首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The method of removing the excess of hydrobromic acid after it has had a chance to react chemically with gelatin has permitted us to measure the amount of Br in combination with the gelatin. It is shown that the curves representing the amount of bromine bound by the gelatin are approximately parallel with the curves for the osmotic pressure, the viscosity, and swelling of the gelatin solution. This proves that the curves for osmotic pressure are an unequivocal function of the number of gelatin bromide molecules formed under the influence of the acid. The cc. of 0.01 N Br in combination with 0.25 gm, of gelatin we call the bromine number. 2. The explanation of this influence of the acid on the physical properties of gelatin is based on the fact that gelatin is an amphoteric electrolyte, which at its isoelectric point is but sparingly soluble in water, while its transformation into a salt with a univalent anion like gelatin Br makes it soluble. The curve for the bromine number thus becomes at the same time the numerical expression for the number of gelatin molecules rendered soluble, and hence the curve for osmotic pressure must of necessity be parallel to the curve for the bromine number. 3. Volumetric analysis shows that gelatin treated previously with HBr is free from Br at the isoelectric point as well as on the more alkaline side from the isoelectric point (pH ≧ 4.7) of gelatin. This is in harmony with the fact that gelatin (like any other amphoteric electrolyte) can dissociate on the alkaline side of its isoelectric point only as an anion. On the more acid side from the isoelectric point gelatin is found to be in combination with Br and the Br number rises with the pH. 4. When we titrate gelatin, treated previously with HBr but possessing a pH = 4,7, with NaOH we find that 25 cc. of a 1 per cent solution of isoelectric gelatin require about 5.25 to 5.5 cc. of 0.01 N NaOH for neutralization (with phenolphthalein as an indicator). This value which was found invariably is therefore a constant which we designate as "NaOH (isoelectric)." When we titrate 0.25 gm. of gelatin previously treated with HBr but possessing a pH < 4.7 more than 5.5 cc. of 0.01 N NaOH are required for neutralization. We will designate this value of NaOH as "(NaOH)n," where n represents the value of pH. If we designate the bromine number for the same pH as "Brn" then we can show that the following equation is generally true: (NaOH)n = NaOH (isoelectric) + Brn. In other words, titration with NaOH of gelatin (previously treated with HBr) and being on the acid side of its isoelectric point results in the neutralization of the pure gelatin (NaOH isoelectric) with NaOH and besides in the neutralization of the HBr in combination with the gelatin. This HBr is set free as soon as through the addition of the NaOH the pH of the gelatin solution becomes equal to 4.7. 5. A comparison between the pH values and the bromine numbers found shows that over 90 per cent of the bromine or HBr found was in our experiments in combination with the gelatin.  相似文献   

2.
1. It is well known that neutral salts depress the osmotic pressure, swelling, and viscosity of protein-acid salts. Measurements of the P.D. between gelatin chloride solutions contained in a collodion bag and an outside aqueous solution show that the salt depresses the P.D. in the same proportion as it depresses the osmotic pressure of the gelatin chloride solution. 2. Measurements of the hydrogen ion concentration inside the gelatin chloride solution and in the outside aqueous solution show that the difference in pH of the two solutions allows us to calculate the P.D. quantitatively on the basis of the Nernst formula See PDF for Equation if we assume that the P.D. is due to a difference in the hydrogen ion concentration on the two sides of the membrane. 3. This difference in pH inside minus pH outside solution seems to be the consequence of the Donnan membrane equilibrium, which only supposes that one of the ions in solution cannot diffuse through the membrane. It is immaterial for this equilibrium whether the non-diffusible ion is a crystalloid or a colloid. 4. When acid is added to isoelectric gelatin the osmotic pressure rises at first with increasing hydrogen ion concentration, reaches a maximum at pH 3.5, and then falls again with further fall of the pH. It is shown that the P.D. of the gelatin chloride solution shows the same variation with the pH (except that it reaches its maximum at pH of about 3.9) and that the P.D. can be calculated from the difference of pH inside minus pH outside on the basis of Nernst''s formula. 5. It was found in preceding papers that the osmotic pressure of gelatin sulfate solutions is only about one-half of that of gelatin chloride or gelatin phosphate solutions of the same pH and the same concentration of originally isoelectric gelatin; and that the osmotic pressure of gelatin oxalate solutions is almost but not quite the same as that of the gelatin chloride solutions of the same pH and concentration of originally isoelectric gelatin. It was found that the curves for the values for P.D. of these four gelatin salts are parallel to the curves of their osmotic pressure and that the values for pH inside minus pH outside multiplied by 58 give approximately the millivolts of these P.D. In this preliminary note only the influence of the concentration of the hydrogen ions on the P.D. has been taken into consideration. In the fuller paper, which is to follow, the possible influence of the concentration of the anions on this quantity will have to be discussed.  相似文献   

