首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. It is possible to fractionate gelatin by means of reprecipitation at 23°C. of a salt-free solution of pH 4.7 into two fractions, one of which is soluble in water at any temperature, and a second one which does not dissolve in water even when heated to 80°C. 2. The proportion of the soluble fraction in gelatin is much greater than of the insoluble one. 3. The insoluble fraction of gelatin does not swell when mixed with water, but it does swell in the presence of acid and alkali which finally dissolve it. 4. Blocks of concentrated gel made by dissolving various mixtures of the soluble and insoluble fractions of gelatin in dilute NaOH swell differently when placed in large volumes of dilute buffer solution pH 4.7 at 5°C. The gel consisting of the insoluble material shows only a trace of swelling, while those containing a mixture of soluble and insoluble swell considerably. The swelling increases rapidly as the proportion of the soluble fraction increases. 5. A 5 per cent gel made up by dissolving the insoluble fraction of gelatin in dilute NaOH loses about 70 per cent of its weight when placed in dilute buffer pH 4.7 at 5°C. A similar gel made up of ordinary gelatin loses only about 20 per cent of its weight under the same conditions. 6. It was not found possible to resynthesize isoelectric gelatin from its components. 7. An insoluble substance similar in many respects to the one obtained by reprecipitation of gelatin is produce on partial hydrolysis of gelatin in dilute hydrochloric acid at 90°C.  相似文献   

2.
1. Although the isoelectric points of dissolved cystine, tyrosine, and aspartic acid molecules lie at widely differing pH values, the isoelectric points of the surfaces of these substances in the crystalline state are all near pH 2.3. This was found to be true in solutions of hydrochloric acid and in acetate buffers of approximately constant ionic strength. 2. When suspended in gelatin, tyrosine and cystine crystals adsorb the protein and attain a surface identical in behavior with gelatin-coated quartz or collodion particles. 3. Aluminum ions at low concentrations reduce the electric mobilities of tyrosine crystals to zero in a manner analogous to their effect on other surfaces. 4. Alkyl benzene droplets also have their electric mobility reduced to zero at low pH values but, unlike the amino acids, a change in sign was never noticed. 5. The mobility of tyrosine crystals is independent of crystal length between 2–100µ. Below this size the mobilities are decreased. 6. These results are discussed in connection with the concept of the general definition of the isoelectric point and the behavior of certain insoluble proteins such as wool and silk fibroin.  相似文献   

3.
An experimental study has been made of the adsorption of gelatin from solution at 37°C. by collodion membranes. In the case of membranes of high permeability, very high concentrations of gelatin were required to produce maximum adsorption, and the maximum amounts adsorbed were independent of the pH values of the solutions over the range 3.8 to 4.8. With membranes of low permeability, maximum adsorption was reached at lower gelatin concentrations, and the maximum amounts adsorbed varied with the pH, being lower on either side of the isoelectric point, over the range 3.8 to 6.6. The addition of salt in such experiments raised the maximum amount adsorbed to a value equal to that obtained with solutions at the isoelectric point in the absence of salt. These experiments can be explained by, and seem to lend support to, the theory proposed by Loeb and further developed by Kunitz concerning the effects of pH and salt on the size of gelatin particles in solution.  相似文献   

4.
An experimental study has been made of the adsorption of purified egg albumin, from aqueous solution, on collodion membranes. At protein concentrations of 4 to 7 per cent apparent saturation values were obtained which resembled closely the results obtained with gelatin, showing a maximum at pH 5.0 and lower values on either side of this region. Over large ranges of protein concentration, however, the curves for the adsorption from solutions removed in either direction from the isoelectric point exhibited a different shape from the hyperbola obtained in the neighborhood of pH 5.0. The addition of NaCl to solutions on the acid side tended to obliterate the effect of the pH difference; on the alkaline side it greatly increased the adsorption. The adsorption at 25° was about twice as great as that at 1°. The theory of the swelling of submicroscopic particles, advanced to account for the adsorption behavior of gelatin, is not sufficient to explain the results obtained with egg albumin. It is suggested that the effect is related to alterations in the forces causing the retention of the protein on the membranes.  相似文献   

