首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is found that for Enterococcus hirae ATCC9790 bacteria grown in anaerobic conditions, one-hour exposure to low-intensity (radiant power of 0.06 mW/cm2) coherent extremely high frequency electromagnetic radiation (from 45 to 53 GHz), or millimeter electromagnetic radiation, leads to an appreciable increase in latent growth time and to a decrease in specific growth rate; herein, the effects intensify as the frequency increases from 49 to 53 GHz. The result is enhanced at an increase in the radiation duration from 30 min to 1 h; however, a further increase in the exposure time up to 2 h does not lead to intensification of the effect. It is shown that the effect of extremely high frequency electromagnetic radiation on Enterococcus hirae does not depend on pH of the medium (pH 6.0 or 8.0). It may be expected that these bacteria have protective or reparation mechanisms that compensate long-term action of this radiation; it is not improbable that various mechanisms of pH regulation are present as well.  相似文献   

2.
Gracilariopsis tenuifrons is a red alga living in the upper intertidal zone of Playa de Carmen (Quintana Roo, Mexico), where abiotic stressors occur over the year. A high antioxidant capacity has been previously demonstrated for G. tenuifrons from the Mexican Caribbean. In this study, we evaluated the photosynthetic activity, pigment composition and antioxidant activity of G. tenuifrons under different culture conditions. G. tenuifrons was submitted to different irradiance intensities (100 and 1,000 μmol photons m?2 s?1), UV-B radiation and two nitrogen treatments (enriched and non-enriched). An effective defence system against oxidative stress in G. tenuifrons was induced by UV-B radiation coupled with high photosynthetically active radiation (PAR) with an increase in chlorophyll a, carotenoids content and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) and Folin-Ciocalteu antioxidant assays). Our study has confirmed the hypothesis that G. tenuifrons is a stress-tolerant tropical species, and its tolerance strongly depends on nitrogen availability in the medium.  相似文献   

3.
Here we test for the possible coupling of two kairomone-induced, anti-fish defences in Daphnia, life-history changes (LHC) and diel vertical migration (DVM) mediated by the environmental factor light. A gradient of five different light intensities that represents naturally occurring intensities in the lake water column was used in life-history experiments, and we show that LHC of a single Daphnia clone are inversely coupled to the ambient light intensity. Furthermore, we could show that the light intensity has to exceed a threshold to induce the LHC. We also observed an effect of the light intensity on the fish kairomone-mediated expression of a candidate gene (actin 3) in a way that the gene response differs between groups of low and high light intensities. We argue that the ambient light intensity an individual is exposed to and that is dependent on the position in the water column of a lake inversely determines the degree of LHC. These findings suggest a plastic coupling of these two anti-fish defences in Daphnia (LHC and DVM), which allows for an adjustment to fluctuating environments of standing freshwater ecosystems.  相似文献   

4.
Previous studies have shown that isolates of Chattonella marina from Australia and Japan exhibit differences in tolerance to high intensities of visible light. Here we show that the Australian strain of C. marina produces around five times more UV-absorbing mycosporine amino acids (MAAs) than the Japanese strain. This corresponds with 66% increased growth by the Australian strain under UVB exposure compared to no UV exposure. The MAA mycosporine-glycine, which reportedly acts as an antioxidant, was found in high quantity (110 fg cell-1) in the Australian but was absent in the Japanese strain. In contrast, changes in the concentration of violaxanthin and zeaxanthin per cell were 4.7-4.8 times greater in the Japanese relative to the Australian strain suggesting that the Japanese strain uses a xanthophyll cycle to moderate inhibition by high photosynthetically active radiation (PAR) irradiance. Increased MAA production under high irradiance was also observed in other Australian strains of Chattonella, but not noted in other Japanese strains suggesting ecophenotypic adaptation due to differing environmental conditions.  相似文献   