3.
1. It is shown by volumetric analysis that on the alkaline side from its isoelectric point gelatin combines with cations only, but not with anions; that on the more acid side from its isoelectric point it combines only with anions but not with cations; and that at the isoelectric point, pH = 4.7, it combines with neither anion nor cation. This confirms our statement made in a previous paper that gelatin can exist only as an anion on the alkaline side from its isoelectric point and only as a cation on the more acid side of its isoelectric point, and practically as neither anion nor cation at the isoelectric point. 2. Since at the isoelectric point gelatin (and probably amphoteric colloids generally) must give off any ion with which it was combined, the simplest method of obtaining amphoteric colloids approximately free from ionogenic impurities would seem to consist in bringing them to the hydrogen ion concentration characteristic of their isoelectric point (i.e., at which they migrate neither to the cathode nor anode of an electric field). 3. It is shown by volumetric analysis that when gelatin is in combination with a monovalent ion (Ag, Br, CNS), the curve representing the amount of ion-gelatin formed is approximately parallel to the curve for swelling, osmotic pressure, and viscosity. This fact proves that the influence of ions upon these properties is determined by the chemical or stoichiometrical and not by the "colloidal" condition of gelatin. 4. The sharp drop of these curves at the isoelectric point finds its explanation in an equal drop of the water solubility of pure gelatin, which is proved by the formation of a precipitate. It is not yet possible to state whether this drop of the solubility is merely due to lack of ionization of the gelatin or also to the formation of an insoluble tautomeric or polymeric compound of gelatin at the isoelectric point. 5. On account of this sudden drop slight changes in the hydrogen ion concentration have a considerably greater chemical and physical effect in the region of the isoelectric point than at some distance from this point. This fact may be of biological significance since a number of amphoteric colloids in the body seem to have their isoelectric point inside the range of the normal variation of the hydrogen ion concentration of blood, lymph, or cell sap. 6. Our experiments show that while a slight change in the hydrogen ion concentration increases the water solubility of gelatin near the isoelectric point, no increase in the solubility can be produced by treating gelatin at the isoelectric point with any other kind of monovalent or polyvalent ion; a fact apparently not in harmony with the adsorption theory of colloids, but in harmony with a chemical conception of proteins.  相似文献   