5.
1. Cooper''s gelatin purified according to Northrop and Kunitz exhibited a minimum of osmotic pressure and a maximum of opacity at pH 5.05 ±0.05. The pH of solutions of this gelatin in water was also close to this value. It is inferred that such gelatin is isoelectric at this pH and not at pH 4.70. 2. Hydrogen electrode measurements with KCl-agar junctions were made with concentrated solutions of this gelatin in HCl up to 0.1 M. The combination curve calculated from these data is quite exactly horizontal between pH 2 and 1, indicating that 1 gm. of this gelatin can combine with a maximum of 9.35 x 10–4 equivalents of H+. 3. Conductivity titrations of this gelatin with HCl gave an endpoint at 9.41 (±0.05) x 10–4 equivalents of HCl per gram gelatin. 4. E.M.F. measurements of the cell without liquid junction, Ag, AgCl, HCl + gelatin, H2, lead to the conclusion that this gelatin in 0.1 M HCl combines with a maximum of 9.4 x 10–4 equivalents of H+ and 1.7 x 10–4 equivalents of Cl- per gram gelatin.  相似文献   

6.
A method is described for isolating a crystalline protein of high tryptic activity from beef pancreas. The protein has constant proteolytic activity and optical activity under various conditions and no indication of further fractionation could be obtained. The loss in activity corresponds to the decrease in native protein when the protein is denatured by heat, digested by pepsin, or hydrolyzed in dilute alkali. The enzyme digests casein, gelatin, edestin, and denatured hemoglobin, but not native hemoglobin. It accelerates the coagulation of blood but has little effect on the clotting of milk. It digests peptone prepared by the action of pepsin on casein, edestin or gelatin. The extent of the digestion of gelatin caused by this enzyme is the same as that caused by crystalline pepsin and is approximately equivalent to tripling the number of carboxyl groups present in the solution. The activity of the preparation is not increased by enterokinase. The molecular weight by osmotic pressure measure is about 34,000. The diffusion coefficient in ½ saturated magnesium sulfate at 6°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The isoelectric point is probably between pH 7.0 and pH 8.0. The optimum pH for the digestion of casein is from 8.0–9.0. The optimum stability is at pH 1.8.  相似文献   

7.
1. Cytochrome 552 and cytochromoid c were extracted from Rhodopseudomonas palustris cells, purified and obtained in crystalline form. 2. Extinction ratios and amino acid compositions of the two pigments are reported. 3. When subjected to starch-gel electrophoresis in borate buffer, pH8·8, each pigment migrated towards the cathode; oxidized cytochromoid c migrated more rapidly than its reduced form. 4. By a determination of electrophoretic mobilities in buffers of I0·1 by using the moving-boundary method, the isoelectric point of cytochrome 552 was found to be at pH10·6 and that of cytochromoid c at pH9·7. 5. As obtained, cytochrome 552 was non-autoxidizable; cytochromoid c was autoxidizable but became considerably less so on alkaline treatment. 6. Discussion of the results includes a consideration of the isoelectric points of the pigments in terms of their amino acid composition.  相似文献   

8.
1. It was shown that the high viscosity of gelatin solutions as well as the character of the osmotic pressure-concentration curves indicates that gelatin is hydrated even at temperatures as high as 50°C. 2. The degree of hydration of gelatin was determined by means of viscosity measurements through the application of the formula See PDF for Equation. 3. When the concentration of gelatin was corrected for the volume of water of hydration as obtained from the viscosity measurements, the relation between the osmotic pressure of various concentrations of gelatin and the corrected concentrations became linear, thus making it possible to determine the apparent molecular weight of gelatin through the application of van''t Hoff''s law. The molecular weight of gelatin at 35°C. proved to be 61,500. 4. A study was made of the mechanism of hydration of gelatin and it was shown that the experimental data agree with the theory that the hydration of gelatin is a pure osmotic pressure phenomenon brought about by the presence in gelatin of a number of insoluble micellæ containing a definite amount of a soluble ingredient of gelatin. As long as there is a difference in the osmotic pressure between the inside of the micellæ and the outside gelatin solution the micellæ swell until an equilibrium is established at which the osmotic pressure inside of the micellæ is balanced by the total osmotic pressure of the gelatin solution and by the elasticity pressure of the micellæ. 5. On addition of HCl to isoelectric gelatin the total activity of ions inside of the micellæ is greater than in the outside solution due to a greater concentration of protein in the micellæ. This brings about a further swelling of the micellæ until a Donnan equilibrium is established in the ion distribution accompanied by an equilibrium in the osmotic pressure. Through the application of the theory developed here it was possible actually to calculate the osmotic pressure difference between the inside of the micellæ and the outside solution which was brought about by the difference in the ion distribution. 6. According to the same theory the effect of pH on viscosity of gelatin should diminish with increase in concentration of gelatin, since the difference in the concentration of the protein inside and outside of the micellæ also decreases. This was confirmed experimentally. At concentrations above 8 gm. per 100 gm. of H2O there is very little difference in the viscosity of gelatin of various pH as compared with that of isoelectric gelatin.  相似文献   