5.
A critical step in the analysis of images is identifying the area of interest e.g. nuclei. When the nuclei are brighter than the remainder of the image an intensity can be chosen to identify the nuclei. Intensity thresholding is complicated by variations in the intensity of individual nuclei and their intensity relative to their surroundings. To compensate thresholds can be based on local rather than global intensities. By testing local thresholding methods we found that the local mean performed poorly while the Phansalkar method and a new method based on identifying the local background were superior. A new colocalization coefficient, the Hcoef, highlights a number of controversial issues. (i) Are molecular interactions measurable (ii) whether to include voxels without fluorophores in calculations, and (iii) the meaning of negative correlations. Negative correlations can arise biologically (a) because the two fluorophores are in different places or (b) when high intensities of one fluorophore coincide with low intensities of a second. The cases are distinct and we argue that it is only relevant to measure correlation using pixels that contain both fluorophores and, when the fluorophores are in different places, to just report the lack of co-occurrence and omit these uninformative negative correlation. The Hcoef could report molecular interactions in a homogenous medium. But biology is not homogenous and distributions also reflect physico-chemical properties, targeted delivery and retention. The Hcoef actually measures a mix of correlation and co-occurrence, which makes its interpretation problematic and in the absence of a convincing demonstration we advise caution, favouring separate measurements of correlation and of co-occurrence.  相似文献   

6.
The responses of seedlings to solar radiation, including ultraviolet (UV), were investigated for Rhynchospora alba, an early colonizer, and Molinia japonica, a late colonizer, in a mined peatland in northern Japan. The solar radiation and rainfall were, respectively, higher and lower in 2008 than in 2009 during the field surveys. The seedlings were transplanted to bare ground, and measurements were made of the biomass, the allocation of biomass to shoots and roots, the absorbance of ultraviolet A and ultraviolet B, and the concentrations of anthocyanin and chlorophyll. R. alba did not change its biomass in response to any solar radiation treatment in 2008 and decreased shoot biomass with low UV and decreased root biomass with shade in 2009. Additionally, M. japonica did not change its biomass in 2008 but decreased its root biomass with low UV in 2009. The chlorophyll concentration of R. alba did not change in 2008 or 2009, whereas the chlorophyll concentration of M. japonica increased with decreased solar radiation, including UV. The UV absorbance of R. alba decreased under shade and with high peat moisture. In contrast, the content of UV-absorbing substances remained unchanged in M. japonica. Therefore, R. alba, the early colonizer, adapted more to strong solar radiation by changing its shoot-root allometry and producing UV-absorbing substances, whereas M. japonica, the late colonizer, tended to respond more to peat moisture. These differing responses to solar radiation and peat moisture may explain the temporal patterns of species replacement from early to late colonizers.  相似文献   

7.
A filamentous, gliding, thermophilic bacterium, found growing abundantly as a surface mat in a limited number of alkaline hot springs in Oregon, is described and designated F-1. The bacteria were studied in the field and in coculture with an aerobic chemoheterotroph. The bacteria are phototrophic and contain bacteriochlorophyll a and several carotenoid pigments. Unlike the other gliding phototrophic bacteria, members of the family Chloroflexaceae, F-1 does not contain chlorosomes or bacteriochlorophyll c or d. The light-dependent uptake of simple organic compounds (acetate and glucose) was demonstrated in field populations. Near-infrared radiation sustained this uptake, which occurred equally well under aerobic or anaerobic conditions and was insensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The bacteria formed conspicuous dominant mats from about 35 to 56°C, and they covered mats of cyanobacteria in the spring, summer, and autumn months. It appears that they depend on high light intensities to maintain a dense population.  相似文献   

8.
The effects of cyanide and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on photosynthesis and respiration of intact chlorophyllic moss (Funaria hygrometrica) spore was investigated. Thirty micromolar cyanide strongly inhibited dark respiration, was without effect on photosynthesis at high light intensities (above the saturation plateau values), and stimulated photosynthesis at low light intensities (below the saturation plateau values). Three hundred nanomolar DCMU inhibited the photosynthesis and was without effect, even under light conditions, on the dark respiration. It seems likely, therefore, that in the chlorophyllic moss spore the cytochrome oxidase pathway is not functioning under high light intensities unless the photosynthesis is inhibited by DCMU.  相似文献   