4.
1. It has been shown in this paper that while non-ionized gelatin may exist in gelatin solutions on both sides of the isoelectric point (which lies for gelatin at a hydrogen ion concentration of CH = 2.10–5 or pH = 4.7), gelatin, when it ionizes, can only exist as an anion on the less acid side of its isoelectric point (pH > 4.7), as a cation only on the more acid side of its isoelectric point (pH < 4.7). At the isoelectric point gelatin can dissociate practically neither as anion nor as cation. 2. When gelatin has been transformed into sodium gelatinate by treating it for some time with M/32 NaOH, and when it is subsequently treated with HCl, the gelatin shows on the more acid side of the isoelectric point effects of the acid treatment only; while the effects of the alkali treatment disappear completely, showing that the negative gelatin ions formed by the previous treatment with alkali can no longer exist in a solution with a pH < 4.7. When gelatin is first treated with acid and afterwards with alkali on the alkaline side of the isoelectric point only the effects of the alkali treatment are noticeable. 3. On the acid side of the isoelectric point amphoteric electrolytes can only combine with the anions of neutral salts, on the less acid side of their isoelectric point only with cations; and at the isoelectric point neither with the anion nor cation of a neutral salt. This harmonizes with the statement made in the first paragraph, and the experimental results on the effect of neutral salts on gelatin published in the writer''s previous papers. 4. The reason for this influence of the hydrogen ion concentration on the stability of the two forms of ionization possible for an amphoteric electrolyte is at present unknown. We might think of the possibility of changes in the configuration or constitution of the gelatin molecule whereby ionized gelatin can exist only as an anion on the alkaline side and as a cation on the acid side of its isoelectric point. 5. The literature of colloid chemistry contains numerous statements which if true would mean that the anions of neutral salts act on gelatin on the alkaline side of the isoelectric point, e.g. the alleged effect of the Hofmeister series of anions on the swelling and osmotic pressure of common gelatin in neutral solutions, and the statement that both ions of a neutral salt influence a protein simultaneously. The writer has shown in previous publications that these statements are contrary to fact and based on erroneous methods of work. Our present paper shows that these claims of colloid chemists are also theoretically impossible. 6. In addition to other physical properties the conductivity of gelatin previously treated with acids has been investigated and plotted, and it was found that this conductivity is a minimum in the region of the isoelectric point, thus confirming the conclusion that gelatin can apparently not exist in ionized condition at that point. The conductivity rises on either side of the isoelectric point, but not symmetrically for reasons given in the paper. It is shown that the curves for osmotic pressure, viscosity, swelling, and alcohol number run parallel to the curve of the conductivity of gelatin when the gelatin has been treated with acid, supporting the view that these physical properties are in this case mainly or exclusively a function of the degree of ionization of the gelatin or gelatin salt formed. It is pointed out, however, that certain constitutional factors, e.g. the valency of the ion in combination with the gelatin, may alter the physical properties of the gelatin (osmotic pressure, etc.) without apparently altering its conductivity. This point is still under investigation and will be further discussed in a following publication. 7. It is shown that the isoelectric point of an amphoteric electrolyte is not only a point where the physical properties of an ampholyte experience a sharp drop and become a minimum, but that it is also a turning point for the mode of chemical reactions of the ampholyte. It may turn out that this chemical influence of the isoelectric point upon life phenomena overshadows its physical influence. 8. These experiments suggest that the theory of amphoteric colloids is in its general features identical with the theory of inorganic hydroxides (e.g. aluminum hydroxide), whose behavior is adequately understood on the basis of the laws of general chemistry.  相似文献   

5.
1. It is possible to fractionate gelatin by means of reprecipitation at 23°C. of a salt-free solution of pH 4.7 into two fractions, one of which is soluble in water at any temperature, and a second one which does not dissolve in water even when heated to 80°C. 2. The proportion of the soluble fraction in gelatin is much greater than of the insoluble one. 3. The insoluble fraction of gelatin does not swell when mixed with water, but it does swell in the presence of acid and alkali which finally dissolve it. 4. Blocks of concentrated gel made by dissolving various mixtures of the soluble and insoluble fractions of gelatin in dilute NaOH swell differently when placed in large volumes of dilute buffer solution pH 4.7 at 5°C. The gel consisting of the insoluble material shows only a trace of swelling, while those containing a mixture of soluble and insoluble swell considerably. The swelling increases rapidly as the proportion of the soluble fraction increases. 5. A 5 per cent gel made up by dissolving the insoluble fraction of gelatin in dilute NaOH loses about 70 per cent of its weight when placed in dilute buffer pH 4.7 at 5°C. A similar gel made up of ordinary gelatin loses only about 20 per cent of its weight under the same conditions. 6. It was not found possible to resynthesize isoelectric gelatin from its components. 7. An insoluble substance similar in many respects to the one obtained by reprecipitation of gelatin is produce on partial hydrolysis of gelatin in dilute hydrochloric acid at 90°C.  相似文献   

