blood, and to cause the body to burn protein rather than carbohydrate, thus increasing nitrogen excretion. All of the experiments are characterized by a sharp reduction in the milk yield. Cary and Meigs (23) have studied like reductions in milk yield produced by varying the energy or protein of the diet. They conclude that such decrease in milk production may be interpreted as due to the direct effect of the starvation and the consequent reduction of the energy and protein available to milk secretion. The reduction in milk yield for the experiments herein described can undoubtedly be attributed to the same causes as those cited by Cary and Meigs. The experiment where Cow 47 was given a full ration and at the same time injected with large quantities of insulin is of particular interest in this connection. The ration was adequate and the cow ate well, yet her production declined to a fifth of her normal milk yield. Her chart shows that there was a slight reduction in her blood sugar when insulin was introduced into the blood stream. It seems furthermore likely that this sugar was not as available to milk secretion, since there appears to be more than a corresponding drop in the lactose content of the milk. The work of Luck et al. would seem to indicate that there should be a like drop in the amino acids of the blood. These two conditions would lead, according to the work of Cary and Meigs, to a reduction in the concentration of the nitrogen of the milk. Actually, in the experiment as it was performed, the nitrogen increased to a value about 40 per cent above normal. A somewhat similar conflict is noted in two of the other three insulin experiments where starvation accompanied insulin injection. To this extent it would seem that the factor deserving most emphasis in its immediate effect on milk yield is the energy available, and that the later and more secondary factor is the amino acid concentration of the blood. In the starvation experiments, the butter fat percentage of the milk rises rather uniformly with the duration of starvation. In the insulin experiments, however, the charts appear to show a marked reduction in this butter fat percentage immediately after the introduction of insulin. This is particularly noticed after the second and third injections. Since the dextrose of the blood tends to be reduced and made unavailable to the general physiological processes by the presence of the large excess of insulin, and since this reduction of the butter fat percentage is noted as an accompanying phenomenon, it would appear that the blood dextrose plays a part in the synthesis of milk fat as well as being the source of the milk lactose, possibly as a source of energy in converting body fat to butter fat. In this regard the results for the treatment of Cow 47 with phloridzin are of importance. As noted by others, the introduction of phloridzin causes a marked rise in the fat percentage of the milk. The lactose per cent is also higher than that noted in starvation. Since phloridzin, by lowering the threshold for the blood sugar, causes large quantities of it to be drained from the body through the urine, and therefore reduces the reserve supply, it follows that if the insulin hypotheses are correct we should expect an eventual lowering of the lactose and of the fat below the starvation level. During the last of the experiment this is what was actually observed. The effects of starvation and of insulin furnish concordant proof for the theory that the lactose of milk is derived from the sugar of the blood. The fact that the different constituents of the milk, the fat, the lactose, the nitrogen, and the ash, do not exactly parallel each other in their behavior throughout these experiments indicates that they have in all probability separate origin. This is particularly true of the butter fat percentage, which appears to have a rate of secretion which is more or less independent of the other constituents, and higher in amount. This result would fall in line with the conclusion of the writers in a previous paper in which it was indicated that the fat of the blood was very likely deposited in the udder as fat corresponding to body fat from which source it was metabolized into the fat of milk shortly before it was needed for milk secretion. The wide variation brought about in the constituents of the milk by the treatment all point to the conclusion that in milk secretion a balance is maintained between the osmotic pressure of the milk and of the blood. Thus when the sugar of the milk is reduced either through starvation or by insulin the ash constituents rise to compensate for this reduction and make the osmotic pressure of the milk similar to that of the blood. These results further appear to indicate that the salts and the sugars are more or less independent in their passage and metabolism into milk from the other constituents. These observations are therefore in line with those obtained by Jackson and Rothera (14) and by Davidson (15) in their brilliant experiments where they modified milk secretion by returning milk or milk sugars and salts to the udder. These experiments give direct proof for the conclusion that modifications of the blood of dairy cattle produce direct and predictable modification of the milk secreted.  相似文献   