9.
Ultraviolet B (UVB, 280-315 nm) radiation is detrimental to both of larvae of the digenetic trematode Schistosoma mansoni and its snail intermediate host, Biomphalaria glabrata. We explored effects of UVB on three aspects of the interaction between host and parasite: survival of infected snails, innate susceptibility and resistance of snails to infection, and acquired resistance induced by irradiated miracidia. Snails infected for 1 week showed significantly lower survival than uninfected snails following irradiation with a range of UVB intensities. In contrast to known immunomodulatory effects in vertebrates, an effect of UVB on susceptibility or resistance of snails to infection could not be conclusively demonstrated. Finally, exposure of susceptible snails to UVB-irradiated miracidia failed to induce resistance to a subsequent challenge with nonirradiated miracidia, a result similar to that reported previously with ionizing radiation.  相似文献   

10.
Although light trap can be used to control pest populations, they can also kill the natural enemies of pests. Scleroderma guani (Hymenoptera: Bethylidae) is a parasitoid of a bark-weevil Pissodes punctatus (Coleoptera: Curculionidae). To understand the phototactic behavior of S. guani, we investigated its diurnal and nocturnal behavior, then examined its phototactic response to nine monochromatic lights and to five intensities of the two most attractive lights. Our results showed that S. guani is most active during the day, while remain still in a dark room or at night. S. guani showed a positive response both to a broad spectrum of monochromatic light and total light (natural light), which implies a broad sensitivity to the light spectrum. S. guani was most sensitive to blue (450 nm) and green (549 nm) lights, suggesting its visual system composed of blue and green receptors. S. guani was least sensitive to ultraviolet (340 nm) light, which may be caused by long-term mass rearing and propagating under artificial conditions. Furthermore, low intensities elicited a positive phototactic response, while high intensities showed a decreased trend under both blue and green lights. Thus, S. guani is a phototactic insect which shows preferences for light in both color and intensity. This study suggests that light trap can only be utilized to control the adult P. punctatus during and after its peak emergence, due to the overlap in the spectral sensitivity of both pest and parasitoid adults.  相似文献   

11.
New measurements of the brightness difference sensibility of the eye corroborate the data of previous workers which show that ΔI/I decreases as I increases. Contrary to previous report, ΔI/I does not normally increase again at high intensities, but instead decreases steadily, approaching a finite limiting value, which depends on the area of the test-field and on the brightness of the surrounding field. On a logarithmic plot, the data of ΔI/I against I for test-fields below 2° are continuous, whereas those for test-fields above 2° show a sharp discontinuity in the region of intensity in which ΔI/I decreases rapidly. This discontinuity is shown to divide the data into predominantly rod function at low intensities, and predominantly cone function at high intensities. Fields below 2° give higher values of ΔI/I at all intensities, when compared with larger fields. Fields greater than one or two degrees differ from one another principally on the low intensity side of the break. Changes in area above this limit are therefore mainly effective by changing the number of rods concerned. This is confirmed by experiments controlling the relative numbers of rods and cones with lights of different wavelength and with different retinal locations. At high intensities ΔI/I is extremely sensitive to changes in brightness of surrounding visual fields, except for large test-fields which effectually furnish their own surrounds. This sensitivity is especially marked for fields of less than half a degree in diameter. Although the effect is most conspicuous for high intensities, the surround brightness seems to affect the relation between variables as a whole, except in very small fields where absence of a surround of adequate brightness results in the distortion of the theoretical relation otherwise found. The theoretical relationship for intensity discrimination derived by Hecht is shown to fit practically all of the data. Changes in experimental variables such as retinal image area, wavelength, fixation, and criterion may be described as affecting the numerical quantities of this relationship.  相似文献   