6.
1. Experiments on anomalous osmosis suggested that salts with trivalent cations, e.g. LaCl3, caused isoelectric gelatin to be positively charged, and salts with tetravalent anions, e.g. Na4Fe(CN)6, caused isoelectric gelatin to be negatively charged. In this paper direct measurements of the P.D. between gels of isoelectric gelatin and an aqueous solution as well as between solutions of isoelectric gelatin in a collodion bag and an aqueous solution are published which show that this suggestion was correct. 2. Experiments on anomalous osmosis suggested that salts like MgCl2, CaCl2, NaCl, LiCl, or Na2SO4 produce no charge on isoelectric gelatin and it is shown in this paper that direct measurements of the P.D. support this suggestion. 3. The question arose as to the nature of the mechanism by which trivalent and tetravalent ions cause the charge of isoelectric proteins. It is shown that salts with such ions act on isoelectric gelatin in a way similar to that in which acids or alkalies act, inasmuch as in low concentrations the positive charge of isoelectric gelatin increases with the concentration of the LaCl3 solution until a maximum is reached at a concentration of LaCl3 of about M/8,000; from then on a further increase in the concentration of LaCl3 diminishes the charge again. It is shown that the same is true for the action of Na4Fe(CN)6. From this it is inferred that the charge of the isoelectric gelatin under the influence of LaCl3 and Na4Fe(CN)6 at the isoelectric point is due to an ionization of the isoelectric protein by the trivalent or tetravalent ions. 4. This ionization might be due to a change of the pH of the solution, but experiments are reported which show that in addition to this influence on pH, LaCl3 causes an ionization of the protein in some other way, possibly by the formation of a complex cation, gelatin-La. Na4Fe(CN)6 might probably cause the formation of a complex anion of the type gelatin-Fe(CN)6. Isoelectric gelatin seems not to form such compounds with Ca, Na, Cl, or SO4. 5. Solutions of LaCl3 and Na4Fe(CN)6 influence the osmotic pressure of solutions of isoelectric gelatin in a similar way as they influence the P.D., inasmuch as in lower concentrations they raise the osmotic pressure of the gelatin solution until a maximum is reached at a concentration of about M/2,048 LaCl3 and M/4,096 Na4Fe(CN)6. A further increase of the concentration of the salt depresses the osmotic pressure again. NaCl, LiCl, MgCl2, CaCl2, and Na2SO4 do not act in this way. 6. Solutions of LaCl3 have only a depressing effect on the P.D. and osmotic pressure of gelatin chloride solutions of pH 3.0 and this depressing effect is quantitatively identical with that of solutions of CaCl2 and NaCl of the same concentration of Cl.  相似文献   

7.
1. When a solution of a salt of gelatin or crystalline egg albumin is separated by a collodion membrane from a watery solution (free from protein) a potential difference is set up across the membrane in which the protein is positively charged in the case of protein-acid salts and in which the protein is negatively charged in the case of metal proteinates. The turning point is the isoelectric point of the protein. 2. Measurements of the pH of the (inside) protein solution and of the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive in the case of protein-acid salts and negative in the case of metal proteinates. This is to be expected when the P.D. is caused by the establishment of a Donnan equilibrium, since in that case the pH should be lower outside than inside in the case of a protein-acid salt and should be higher outside than inside in the case of a metal proteinate. 3. At the isoelectric point where the electrical charge is zero the value of pH inside minus pH outside becomes also zero. 4. It is shown that a P.D. is established between suspended particles of powdered gelatin and the surrounding watery solution and that the sign of charge of the particles is positive when they contain gelatin-acid salts, while it is negative when the powdered particles contain metal gelatinate. At the isoelectric point the charge is zero. 5. Measurements of the pH inside the powdered particles and of the pH in the outside watery solution show that when equilibrium is established the value pH inside minus pH outside is positive when the powdered particles contain a gelatin-acid salt, while the value pH inside minus pH outside is negative when the powdered particles contain Na gelatinate. At the isoelectric point the value pH inside minus pH outside is zero. 6. The addition of neutral salts depresses the electrical charge of the powdered particles of protein-acid salts. It is shown that the addition of salts to a suspension of powdered particles of gelatin chloride also diminishes the value of pH inside minus pH outside. 7. The agreement between the values 58 (pH inside minus pH outside) and the P. D. observed by the Compton electrometer is not only qualitative but quantitative. This proves that the difference in the concentration of acid (or alkali, as the case may be) in the two phases is the only cause for the observed P.D. 8. The Donnan theory demands that the P.D. of a gelatin chloride solution should be 1½ times as great as the P.D. of a gelatin sulfate solution of the same pH and the same concentration (1 per cent) of originally isoelectric gelatin. This is found to be correct and it is also shown that the values of pH inside minus pH outside for the two solutions possess the ratio of 3:2. 9. All these measurements prove that the electrical charges of suspended particles of protein are determined exclusively by the Donnan equilibrium.  相似文献   

