首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Here we examined several physiological properties of two near-isogenic lines of durum wheat (Triticum turgidum var. durum) that differ in grain cadmium accumulation, to identify the function of a gene locus that confers differential grain Cd concentrations. Time- and concentration-dependent uptake and translocation studies using 109Cd were conducted on nutrient solution-grown seedlings. Root extracts were analysed by inductively coupled plasma emission spectrometry, gel filtration and capillary electrophoresis to determine the interaction between Cd and phytochelatins (PCs) in storage of Cd in roots. The two isolines did not differ in time- or concentration-dependent root Cd uptake, but the low grain-Cd-accumulating isoline showed decreased movement of Cd from roots to shoots. All buffer-soluble Cd extracted from roots of both isolines was in the form of a low-molecular-weight PC-containing complex. The data suggest that PC synthesis is not a limiting factor in the differential storage of Cd in roots, and that movement of Cd through the root and into the transpiration stream may be the cause of differential Cd partitioning in the two isolines.  相似文献   

2.
Cadmium accumulation in grain of durum wheat (Triticum turgidum L. var. durum) represents a concern to consumers. In an effort to understand the regulation of Cd accumulation in maturing grain, the remobilization of 109Cd applied to stem and flag leaves was examined in two near-isogenic lines that differ in grain Cd accumulation. Absorbed 109Cd was primarily retained in the labelling flap (50-54% and 65-80% for stem and flag leaves, respectively). Cadmium exported from the stem flap initially (3 d) accumulated in the stem in a declining gradient towards the head. Subsequent remobilization of Cd deposited in the stem was associated with Cd accumulation in the grain. Cadmium exported from the flag leaf flap was primarily directed to the grain. Little (<1%) Cd accumulated in the glumes or rachis, and transport of Cd to shoot tissues below the flag leaf node was low (<1%). On average, 9% and 17% of absorbed 109Cd accumulated in the grain 14 d after labelling the stem and flag leaf, respectively. Irrespective of labelling position, the low Cd-accumulating isoline averaged 1.5-2-fold lower Cd accumulation per grain and Cd concentration in the grain than the high Cd-accumulating isoline. Cadmium accumulation in the grain was inversely correlated with Cd retention in the stem (stem labelled) and labelling flap (flag leaf labelled) for both isolines. Cadmium translocation to the grain was not inhibited by Zn when both were applied simultaneously (50 pM 109Cd; 0.5 microM 65Zn) to the flag leaf. These results show that elevated remobilization of Cd from the leaves and stem to the maturing grain may be partially responsible for the high accumulation of Cd in durum wheat grain.  相似文献   

3.
Cadmium (Cd) is a nonessential heavy metal that can be harmful at low concentrations in organisms. Therefore, it is necessary to decrease Cd accumulation in the grains of wheats aimed for human consumption. In response to Cd, higher plants synthesize sulphur-rich peptides, phytochelatins (PCs). PC–heavy metal complexes have been reported to accumulate in the vacuole. Retention of Cd in the root cell vacuoles might influence the symplastic radial Cd transport to the xylem and further transport to the shoot, resulting in genotypic differences in grain Cd accumulation. We have studied PC accumulation in 12-day-old seedlings of two cultivars of spring bread wheat (Triticum aestivum), and two spring durum wheat cultivars (Triticum turgidum var. durum) with different degrees of Cd accumulation in the grains. Shoots and roots were analysed for dry weight, Cd and PC accumulation. There were no significant differences between the species or the varieties in the growth response to Cd, nor in the distributions of PC chain lengths or PC isoforms. At 1 μM external Cd, durum wheat had a higher total Cd uptake than bread wheat, however, the shoot-to-root Cd concentration ratio was higher in bread wheat. When comparing varieties within a species, the high grain Cd accumulators exhibited lower rates of root Cd accumulation, shoot Cd accumulation, and root PC accumulation, but higher shoot-to-root Cd concentration ratios. Intraspecific variation in grain Cd accumulation is apparently not only explained by differential Cd accumulation as such, but rather by a differential plant-internal Cd allocation pattern. However, the higher average grain Cd accumulation in the durum wheats, as compared to the bread wheats, is associated with a higher total Cd accumulation in the plant, rather than with differential plant-internal Cd allocation. The root-internal PC chain length distributions and PC–thiol-to-Cd molar ratios did not significantly differ between species or varieties, suggesting that differential grain Cd accumulation is not due to differential PC-based Cd sequestration in the roots.  相似文献   

4.
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl20 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer.  相似文献   