12.
There are a number of issues related to high‐temperature phosphor thermometry, which include measurement of faster decays, decreasing emission intensity and rising levels of blackbody radiation, that will impose limits on the maximum delectable temperature. This paper provides absolute intensity measurements, quantum efficiencies and signal‐to‐blackbody radiation ratios at peak emission wavelengths, at various temperatures (20–1400°C), for Y2O3:Eu, YAG:Tb and YAG:Tm thermographic phosphors under 266 and 355 nm excitation from a Q‐switched Nd:YAG laser. These terms are beneficial in a number of ways for engineers wanting to use a phosphor thermometry solution at high temperatures. They may also provide additional insight to the physical luminescence processes of phosphors at high temperatures. The phosphor signal:blackbody radiation ratio is useful because it combines the effects of blackbody radiation and phosphor emission intensities at various temperatures, providing a valuable quantitative evaluation that can be used as a design aid for phosphor selection. A figure of merit is the temperature when the blackbody radiation equals the phosphor emission (ratio = 1); this is the cross‐over temperature at which the blackbody radiation rapidly starts to overtake and mask out phosphor emissions. To the best of our knowledge no such work exists previously. The results presented show a variation in phosphor intensity with increasing temperature, and although the intensity and quantum efficiencies for Y2O3:Eu and YAG:Tb were much greater than YAG:Tm at low temperatures, YAG:Tm was found to be the most efficient phosphor investigated at higher temperatures (>900°C). With a peak emission wavelength of 458 nm, YAG:Tm experienced the lowest proportion of blackbody radiation therefore its advantage at higher temperatures was further amplified and was found to offer an advantage of approximately +350°C and +250°C increased upper temperature capability compared to Y2O3:Eu and YAG:Tb phosphors, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The survival ratio of Aspergillus spores exposed to ultraviolet radiation has been measured as a function of total incident energy for wave lengths of 2537 Å, 3022 Å, 3129 Å, and 3650 Å. The effect of humidity on killing of Aspergillus spores by ultraviolet radiation has been found to be negligible. A delay in germination as a result of irradiation has been found. The Bunsen-Roscoe reciprocity law has been found to hold within the limits of the radiation intensities studied. Certain morphological changes have been observed.  相似文献   

14.
1. The nature of ultraviolet injury and its variation with the same dose given at different intensities and wave lengths have been investigated in the protozoan Didinium nasutum, using time to the fourth division as a measure of injury. 2. The injury has been found to consist of a "slowdown" of division rate, which always occurs, and a "stasis," usually at the second division after irradiation, which appears in varying degrees among more severely injured samples. 3. Injury was found to be almost independent of intensity at three wave lengths out of four studied over a wide range of intermediate and high intensities, but was found to rise sharply with lower intensity at all except the longest wave length. 4. Flashed UV of high intensity is much more effective than the same dose of continuous radiation at high intensity and shorter total time of treatment. It is also more effective than the same dose at low intensity and equal time of treatment, though only slightly so. 5. An increase of injury with rise of temperature and with increase of dark period clearly indicates that injury depends on thermochemical reactions following the absorption of UV in Didinium. 6. The most reasonable assumption is that a similar conclusion applies to other organisms as well, and that its general application may be useful in the investigation of UV effects on protoplasm.  相似文献   

15.
The three tetraphyllidean cestodes Acanthobothrium quadripartitum, Phyllobothrium piriei and Echeneibothrium sp. occur in most parts of the spiral intestine of R. naevus with peak infections in tiers 2 and 3, Echinobothrium harfordi (Diphyllidea) is restricted to anterior tiers, and Grillotia erinaceus (Trypanorhyncha) shows litlle attachment site specificity. Details of the distribution patterns can be correlated with the dorsoventral orientation of the gut in the body cavity, the internal anatomy of the spiral intestine and associated pathways of food movement, the surface topography of the mucosa, acidity, sugar gradients and intraspecific effects at high intensities of infection. The distribution of the larger (‘mature’) cestodes does not depend on the settling pattern of the larvae.  相似文献   

16.
The disproportionation of ( 3CT)Ru(bipy) 32+ in homogeneous solutions has been investigated by laser flash photolysis where excitations were carried out with high intensities (250>Iab> 70 MW/cc) of monochromatic light (λ excit ∼440 nm). Such a disproportionation reaction competes, at a nearly diffusion-controlled rate, with the unimolecular (radiation and radiationless) relaxation.  相似文献   