8.
1. A method is described for measuring the swelling pressure of solid gelatin. 2. It was found that this pressure increases rapidly between 15° and 37°C., and that the percentage change is nearly independent of the concentration of gelatin. 3. It is suggested that this pressure is due to the osmotic pressure of a soluble constituent of the gelatin held in the network of insoluble fibers, and that gelatin probably consists of a mixture of at least two substances or groups of substances, one of which is soluble in cold water, does not form a gel, and has a low viscosity and a high osmotic pressure. The second is insoluble in cold water, forms a gel in very low concentration, and swells much less than ordinary gelatin. 4. Two fractions, having approximately the above properties, were isolated from gelatin by alcohol precipitation at different temperatures. 5. Increasing the temperature and adding neutral salts greatly increase the pressure of the insoluble fraction and have little effect on that of the soluble fraction. 6. Adding increasing amounts of the soluble fraction to the insoluble one results in greater and greater swelling. 7. These results are considered as evidence for the idea that the swelling of gelatin in water or salt solutions is an osmotic phenomenon, and that gelatin consists of a network of an insoluble substance enclosing a solution of a soluble constituent.  相似文献   

9.
The swelling of isoelectric gelatin in water has been found to be in agreement with the following assumptions. Gelatin consists of a network of insoluble material containing a solution of a more soluble substance. Water therefore enters owing to the osmotic pressure of the soluble material and thereby puts the network under elastic strain. The process continues until the elastic force is equal to the osmotic pressure. If the temperature is raised or the blocks of gelatin remain swollen over a period of time, the network loses its elasticity and more water enters. In large blocks this secondary swelling overlaps the initial process and so no maximum can be observed. The swelling of small blocks or films of isoelectric gelatin containing from .14 to .4 gm. of dry gelatin per gm. of water is defined by the equation See PDF for Equation in which Ke = the bulk modulus See PDF for Equation. Ve = gm. water per gm. gelatin at equilibrium; Vf = gm. water per gm. gelatin when the gelatin solidified.  相似文献   

10.
1. It had been shown in previous papers that when a collodion membrane has been treated with a protein the membrane assumes a positive charge when the hydrogen ion concentration of the solution with which it is in contact exceeds a certain limit. It is pointed out in this paper that by treating the collodion membrane with a protein (e.g. oxyhemoglobin) a thin film of protein adheres to the membrane and that the positive charge of the membrane must therefore be localized in this protein film. 2. It is further shown in this paper that the hydrogen ion concentration, at which the reversal in the sign of the charge of a collodion membrane treated with a protein occurs, varies in the same sense as the isoelectric point of the protein, with which the membrane has been treated, and is always slightly higher than that of the isoelectric point of the protein used. 3. The critical hydrogen ion concentration required for the reversal seems to be, therefore, that concentration where enough of the protein lining of the membrane is converted into a protein-acid salt (e.g. gelatin nitrate) capable of ionizing into a positive protein ion (e.g. gelatin) and the anion of the acid used (e.g. NO3).  相似文献   

11.
Using 14C-labeled KSCN and 36Cl-labeled KC1, we have determined the selective removal of ions and water by fibrous, crosslinked collagen both below and above the denaturation temperatures at several molarities under or near isoelectric conditions. The results for KSCN show there is an increase in ion binding at the denaturation temperature. These data, in conjunction with date from the literature, have been used to evaluate binding constants and mole fractions of available binding sites, as well as the free energy of binding various salts to collagen and gelatin. The values so obtained correlate satisfactorily with similar quantities obtained from the experimental dependence of the shrinkage temperature of collagen on salt concentration using a simple theory for the melting point depression which includes the effect of binding in the denatured state. Salting-out agents show negligible binding to the protein, and this confirms the earlier finding that the interaction between these agents and the protein can be approximately described by conventional polymer–diluent theories which do not consider ion binding. Also, an analysis of the role of unequal anion and cation binding is presented.  相似文献   