2.
The milk yield and composition was studied during the first three lactations of a group of rats. Milk yield increased steadily throughout the three lactations, but was somewhat lower during the first than subsequent lactations. Protein concentration was similar during all three lactations and varied little with stage of lactation. In contrast the lactose concentration, which was reasonably constant for the first 8 days post partum, increased thereafter two-fold by the end of the period studied in all three lactations. However, the N-acetyl-neuraminyl lactose concentration showed somewhat reciprocal changes. Considerable variations in the triacylglycerol concentration was found during the first lactation but few changes were observed during subsequent lactations. The free fatty acid concentration was at all times low and showed no significant changes during or between lactations. At most stages of lactation in raw milk, the major fatty acids are palmitate, oleate and linoleate. However, as lactation progresses there is an increase in the proportion of medium-chain saturated fatty acids and a corresponding decrease in the proportion of long chain unsaturated fatty acids in milk fat. Clearly the composition of milk is not invariable but changes both during and between lactations. Such changes may be expected to have some influence on the metabolism of the offspring.  相似文献   

3.
The results herein presented furnish exact critical evidence for one more stage in milk secretion. Cows producing up to 30 pounds of milk at one milking are shown to have the lactose equivalent of all this milk in the udder when milking commences. The average excess of lactose found in the udder after subtracting the amount necessary for the contained milk is equal to 2.1 pounds. This represents the milk retained in the udder when the cow is believed to be dry. These conclusions are further supported by the fact that no sugar is found in the udder in the quiescent state. The study of the total composition of the udder as fat, ash, nitrogen, and lactose, and of the contained milk shows that there is a large excess of fat, ash, and nitrogen in proportion to that necessary for milk formation. The excess of udder lactose over the milk lactose is much less. The lactose would therefore appear to be formed from some element in the blood, probably dextrose, only as needed for the formation of milk. The composition of the dry udder is quite different in certain respects from that of the actively secreting gland. It builds up a fat reserve of a quite different Reichert-Meissl number from that of butter-fat. It has no sugar, its ash content is reduced, and the nitrogen content is like that of the secreting gland.  相似文献   

4.
Milk yield and composition of major milk constituents were measured in captive, nursing reindeer. Registration of milk production was performed during two successive lactations (2001 and 2002). The milk yield was significantly affected by week of lactation (P<0.001) and by individual (P<0.001). The lactation curve had an asymmetrical peak 3 weeks postpartum and the milk yield at peak lactation was 983 g/day (range 595-1239). The length of lactation varied from 24 to 26 weeks and average total milk production was 99.5 kg. From peak lactation the milk production decreased linearly (P<0.001) until milk production was terminated. Mean values for content of major milk constituents were 15.5% fat, 9.9% protein and 2.5% lactose. The content of fat and protein increased markedly with the lactation stage (P<0.001), while lactose showed a slight decrease (P<0.001). The milk composition was significantly affected by stage of lactation (P<0.001). There was a marginally significant decrease in protein:fat ratio (P=0.06) as protein was substituted by fat with stage of lactation. The caloric value of the milk averaged 8.7 kJ/g and increased significantly with the stage of lactation (P<0.001). The overall increase in milk gross energy content during lactation was 67.6%. The energy output averaged 7996 kJ/day at peak lactation and decreased significantly during the course of lactation (P=0.002).  相似文献   

5.
We have investigated, in mice, an in vivo method for producing low-lactose milk, based on the creation of transgenic animals carrying a hybrid gene in which the intestinal lactase-phlorizin hydrolase cDNA was placed under the control of the mammary-specific alpha-lactalbumin promoter. Transgenic females expressed lactase protein and activity during lactation at the apical side of mammary alveolar cells. Active lactase was also secreted into milk, anchored in the outer membrane of fat globules. Lactase synthesis in the mammary gland caused a significant decrease in milk lactose (50-85%) without obvious changes in fat and protein concentrations. Sucklings nourished with low-lactose milk developed normally. Hence, these data validate the use of transgenic animals expressing lactase in the mammary gland to produce low-lactose milk in vivo, and they demonstrate that the secretion of an intestinal digestive enzyme into milk can selectively modify its composition.  相似文献   