17.
Physiological stress can bring major molecular and cellular change to a living cell which further decide its survival or tolerance to the stress exposure. Cyanobacteria like Anabaena has been shown to tolerate high levels of different stresses like oxidative, desiccation, UV, and gamma radiation. They are able to withstand and recover remarkably without any lethal mutation when exposed to high doses of gamma radiation or prolonged duration of desiccation. In the present work, the modifications in protein profiles of Anabaena 7120 cells after exposure to 6 kGy of 60Co γ-rays and 6 days of desiccation, and the proteome dynamics during post stress recovery were investigated. Differentially expressed proteins during stress and recovery were identified by MALDI-ToF or LC-MS, which generated a partial proteome map of Anabaena 7120. Anabaena cells went through protein recycling—phase of protein degradation following by their resynthesis, which helped them to recover remarkably. The data suggests an overlap in proteome changes during recovery against radiation and desiccation stress.  相似文献   

18.
《Insect Biochemistry》1991,21(5):541-544
Drosophilia melanogaster is light sensitive. On low yeast media, light induces high mortality during the development from egg to adulthood and increases development time. This effect of light is strongly dependent on the yeast-concentration. Addition of 8 vitamins, normally present in yeast, protects Drosophila against light under laboratory conditions. In this study we have analyzed the significance of the individual vitamins for both survival and development at high light intensities. Two D. melanogaster strains were utilized: a control strain C and a strain P. The latter had been adapted to a palmitic acid supplemented medium. In addition, we investigated the effect of vitamin C, a vitamin typically found in fruit, but not in yeast. It appears that both pyridoxine and riboflavin are essential for the survival of the control strain C under high light intensities, and they act synergistically. The other 6 tested vitamins can be omitted in these survival experiments. Moreover survival under high light conditions also improved strongly on media supplemented with vitamin C. The other strain (P), which was for many generations kept on a different food-medium, also was protected on yeast media by riboflavin and pyridoxine, and by vitamin C, although the survival at high light intensities on media with riboflavin and pyridoxine was less than the survival of the control strain.  相似文献   

19.
Polyunsaturated fatty acids (PUFAs) are essential macromolecules that are synthesized by phytoplankton during spring bloom, and they play a key role in the Arctic food web. They are, however, considered to be sensitive to oxidation by UV radiation (280-400 nm). Changes in the food quality of primary producers may affect the transport of biomass and energy in the whole ecosystem. Using a common Arctic diatom, we looked at the effect of ambient and increased UV radiation on its nutritional quality, specifically, the fatty acid composition and elemental ratios. In May 2004, in the archipelago of Svalbard (79° N), a unialgal culture of Thalassiosira antarctica var. borealis was subjected to a 17-day experiment in outdoor aquaria. The diatoms were kept in semi-continuous culture (40 1) and exposed to three treatments with different levels of UV radiation: none (UV-shielded), ambient, and enhanced. Fatty acid composition, C:N:P ratios, photosynthetic pigment composition, optimum quantum yield of PSII, and cell numbers were analysed over the experimental period. An initial increase in PAR (photosynthetically active radiation, 400-700 nm) intensities profoundly affected the fatty acid composition and substantially inhibited the synthesis of PUFAs, but the relative amounts of PUFAs were not reduced by UV radiation. Enhanced UV radiation did, however, cause a significant reduction in optimum quantum yield of PSII and affected some fatty acids, mainly 18:0 and 16:1 n-7, during the first week of the experiment. Both ambient and enhanced UV radiation caused significantly lower C:P and N:P ratios. At the same time, these treatments elicited a higher relative content of the photoprotective pigments diadinoxanthin and diatoxanthin. After acclimation to the new light levels these effects faded off. Thus, brief periods with high light exposure may cause significant changes in photosynthetic activity and food quality, but the capacity for photo-acclimation seems high. The impact of UV radiation seems to be less important for food quality than that of PAR during a sudden rise in total light intensity.  相似文献   

20.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号