9.
1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer''s previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry.  相似文献   

10.
1. When solid blocks of isoelectric gelatin are placed in cold distilled water or dilute buffer of pH 4.7, only those of a gelatin content of more than 10 per cent swell, while those of a lower gelatin content not only do not swell but actually lose water. 2. The final quantity of water lost by blocks of dilute gelatin is the same whether the block is immersed in a large volume of water or whether syneresis has been initiated in the gel through mechanical forces such as shaking, pressure, etc., even in the absence of any outside liquid, thus showing that syneresis is identical with the process of negative swelling of dilute gels when placed in cold water, and may be used as a convenient term for it. 3. Acid- or alkali-containing gels give rise to greater syneresis than isoelectric gels, after the acid or alkali has been removed by dialysis. 4. Salt-containing gels show greater syneresis than salt-free gels of the same pH, after the salt has been washed away. 5. The acid and alkali and also the salt effect on syneresis of gels disappears at a gelatin concentration above 8 per cent. 6. The striking similarity in the behavior of gels with respect to syneresis and of gelatin solutions with respect to viscosity suggests the probability that both are due to the same mechanism, namely the mechanism of hydration of the micellæ in gelatin by means of osmosis as brought about either by diffusible ions, as in the presence of acid or alkali, or by the soluble gelatin present in the micellæ. The greater the pressures that caused swelling of the micellæ while the gelatin was in the sol state, the greater is the loss of water from the gels when the pressures are removed. 7. A quantitative study of the loss of water by dilute gels of various gelatin content shows that the same laws which have been found by Northrop to hold for the swelling of gels of high concentrations apply also to the process of losing water by dilute gels, i.e. to the process of syneresis. The general behavior is well represented by the equations: See PDF for Equation and See PDF for Equation where P 1 = osmotic pressure of the soluble gelatin in the gel, P 2 = stress on the micellæ in the gelatin solution before setting, Ke = bulk modulus of elasticity, Vo = volume of water per gram of dry gelatin at setting and Ve = volume of water per gram of gelatin at equilibrium.  相似文献   

11.
The effects of the buffer employed in maintaining a given pH value were tested on the aggregation of two viruses, poliovirus and reovirus. Poliovirus was found to aggregate at pH values of 6 and below, but not at pH 7 or above, except in borate buffer. Reovirus aggregated at pH 4 and below, but was found to aggregate only in acetate or tris(hydroxymethyl)aminomethane-citrate buffers at pH 5. Other buffers tested for aggregation of reovirus at pH 5 (succinate, citrate, and phosphate-citrate) induced little aggregation. No significant aggregation was found for reovirus at pH 6 and above. For both viruses, the most effective aggregation was induced by buffers having a substantial monovalently charged anionic component, such as acetate at pH 5 and 6 or citrate at pH 3. Cationic buffers at low pH, such as glycine, were generally weaker in aggregating ability than anionic buffers at the same pH. These results, when correlated with the isoelectric point of the viruses (poliovirus at pH 8.2; reovirus at pH 3.9) indicated that both viruses aggregated strongly when their overall charge was positive, but only under certain circumstances when their overall charge was negative. Although reovirus aggregated massively at its isoelectric point, poliovirus remained dispersed at its isoelectric point. The conclusion can be drawn that those pH and buffer conditions which induced aggregation of one virus do not necessarily induce it in another.  相似文献   