12.
An experimental study has been made of the adsorption of gelatin from solution at 37°C. by collodion membranes. In the case of membranes of high permeability, very high concentrations of gelatin were required to produce maximum adsorption, and the maximum amounts adsorbed were independent of the pH values of the solutions over the range 3.8 to 4.8. With membranes of low permeability, maximum adsorption was reached at lower gelatin concentrations, and the maximum amounts adsorbed varied with the pH, being lower on either side of the isoelectric point, over the range 3.8 to 6.6. The addition of salt in such experiments raised the maximum amount adsorbed to a value equal to that obtained with solutions at the isoelectric point in the absence of salt. These experiments can be explained by, and seem to lend support to, the theory proposed by Loeb and further developed by Kunitz concerning the effects of pH and salt on the size of gelatin particles in solution.  相似文献   

13.
The swelling of isoelectric gelatin added to various volumes of acid of different concentration at 5°C. has been determined. The swelling is determined only by the concentration of the supernatant solution at equilibrium and is independent of the volume of acid. Similar experiments with unpurified gelatin show that in this case, owing to the presence of neutral salts the swelling is a function of the volume as well as the concentration of acid. Both results are predicted by the Procter-Wilson-Loeb theory of the swelling of gelatin.  相似文献   

14.
Two samples of a standard gelatin were studied, both prepared according to published specifications and washed free from diffusible electrolytes. The isoelectric point of this material was determined in four ways. 1. The pH values of solutions of gelatin in water approached the limit 4.86 ± 0.01 as the concentration of gelatin was increased. 2. The pH values of acetate buffers were unchanged by the addition of gelatin only at pH 4.85 ± 0.01. This gives the isoionic point of Sørensen, which is the isoelectric point with respect only to hydrogen and hydroxyl ions. 3. Gels of this gelatin made up in dilute HCl or NaOH, or in dilute acetate buffers, exhibited maximum turbidity at pH 4.85 ± 0.03. 4. Very dilute suspensions of collodion particles in 0.1 per cent gelatin solutions made up in acetate buffers showed zero velocity in cataphoresis experiments only at pH 4.80 ± 0.01. No evidence was found for the assumption that gelatin has two isoelectric points at widely separated pH values. It is concluded that the isoelectric point of this standard gelatin is not far from pH 4.85.  相似文献   

15.
1. It is shown that when part of the gelatin in a solution of gelatin chloride is replaced by particles of powdered gelatin (without change of pH) the membrane potential of the solution is influenced comparatively little. 2. A measurement of the hydrogen ion concentration of the gelatin chloride solution and the outside aqueous solution with which the gelatin solution is in osmotic equilibrium, shows that the membrane potential can be calculated from this difference of hydrogen ion concentration with an accuracy of half a millivolt. This proves that the membrane potential is due to the establishment of a membrane equilibrium and that the powdered particles participate in this membrane equilibrium. 3. It is shown that a Donnan equilibrium is established between powdered particles of gelatin chloride and not too strong a solution of gelatin chloride. This is due to the fact that the powdered gelatin particles may be considered as a solid solution of gelatin with a higher concentration than that of the weak gelatin solution in which they are suspended. It follows from the theory of membrane equilibria that this difference in concentration of protein ions must give rise to potential differences between the solid particles and the weaker gelatin solution. 4. The writer had shown previously that when the gelatin in a solution of gelatin chloride is replaced by powdered gelatin (without a change in pH), the osmotic pressure of the solution is lowered the more the more dissolved gelatin is replaced by powdered gelatin. It is therefore obvious that the powdered particles of gelatin do not participate in the osmotic pressure of the solution in spite of the fact that they participate in the establishment of the Donnan equilibrium and in the membrane potentials. 5. This paradoxical phenomenon finds its explanation in the fact that as a consequence of the participation of each particle in the Donnan equilibrium, a special osmotic pressure is set up in each individual particle of powdered gelatin which leads to a swelling of that particle, and this osmotic pressure is measured by the increase in the cohesion pressure of the powdered particles required to balance the osmotic pressure inside each particle. 6. In a mixture of protein in solution and powdered protein (or protein micellæ) we have therefore two kinds of osmotic pressure, the hydrostatic pressure of the protein which is in true solution, and the cohesion pressure of the aggregates. Since only the former is noticeable in the hydrostatic pressure which serves as a measure of the osmotic pressure of a solution, it is clear why the osmotic pressure of a protein solution must be diminished when part of the protein in true solution is replaced by aggregates.  相似文献   