6.
The purpose of this survey was to describe the occurrence of bovine mastitis caused by Prototheca zopfii in Goiás State, Brazil. Samples of milk, environment and udder were taken from a herd of 120 Holstein cows. Sabourauds dextrose agar plates were incubated under aerobic conditions at 37 °C/96 h, for microbiological analysis. Somatic cell count and milk composition were also determined. Histological sections from two udders were stained with HE and PAS. Prototheca zopfii was identified in six cows whose milk had a watery appearance. They also showed a pronounced decrease in milk yield, fat and lactose. Pronounced infiltration of mononuclear cells, atrophy of alveoli and fibrosis were observed. The presence of this agent in other herds in the State is highly likely.  相似文献   

7.
1. Concentrations and compositions of liver, serum and milk lipids of cows were measured during 6 days' starvation and serum lipids during 60 days' re-feeding. 2. The concentration of free fatty acid in serum increased fivefold during starvation. 3. The content of total lipid in liver (g/100g of liver dry matter) doubled owing to a 20-fold increase in triglyceride, an eightfold increase in cholesterol ester, a three fold increase in free fatty acid and a 20% increase in cholesterol. There were no changes in the content or composition of liver phospholipids. 4. Starvation lowered the concentrations of total lipid, phospholipid and cholesterol ester of dextran sulphate-precipitable serum lipoproteins. Total lipid and cholesterol ester concentrations in lipoproteins of d greater than 1.055 and in lipoproteins not precipitable by dextran sulphate decreased from day 4 of the starvation period and during the first 20 days' re-feeding. 5. During starvation there were decreases in percentages of stearic acid and increases in oleic acid in serum free fatty acids and triglycerides and in liver neutral lipid. 6. Throughout starvation total milk lipid yield decreased, yields and percentages of C4-14 fatty acids decreased and percentages of C18 fatty acids increased. 7. It is suggested that accumulation of triglyceride in liver may be caused by increased uptake of plasma free fatty acids without corresponding increase in lipoprotein secretion.  相似文献   

8.
In order to determine the effects of a varied level of dietary energy intake during pregnancy and lactation on milk yield and composition, first, second and fourth parity sows (Large White x German Landrace) were provided with energy at a level of either: (i) 100% of ME requirement (MEreq) during pregnancy and lactation, (ii) 120% MEreq during pregnancy and 80% during lactation, and (iii) 80% MEreq during pregnancy and 120% during lactation. In spite of equal target levels feed analysis revealed that gestating first parity sows with 120/80 treatment combination and lactating sows of 80/120 treatment combination received 25, and 11-17% more digestible N than in the respective 100/100 treatment combination. Irrespective of this 120/80 sows responded with the highest milk DM, fat, and energy contents, and the lowest lactose concentrations whereas protein levels where not affected, irrespective of parity (p < 0.05). Milk yield of sows in 1st and 4th lactation was 85 and 106% of that in 2nd lactation, respectively. Average milk composition was 18.1% DM, 4.9% protein, 6.8% fat, 5.6% lactose, and 0.8% ash. Milk composition changes ceased at day 7 of lactation with a reduction of milk GE and protein, and an increase of lactose content. Concentrations of threonine, arginine, valine, leucine, tyrosine, phenylalanine, cystine, and tryptophan, as well as stearic, oleic, and linoleic acid were higher in colostrum than in milk at later lactation stages. In contrast, laurine, myristic, palmitic, and palmitoleic acids were lower concentrated in colostrum. In conclusion, these results illustrate the importance of body reserve mobilization for milk production in sows and indicate that low energy supply during gestation cannot be compensated by higher energy supply during lactation.  相似文献   