12.
The effects of the buffer employed in maintaining a given pH value were tested on the aggregation of two viruses, poliovirus and reovirus. Poliovirus was found to aggregate at pH values of 6 and below, but not at pH 7 or above, except in borate buffer. Reovirus aggregated at pH 4 and below, but was found to aggregate only in acetate or tris(hydroxymethyl)aminomethane-citrate buffers at pH 5. Other buffers tested for aggregation of reovirus at pH 5 (succinate, citrate, and phosphate-citrate) induced little aggregation. No significant aggregation was found for reovirus at pH 6 and above. For both viruses, the most effective aggregation was induced by buffers having a substantial monovalently charged anionic component, such as acetate at pH 5 and 6 or citrate at pH 3. Cationic buffers at low pH, such as glycine, were generally weaker in aggregating ability than anionic buffers at the same pH. These results, when correlated with the isoelectric point of the viruses (poliovirus at pH 8.2; reovirus at pH 3.9) indicated that both viruses aggregated strongly when their overall charge was positive, but only under certain circumstances when their overall charge was negative. Although reovirus aggregated massively at its isoelectric point, poliovirus remained dispersed at its isoelectric point. The conclusion can be drawn that those pH and buffer conditions which induced aggregation of one virus do not necessarily induce it in another.  相似文献   

13.
1. The partition of uroporphyrins I and III, coproporphyrins I and III, haematoporphyrin IX, porphyrin c and a hydrophilic porphyrin–peptide fraction from variegate-porphyria faeces has been studied in systems of equal volumes of cyclohexanone and sodium acetate buffers of varying pH and concentration. 2. The concentration of acetate in the aqueous phase has little effect on the partition of porphyrin c, but markedly influences that of uroporphyrin. At 50% acetate saturation and pH4·5, only 5% enters the cyclohexanone phase whereas 60% of porphyrin c is extracted under similar conditions. 3. This circumstance forms the basis of a method for the determination of hydrophilic porphyrin–peptides in variegate-porphyria urine. Its reliability has been checked in model experiments. 4. At pH1·5 and an aqueous phase half-saturated with sodium acetate, an equal volume of cyclohexanone removes 95–97% of uroporphyrin and about 55% of porphyrin c. Uroporphyrin may therefore be determined as a second step in the method. 5. For the routine determination of uroporphyrin in systems free from other hydrophilic porphyrins, cyclohexanone extraction may be performed at any pH in the range 1·0–3·0.  相似文献   

14.
1. The method of removing the excess of hydrobromic acid after it has had a chance to react chemically with gelatin has permitted us to measure the amount of Br in combination with the gelatin. It is shown that the curves representing the amount of bromine bound by the gelatin are approximately parallel with the curves for the osmotic pressure, the viscosity, and swelling of the gelatin solution. This proves that the curves for osmotic pressure are an unequivocal function of the number of gelatin bromide molecules formed under the influence of the acid. The cc. of 0.01 N Br in combination with 0.25 gm, of gelatin we call the bromine number. 2. The explanation of this influence of the acid on the physical properties of gelatin is based on the fact that gelatin is an amphoteric electrolyte, which at its isoelectric point is but sparingly soluble in water, while its transformation into a salt with a univalent anion like gelatin Br makes it soluble. The curve for the bromine number thus becomes at the same time the numerical expression for the number of gelatin molecules rendered soluble, and hence the curve for osmotic pressure must of necessity be parallel to the curve for the bromine number. 3. Volumetric analysis shows that gelatin treated previously with HBr is free from Br at the isoelectric point as well as on the more alkaline side from the isoelectric point (pH ≧ 4.7) of gelatin. This is in harmony with the fact that gelatin (like any other amphoteric electrolyte) can dissociate on the alkaline side of its isoelectric point only as an anion. On the more acid side from the isoelectric point gelatin is found to be in combination with Br and the Br number rises with the pH. 4. When we titrate gelatin, treated previously with HBr but possessing a pH = 4,7, with NaOH we find that 25 cc. of a 1 per cent solution of isoelectric gelatin require about 5.25 to 5.5 cc. of 0.01 N NaOH for neutralization (with phenolphthalein as an indicator). This value which was found invariably is therefore a constant which we designate as "NaOH (isoelectric)." When we titrate 0.25 gm. of gelatin previously treated with HBr but possessing a pH < 4.7 more than 5.5 cc. of 0.01 N NaOH are required for neutralization. We will designate this value of NaOH as "(NaOH)n," where n represents the value of pH. If we designate the bromine number for the same pH as "Brn" then we can show that the following equation is generally true: (NaOH)n = NaOH (isoelectric) + Brn. In other words, titration with NaOH of gelatin (previously treated with HBr) and being on the acid side of its isoelectric point results in the neutralization of the pure gelatin (NaOH isoelectric) with NaOH and besides in the neutralization of the HBr in combination with the gelatin. This HBr is set free as soon as through the addition of the NaOH the pH of the gelatin solution becomes equal to 4.7. 5. A comparison between the pH values and the bromine numbers found shows that over 90 per cent of the bromine or HBr found was in our experiments in combination with the gelatin.  相似文献   