16.
1. The proof is completed that the influence of electrolytes on the viscosity of suspensions of powdered particles of gelatin in water is similar to the influence of electrolytes on the viscosity of solutions of gelatin in water. 2. It has been suggested that the high viscosity of proteins is due to the existence of a different type of viscosity from that existing in crystalloids. It is shown that such an assumption is unnecessary and that the high viscosity of solutions of isoelectric gelatin can be accounted for quantitatively on the assumption that the relative volume of the gelatin in solution is comparatively high. 3. Since isoelectric gelatin is not ionized, the large volume cannot be due to a hydration of gelatin ions. It is suggested that this high volume of gelatin solutions is caused by the existence in the gelatin solution of submicroscopic pieces of solid gelatin occluding water, the relative quantity of which is regulated by the Donnan equilibrium. This would also explain why the influence of electrolytes on the viscosity of gelatin solutions is similar to the influence of electrolytes on the viscosity of suspensions of particles of gelatin. 4. This idea is supported by experiments on solutions and suspensions of casein chloride in which it is shown that their viscosity is chiefly due to the swelling of solid particles of casein, occluding quantities of water regulated by the Donnan equilibrium; and that the breaking up of these solid particles into smaller particles, no longer capable of swelling, diminishes the viscosity. 5. This leads to the idea that proteins form true solutions in water which in certain cases, however, contain, side by side with isolated ions and molecules, submicroscopic solid particles capable of occluding water whereby the relative volume and the viscosity of the solution is considerably increased. This accounts not only for the high order of magnitude of the viscosity of such protein solutions but also for the fact that the viscosity is influenced by electrolytes in a similar way as is the swelling of protein particles. 6. We therefore reach the conclusion that there are two sources for the viscosity of protein solutions; one due to the isolated protein ions and molecules, and the other to the submicroscopic solid particles contained in the solution. The viscosity due to the isolated molecules and ions of proteins we will call the general viscosity since it is of a similar low order of magnitude as that of crystalloids in solution; while the high viscosity due to the submicroscopic solid protein particles capable of occluding water and of swelling we will call the special viscosity of protein solutions. Under ordinary conditions of hydrogen ion concentration and temperature (and in not too high a concentration of the protein in solution) the general viscosity due to isolated ions and molecules prevails in solutions of crystalline egg albumin and in solutions of metal caseinates (where the metal is monovalent) while under the same conditions the second type of viscosity prevails in solutions of gelatin and in solutions of acid-salts of casein; and also in solutions of crystalline egg albumin at a pH below 1.0 and at higher temperatures. The special viscosity is higher in solutions of gelatin than of casein salts for the probable reason that the amount of water occluded by the submicroscopic solid gel particles in a gelatin solution is, as a rule, considerably higher than that occluded by the corresponding particles of casein.  相似文献   