9.
The effects of Depoprovera and Deladroxone were studied in humans, on certain milk components as well as on the growth of the nursed infants. Both drugs caused reduction in milk yield. Both drugs caused an increase in the concentration of milk total proteins, however. Depoprovera caused an increase while Deladroxone caused a decrease in the total amount of milk proteins per feed. Depoprovera showed no effect while Deladroxone caused an increase in the concentration of milk lipids; however, both drugs caused reduction in the total amount of milk lipids per feed. Both drugs showed no effect on the concentration of milk lactose, but caused reduction in the total amount of milk lactose per feed. The percentage increase in weight of nursed infants was decreased by Depoprovera, but not affected by Deladroxone.  相似文献   

10.
Abstract

In order to determine the effects of a varied level of dietary energy intake during pregnancy and lactation on milk yield and composition, first, second and fourth parity sows (Large White × German Landrace) were provided with energy at a level of either: (i) 100% of ME requirement (MEreq) during pregnancy and lactation, (ii) 120% MEreq during pregnancy and 80% during lactation, and (iii) 80% MEreq during pregnancy and 120% during lactation. In spite of equal target levels feed analysis revealed that gestating first parity sows with 120/80 treatment combination and lactating sows of 80/120 treatment combination received 25, and 11 – 17% more digestible N than in the respective 100/100 treatment combination. Irrespective of this 120/80 sows responded with the highest milk DM, fat, and energy contents, and the lowest lactose concentrations whereas protein levels where not affected, irrespective of parity (p < 0.05). Milk yield of sows in 1st and 4th lactation was 85 and 106% of that in 2nd lactation, respectively. Average milk composition was 18.1% DM, 4.9% protein, 6.8% fat, 5.6% lactose, and 0.8% ash. Milk composition changes ceased at day 7 of lactation with a reduction of milk GE and protein, and an increase of lactose content. Concentrations of threonine, arginine, valine, leucine, tyrosine, phenylalanine, cystine, and tryptophan, as well as stearic, oleic, and linoleic acid were higher in colostrum than in milk at later lactation stages. In contrast, laurine, myristic, palmitic, and palmitoleic acids were lower concentrated in colostrum. In conclusion, these results illustrate the importance of body reserve mobilization for milk production in sows and indicate that low energy supply during gestation cannot be compensated by higher energy supply during lactation.  相似文献   

11.
For dairy cattle on pasture in temperate regions, it is largely unknown to what degree hot summer conditions impact energy metabolism, milk yield and milk composition and how effective shade is in reducing these negative effects. During the summer of 2012, a herd of Holstein cows was kept on pasture without access to shade (treatment NS). During the summers of 2011 and 2013, the herd was divided into a group with (treatment S) and a group without (treatment NS) access to shade. Shade was provided by young trees combined with shade cloths (80% reduction in solar radiation). A weather station registered the local climatic conditions on open pasture, from which we calculated daily average Heat Load Index (HLI) values. The effects of HLI and shade on rectal temperature (RT), blood plasma indicators of hyperventilation and metabolic changes due to heat stress, milk yield and milk composition were investigated. RT increased with increasing HLI, but was less for S cows than for NS cows (by 0.02°C and 0.03°C increase per unit increase of HLI, respectively). Hyperchloraemia (an increased blood plasma concentration of Cl), a sign of hyperventilation, increased for NS cows but not for S cows. The plasma concentration of alkaline phosphatase, a regulator of energy metabolism in the liver, decreased with increasing HLI for NS cows only. Access to shade, thus, reduced the effect of HLI on RT, hyperchloraemia and the regulation of metabolism by the liver. As HLI increased, the plasma concentration of cholesterol decreased (indicating increased lipolysis) and the plasma concentration of creatinine increased (indicating increased protein catabolism). These effects did not differ between S and NS cows. For NS cows, after a lag-time of 2 days, the milk yield decreased with increasing HLI. For S cows, the milk yield was unaffected by HLI and its quadratic factor. The milk concentrations of lactose, protein and fat decreased as HLI increased, but only the effect on milk protein content was remediated by shade. In conclusion, access to shade tempered the negative effects of high HLI on RT, hyperchloraemia and a blood plasma indicator of changing energy metabolism (generally) as well as prevented the decrease in milk yield observed in cows without access to shade.  相似文献   