15.
1. Reported effects of different conditions on the stability of the purified chlorophyll-protein complex have been confirmed. 2. The electrophoretic behavior of the chlorophyll-protein complex prepared from two unrelated species of plants (Aspidistra elatior and Phaseolus vulgaris) has been investigated and shown to be dissimilar. In M/50 acetate buffer at 25°C, the isoelectric point of the complex from Phaseolus is at pH 4.70, whereas that from Aspidistra is at pH 3.9 (extrapolated). These values fall within the usual range of protein isoelectric points. 3. Treatment with weak acids causes an irreversible denaturation of the protein complex from both species, with a resultant shift in the mobility-pH curves to more basic values. 4. Differences in electrophoretic behavior between the chlorophyll-protein complex and the cytoplasmic proteins of Phaseolus have been demonstrated. The isoelectric point of the latter is at pH 4.22.  相似文献   

16.
1. Collodion membranes of high permeability were found to adsorb weighable amounts of gelatin and egg albumin from solution at 37°C. 2. The effect of protein concentration could be expressed fairly well by a hyperbolic equation proposed by Langmuir for the adsorption of gases by a plane surface, while the usual parabolic adsorption equation of Freundlich did not fit the results. 3. In comparing this effect with solutions of varying pH, it was found there was a decided maximum of adsorption in solutions of isoelectric protein. The effects of acids and salts on the amount of gelatin adsorbed were like those observed by Loeb on the viscosity of gelatin solutions, but opposite in direction. The effects of pH on the amount of adsorbed gelatin and on the fluidity of the gelatin solutions were nearly parallel. 4. Membranes made impermeable by long drying took up very little or no gelatin from solution. 5. In the case of membranes of varying permeability the maximum amount of adherent gelatin increased with the permeability and thickness of the membranes, and appeared to be, within limits, a linear function of the relative pore surface of the membranes as calculated from Poiseuille''s law. 6. The film of gelatin greatly decreased the permeability of the membranes, as measured by the flow of water through them. The relative cross-section of the pore openings, as calculated from the permeability measurements, was a linear function of the amount of adherent gelatin. These results led to the conclusion that the gelatin formed a film inside the pores.  相似文献   

17.
1. A difference in conformation was found between the collagen in solutions treated with semicarbazide hydrochloride and those treated with sodium chloride. This difference could be correlated with the difference in extent of aggregation between the fibrils precipitated from these solutions. 2. The action of semicarbazide hydrochloride depended on the pH and temperature of treatment in a complex manner. At constant temperature semicarbazide enhanced aggregation at pH values less than 4·3, but decreased aggregation was observed at pH values greater than 5·0. At pH 4·3 the effect of semicarbazide on aggregation varied with temperature, the tendency to increased aggregation being more pronounced at 34° and 36–37°. Similar increased aggregation tendencies superimposed on an overall decreased aggregation were observed at these temperatures at pH8·9. 3. A specific binding of semicarbazide to the collagen molecule was indicated.  相似文献   