17.
1. This paper contains experiments on the influence of acids and alkalies on the osmotic pressure of solutions of crystalline egg albumin and of gelatin, and on the viscosity of solutions of gelatin. 2. It was found in all cases that there is no difference in the effects of HCl, HBr, HNO3, acetic, mono-, di-, and trichloracetic, succinic, tartaric, citric, and phosphoric acids upon these physical properties when the solutions of the protein with these different acids have the same pH and the same concentration of originally isoelectric protein. 3. It was possible to show that in all the protein-acid salts named the anion in combination with the protein is monovalent. 4. The strong dibasic acid H2SO4 forms protein-acid salts with a divalent anion SO4 and the solutions of protein sulfate have an osmotic pressure and a viscosity of only half or less than that of a protein chloride solution of the same pH and the same concentration of originally isoelectric protein. Oxalic acid behaves essentially like a weak dibasic acid though it seems that a small part of the acid combines with the protein in the form of divalent anions. 5. It was found that the osmotic pressure and viscosity of solutions of Li, Na, K, and NH4 salts of a protein are the same at the same pH and the same concentration of originally isoelectric protein. 6. Ca(OH)2 and Ba(OH)2 form salts with proteins in which the cation is divalent and the osmotic pressure and viscosity of solutions of these two metal proteinates are only one-half or less than half of that of Na proteinate of the same pH and the same concentration of originally isoelectric gelatin. 7. These results exclude the possibility of expressing the effect of different acids and alkalies on the osmotic pressure of solutions of gelatin and egg albumin and on the viscosity of solutions of gelatin in the form of ion series. The different results of former workers were probably chiefly due to the fact that the effects of acids and alkalies on these proteins were compared for the same quantity of acid and alkali instead of for the same pH.  相似文献   

18.
A rapid micro-assay method for gelatinolytic activitiy has been developed using 3H-labeled heat-denatured polymeric collagen (gelatin) as a substrate to investigate enzymes involved in the post-collagenase catabolism of collagen. The method is based on the incubation of gelatin with enzyme followed by determination of the enzyme digestion products soluble in 67% dioxane. It is sensitive enough to detect microgram levels of gelatin fragments, and can be employed over wide ranges of pH and ionic strength. By applying the method to an embryonic chick skin culture system, three gelatinolytic enzyme fractions which showed high, limited and no caseinolytic activities were demonstrated to be separable by gel chromatography.  相似文献   

19.
A technique for rapid detection of proteinase inhibitors in fractions after liquid chromatography is described. Aliquots of the tested solutions are placed onto a thin layer of gelatin, crosslinked with glutardialdehyde in the presence of water soluble nigrosin, to form small drops. A proteinase solution is added to the above-mentioned drops and the plate is incubated at ambient temperature for approximately 15-25 min. After the gelatin layer is washed with water the inhibitor negative fractions are visualized as colorless zones on a blue background. With inhibitor positive fractions no change of gelatin layer occurs.  相似文献   

20.
The magnitude of the correction in the fifth column of Table III may be open to some doubt, as are all corrections of such a character, and the significance of the above experiment in the author''s mind lies not so much in the actual magnitude of the values given in the last column of this table as in their comparative magnitudes. For this reason the entire experiment reported was performed in a single session using the same gelatin solution, so that, whatever the magnitude of the correction, it would be the same in all cases. Actually the results in the case of the acid titrations are in fair agreement with those of Hitchcock (8). In the present experiment it is seen that, within the limits of experimental error, one gets the same value for the number of cc. of tenth normal acid bound by 1 gm. of gelatin whether one titrates with the acid or with the gelatin. In the case of the base there is a small difference, due probably to carbon dioxide, but this effect is in a direction opposite to that which one would expect on the assumption that it is due to appreciable adsorption. From this it is concluded that the binding due to adsorption in the case of gelatin is not significant compared to that due to chemical neutralization. The author realizes that gelatin is a poor choice for a basis of generalizations, and similar work is at present in progress on various other proteins. He does feel, however, that the conclusions of Hoffman and Gortner from their work on the prolamines may also be too widely generalized, and that, on the whole, the acid or alkali bound by adsorption in the case of proteins will not constitute the large majority of the total amounts bound, though certainly one will expect a certain amount of such binding in all cases. It also seems that before placing undue emphasis on the conclusions of these workers the possibilities of equivocal results due to specific technique should be considered. This technique consisted in introducing weighed amounts of dry protein into a definite volume of standard acid or base at the equilibrium temperature, in general, and, "after about 15 minutes, during which time the flask was shaken several times," determining the pH of the equilibrium solution. Is it possible that the actual speed of solution of the protean is such that, even though reproducible results are obtained using identical technique, actual equilibrium conditions are approached only when comparatively high concentrations of acid or alkali are employed, in which cases the solution velocity of the protein may he expected to be greater, other factors remaining constant?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号