12.
Blood protein concentration in the western rock lobster, Panulirus longipes (Milne Edwards), decreased with starvation, but this decrease was due to increase in blood space as solid tissues were metabolized. The total amount of blood protein remained constant during starvation and throughout the moulting cycle, and may be used as a reliable measure of blood volume. No qualitative changes could be detected in blood protein constituents either during starvation or during the moulting cycle.Concentrations of blood non-protein amino acids were also related to blood volume, but there was a small, significant decrease in total amount after 4 weeks starvation.Concentrations of blood non-precipitatable total carbohydrates and blood glucose did not change significantly with starvation, but there were large changes due to the stress of handling.The water content of whole legs, whole abdomen, and abdominal muscle increased significantly with starvation. Protein and non-protein amino-acid concentrations in leg muscle did not change, but protein concentration in abdominal muscle was significantly lowered. Of all solids, those of the digestive gland showed the greatest decrease during starvation.It is concluded that quantitative measurements of blood constituents are meaningless unless related to blood volume. Blood total protein in conjunction with whole leg water content could provide a practical, simple, and non-destructive means of assessing nutritional state in populations of larger rock lobsters if the moulting history were precisely known, but would not be of use for smaller juveniles because of their relatively high moulting frequency. Other constituents (blood amino-acid or abdominal muscle protein concentrations, digestive gland solids, whole abdomen weights) are either not feasible as a field method or involve destruction of the animal. No satisfactory single index of nutritional state, suitable for field use with wild populations, has been found.  相似文献   

13.
1. Progressive changes in the composition of milk from rats has been studied from day 0 to 20 of lactation and for 3 days following separation of the dams and pups at day 20 post partum. 2. The changes in concentration of Na, K and lactose suggested that secretion both prepartum and following weaning occurred by a paracellular mechanism whereas a transcellular pathway existed during established lactation. 3. The concentration of total protein and casein increased gradually throughout lactation. In contrast, the concentration of serum albumin increased and transferrin decreased markedly during early lactation. The fat content of milk declined 3-fold within 5 days of birth but the concentration of Ca, Mg and inorganic P increased. The concentration of each of these milk constituents remained constant during established lactation. 4. Following weaning the pronounced decline in lactose, K and inorganic P was negatively correlated with an increase in all other milk constituents except fat. 5. Rats fed a low energy diet produced milk with a lower fat content but with an unaltered concentration of protein and carbohydrate. The growth rate of these litters was similar for the first 5 days of lactation when compared to litters from dams fed a high energy diet. The growth rate of litters thereafter and following weaning was greater for rats fed a high energy diet.  相似文献   

14.
The relationship between lactose starvation and cryotolerance was investigated in Lactobacillus acidophilus RD758. Cryotolerance was measured from the acidification activity of cells recovered after 18-h lactose starvation. It was compared to that of nonstarved cells, both of them in a stationary phase and in the same medium. This measurement allowed quantifying the initial acidification activity before freezing, as well as the loss of acidification activity during freezing and the rate of loss during frozen storage. Even if initial acidification activity was similar for nonstarved and starved bacteria, the latter displayed a significantly better resistance to freezing and frozen storage at -20°C. To investigate the mechanisms that triggered these cryotolerance phenomena, the membrane fatty acid composition was determined by gas chromatography, and the proteome was established by 2-D electrophoresis, for starved and nonstarved cells. The main outcome was that the improved cryotolerance of starved cells was ascribed to two types of physiological responses as a result of starvation. The first one corresponded to an increased synthesis of unsaturated, cyclic, and branched fatty acids, to the detriment of saturated fatty acids, thus corresponding to enhanced membrane fluidity. The second response concerned the upregulation of proteins involved in carbohydrate and energy metabolisms and in pH homeostasis, allowing the cells to be better prepared for counteracting the stress they encountered during subsequent cold stress. These two phenomena led to a cross-protection phenomenon, which allowed better cryotolerance of Lb. acidophilus RD758, following cellular adaptation by starvation.  相似文献   