18.
1. When a solution of a salt of gelatin or crystalline egg albumin is separated by a collodion membrane from a watery solution (free from protein) a potential difference is set up across the membrane in which the protein is positively charged in the case of protein-acid salts and in which the protein is negatively charged in the case of metal proteinates. The turning point is the isoelectric point of the protein. 2. Measurements of the pH of the (inside) protein solution and of the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive in the case of protein-acid salts and negative in the case of metal proteinates. This is to be expected when the P.D. is caused by the establishment of a Donnan equilibrium, since in that case the pH should be lower outside than inside in the case of a protein-acid salt and should be higher outside than inside in the case of a metal proteinate. 3. At the isoelectric point where the electrical charge is zero the value of pH inside minus pH outside becomes also zero. 4. It is shown that a P.D. is established between suspended particles of powdered gelatin and the surrounding watery solution and that the sign of charge of the particles is positive when they contain gelatin-acid salts, while it is negative when the powdered particles contain metal gelatinate. At the isoelectric point the charge is zero. 5. Measurements of the pH inside the powdered particles and of the pH in the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive when the powdered particles contain a gelatin-acid salt, while the value pH inside minus pH outside is negative when the powdered particles contain Na gelatinate. At the isoelectric point the value pH inside minus pH outside is zero. 6. The addition of neutral salts depresses the electrical charge of the powdered particles of protein-acid salts. It is shown that the addition of salts to a suspension of powdered particles of gelatin chloride also diminishes the value of pH inside minus pH outside. 7. The agreement between the values 58 (pH inside minus pH outside) and the P. D. observed by the Compton electrometer is not only qualitative but quantitative. This proves that the difference in the concentration of acid (or alkali, as the case may be) in the two phases is the only cause for the observed P.D. 8. The Donnan theory demands that the P.D. of a gelatin chloride solution should be 1½ times as great as the P.D. of a gelatin sulfate solution of the same pH and the same concentration (1 per cent) of originally isoelectric gelatin. This is found to be correct and it is also shown that the values of pH inside minus pH outside for the two solutions possess the ratio of 3:2. 9. All these measurements prove that the electrical charges of suspended particles of protein are determined exclusively by the Donnan equilibrium.  相似文献   

19.
The production of concentration P.D.''s across the skin of the frog is very intimately related to the pH of the applied solutions. On the alkaline side of an isoelectric point the dilute solution is electropositive; on the acid side this solution becomes electronegative. When the pH is suddenly lowered from a value more alkaline than this isoelectric point to one considerably more acid the change in polarity may occur within a few seconds. The effect is reversible. When a series of unbuffered solutions at different pH values are applied reversal curves may be obtained. When the concentration gradient is .1 N-.001 N KCl the reversal points lie between pH 4.1 and 4.8. When studied in acetate buffers this electromotive reversal is found to be closely correlated with the electrical charge upon the membrane, as determined by electroendosmosis through it. Reversal occurs between pH 4.9 and 5.2. It is concluded that the electromotive behavior of this material is controlled by some ampholyte, or group of ampholytes, within the membrane. This ampholyte is probably a protein. On both sides of their isoelectric point these membranes, in common with protein membranes, behave as if they retarded or prevented the movement through them of ions of the same electrical sign as they themselves bear, while permitting the movement of ions of the opposite sign. It is suggested that this correlation arises because of electrostatic effects between the charged surfaces and ions in the solution.  相似文献   

20.
The surface charge of plant protoplasts has been measured by a new technique, isoelectric focusing. The protoplasts were loaded in a dextran density gradient over which a pH gradient was superimposed. When voltage was applied, protoplasts moved to a point in the gradient corresponding to their isoelectric point (pI). The pI of the protoplasts varied with the compounds used for pH gradient generation. Using commercial ampholytes for pH gradient formation, the pI of all protoplasts tested was 4.4 ± 0.2, and viability following electrophoresis was low. Using an acetate/acetic acid mixture to generate the pH gradient, the pI of protoplasts varied from 3.7 to 5.3 depending on the species and tissue type of the parental cells. Postelectrophoresis viability was high. Using isoelectric focusing techniques, it was possible to separate mixtures of protoplasts derived from different species of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号