15.
The effect of 24-hr starvation on the amino acid pool composition and its concentration ratios with respect to blood and plasma as well as the activities of alanine, aspartate and branched chain amino acid transaminases, glutamate dehydrogenase, glutamine synthetase and adenylate deaminase have been studied in rat brown adipose tissue. Starvation induced a considerable decrease of pool amino acid concentration. Alanine and taurine were the amino acids in which the decrease was more marked. Small changes were observed in the activities of the enzymes studied, with decreases only in glutamate dehydrogenase and adenylate deaminase. These changes agree with a decrease in amino acid utilization in this tissue induced by starvation.  相似文献   

16.
The concentrations of free and total (free plus albumin bound) tryptophan were measured in plasma of blood taken from the portal vein, hepatic vein and abdominal aorta of male rats, fed, and starved for one and three days. Liver and brain tryptophan concentrations were measured in similar groups of rats.On starvation, there was an increase in arterial plasma free tryptophan concentration which took place peripherally and was paralleled by an increase in brain tryptophan. In both the fed and starved rats, the portal vein concentrations of free tryptophan were high and as the blood flowed through the liver they were reduced to relatively low levels not directly related to the arterial values. All these changes were due to alterations in degree of binding of tryptophan to plasma albumin.The measurements of plasma total tryptophan concentrations showed that postabsorptively and during starvation there was a net uptake of tryptophan by the peripheral tissues (which included brain), but no overall fall in plasma concentration. At the same time, there was a net release from the liver, and to a lesser extent from the portal-drained tissues. The released tryptophan largely entered the albumin bound plasma pool. Accompanying the hepatic output was a fall in tryptophan concentration in the liver which was apparently caused by altered cell membrane transport.The results suggest (1) that the liver protects the brain from the high free tryptophan level in portal blood, (2) that the availability of tryptophan to the brain is maintained postabsorptively and during starvation by hepatic output into the albumin bound pool and (3) that this release of tryptophan from the liver and the fall in intracellular tryptophan concentration are initiated by altered membrane transport. The pattern of changes is consistent with a role for tryptophan in the mediation of changes in liver protein synthesis and gluconeogenesis and cerebral serotonin turnover on starvation.  相似文献   

17.
Much emphasis has been put on evaluating alterations in milk composition caused by clinical and subclinical mastitis. However, little is known about changes in milk composition during subclinical mastitis in individual udder quarters with a low-to-moderate increase in milk somatic cell count (SCC). This information is needed to decide whether milk from individual udder quarters with a moderate-to-high increase in milk SCC should be separated or not. The aim of this study was to determine how milk composition in separate udder quarters is affected when cow composite milk has low or moderately increased SCC levels. Udder quarter and cow composite milk samples were collected from 17 cows on one occasion. Milk yield was registered and samples were analyzed for SCC, fat, total protein, whey proteins, lactose, citric acid, non-protein nitrogen (NPN), lactoferrin, protein profile, free fatty acids (FFAs), lactate dehydrogenase (LDH), proteolysis, sodium and potassium. Bacteriological samples were collected twice from all four quarters of all cows. The cows were divided into three groups depending on their SCC at udder quarter level. The first group comprised healthy cows with four udder quarters with low SCC, <50 000 cells/ml; composition was equal when opposite rear and front quarters were compared. In the second and the third groups, cows had one udder quarter with 101 000 cells/ml < SCC < 600 000 cells/ml and SCC > 700 000 cells/ml, respectively. The remaining udder quarters of these cows had low SCC (<100 000 cells/ml). Despite the relatively low average cow composite SCC = 100 000 cells/ml of Group 2, milk from affected udder quarters exhibited lower casein number, content of lactose and β-casein (β-CN), while the content of whey protein, sodium, LDH and α-lactoalbumin (α-la) were higher compared to healthy opposite quarters. In addition to these changes, milk from affected udder quarters in Group 3 also exhibited lower values of potassium and αs1-casein (αs1-CN) and higher values of lactoferrin when compared to milk from opposite healthy quarters. This indicates that even when the SCC in cow composite milk is low, there might exist individual quarters for which milk composition is changed and milk quality impaired.  相似文献   

18.
Deoxyribonucleic acid base composition of some members of the Micrococcaceae   总被引:14,自引:7,他引:7  
Auletta, Angela E. (Catholic University, Washington, D.C.), and E. R. Kennedy. Deoxyribonucleic acid base composition of some members of the Micrococcaceae. J. Bacteriol. 92:28-34. 1966.-Thirty-seven strains from the genera Micrococcus, Staphylococcus, Gaffkya, and Sarcina were examined for deoxyribonucleic acid base composition and biochemical activity. Organisms were tested for production of catalase, coagulase, deoxyribonuclease, oxidase, phosphatase, hydrogen sulfide, indole, and acetoin; nitrate reduction; gelatin, starch, and urea hydrolysis; citrate and ammonium phosphate utilization; NaCl tolerance; growth at 10 and 45 C, and growth in litmus milk. They were tested for production of acid from dextrose and mannitol under anaerobic conditions, and for aerobic production of acid from dextrose, mannitol, lactose, sucrose, raffinose, maltose, xylose, and glycerol. Organisms could be divided into two groups on the basis of guanine-cytosine (GC) content. Group I had an average GC content of 32%, and included all organisms which produced acid from dextrose. Group II had an average GC content of 62%, and included those organisms incapable of producing acid from dextrose under anaerobic conditions. Sarcina ureae had a GC content of 43%.  相似文献   

19.
Nutrition modulates both production and composition of milk. Milk composition was studied in rats chronically fed a diet without additional lipids, and therefore eating only traces of the recommended supply of essential polyunsaturated fatty acid. Despite a large decrease in milk-protein synthesis, only protein composition, but not protein concentration, was found to change in the milk of rats following a lipid-deprived diet. Correlatively, we observed a substantial increase in the lactose concentration of milk. Analysis of milk proteins by two-dimensional electrophoresis demonstrated that the relative proportion of the various molecular forms of κ-casein, an O-glycosylated protein, was modified in the milk of rats receiving the lipid-deprived diet. In tissues, differences in the two-dimensional pattern of κ-casein between control and lipid-deprived rats were similar, if not identical. In contrast to κ-casein, the molecular forms of α-lactalbumin, an N-glycosylated protein, were not affected by the diet. These data provide evidence that O-glycosylation of milk proteins in the secretory pathway of mammary epithelial cells is modulated by the lipid content of experimental diets.  相似文献   

20.
1. The purpose of this study was to determine the nature of the metabolic changes associated with carbohydrate and fat metabolism that occurred in the blood and liver of lactating dairy cows during starvation for 6 days. 2. During starvation, the blood concentrations of the free fatty acids and ketone bodies increased, whereas that of citrate decreased. After an initial increase, the blood concentration of glucose subsequently declined as starvation progressed. Starvation caused a significant decrease in the plasma concentration of serine and a significant increase in that of leucine. 3. After 6 days of starvation the hepatic concentrations of oxaloacetate, citrate, phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, glucose, glycogen, ATP and NAD+ had all decreased, as had the hepatic activities of phosphopyruvate carboxylase (EC 4.1.1.32) and pyruvate kinase (EC 2.7.1.40). 4. The above metabolic changes are similar to those previously found to occur in cows suffering from spontaneous ketosis (Baird et al., 1968; Baird & Heitzman, 1971). 5. Milk yield decreased progressively during starvation. 6. There were marked differences in the ability of individual animals to resist the onset of severe starvation ketosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号