5.
Welch  R.M.  Hart  J.J.  Norvell  W.A.  Sullivan  L.A.  Kochian  L.V. 《Plant and Soil》1999,208(2):243-250
Cd accumulation in durum wheat presents a potential health risk to consumers. In an effort to understand the physiological mechanisms involved with Cd accumulation, this study examined the effects of Zn on Cd root uptake and phloem translocation in a split– root system. Durum wheat seedlings were grown in chelate-buffered nutrient solution with intact root systems divided into two sections. Each root section grew in a separate 1 l pot, one of which contained 0.2 μM CdSO4. In addition, each two-pot system contained ZnSO4 in the following combinations (in μm) (for -cd root system: +cd root system): 1:1, 1:10, 10:1,10:10, 1:19, and 19:1. Harvested plant material was analyzed for Cd and Zn. In addition, rates of Cd and Zn net uptake, translocation to the shoot, and root export (translocation from one root segment to the other) between days 8 and 22 were calculated. Results show that Zn was not translocated from one root section to its connected root section. Uptake rates of Cd increased as solution Zn concentrations increased. Cd translocation from one root section to the other decreased significantly when the Zn concentration in either pot was greater than 1 μM. These results show the potential of Zn to inhibit movement of Cd via the phloem, and suggests that providing adequate Zn levels may limit phloem loading of Cd into wheat grain. Increasing the rhizosphere activity of Zn2+ in Cd-containing soils may therefore result in reduced Cd accumulation in grain even while net Cd uptake is slightly enhanced. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
A growth chamber study was conducted to evaluate the effect of application of phosphate fertilizer on soil solution dynamics of cadmium (Cd) and Cd accumulation in durum wheat (Triticum turgidum L. var. durum). Treatments consisted of three phosphate fertilizer sources containing 3.4, 75.2, and 232 mg Cd kg?1 applied at three rates (20, 40 and 80 mg P kg?1) plus a no fertilization control. An unplanted treatment at 40 mg P kg?1 was included to separate the effects on soil solution Cd dynamics of the crop from that of the fertilizer. Soil solution samples were obtained using soil moisture samplers every 10 days after germination. The experimental results indicated that plant biomass significantly increased with P application rates and decreased with increased Cd concentration in the phosphate fertilizers. Total cadmium concentration in soil solution was not consistently affected by phosphate fertilization rate and fertilizer sources, and therefore Cd concentration in the fertilizer. Application of phosphate fertilizer, however, increased the concentration and accumulation of Cd and shoot Cd/Zn ratio, and decreased shoot Zn concentration in durum wheat. Phosphate sources had a marginally significant effect (P?=?0.05) on shoot Cd concentration and did not affect Cd accumulation in durum wheat. Concentration of Cd in soil solution was unrelated to Cd concentration in durum wheat. These results suggest that the immediate increase in Cd concentration and Cd accumulation in durum wheat with phosphate application is due more to competition between Zn and Cd for absorption into plants, enhanced root to shoot translocation and enhanced root development, than to a direct addition effect from Cd contained in phosphate fertilizer. In the short term, application of phosphate fertilizers can increase Cd concentration in the crops, regardless of the Cd concentration of the fertilizer. An optimal P fertilization, possibly in combination with Zn application, may offer an important strategy for decreasing Cd concentration and accumulation in crops.  相似文献   

7.
Six bread wheat (Triticum aestivum cvs. Kiraç-66, Gerek-79, Aroona, ES 91-12, ES-14 and Kirkpinar) and four durum wheat (Triticum durum cvs. BDMM-19, Kunduru-1149, Kiziltan-91 and Durati) genotypes were grown under controlled environmental conditions in nutrient solution for 20 days to study the effect of varied supply of Zn (0 to 1 µM) on Zn deficiency symptoms in shoots, root and shoot dry matter production, and distribution of Zn in roots and shoots.Visual Zn deficiency symptoms, such as whitish-brown lesions on leaves, appeared rapidly and severly in durum wheats, particularly in Kiziltan-91 and Durati. Among the durum wheats, BDMM-19 was less affected by Zn deficiency, and among the bread wheats Kiraç-66, ES 91-12, Aroona and Gerek-79 were less affected than ES-14 and Kirkpinar.Under Zn deficiency, shoot dry matter production was decreased in all genotypes, but more distinctly in durum wheat genotypes. Despite severe decreases in shoot growth, root growth of all genotypes was either not affected or even increased by Zn deficiency. Correspondingly, shoot/root dry weight ratios were lower in Zn-deficient than in Zn-sufficient plants, especially in durum wheat genotypes.The distinct differences among the genotypes in sensitivity to Zn deficiency were closely related with the Zn content (Zn accumulation) per shoot but not with the Zn concentration in the shoot dry matter. On average, genotypes with lesser deficiency symptoms contained about 42% more Zn per shoot than genotypes with severe deficiency symptoms. In contrast to shoots, the Zn content in roots did not differ between genotypes. Shoot/root ratios of total Zn content were therefore greater for genotypes with lesser deficiency symptoms than for genotypes with severe deficiency symptoms (i.e. all durum wheat genotypes).The results suggest that the enhanced capacity of genotypes for Zn uptake and translocation from roots to shoot meristems under deficient Zn supply might be the most important factor contributing to Zn efficiency in wheat genotypes. The results also demonstrate that under severe Zn deficiency, Zn concentration in the shoot dry matter is not a suitable parameter for distinguishing wheat genotypes in their sensitivity to Zn deficiency.  相似文献   

8.
A number of isolines of durum wheat (Triticum turgidum var. durum) differ in their translocation of Cd. In the field, the high isolines accumulate twice the Cd in leaves and grain when compared to the low isolines. The hypothesis that differential accumulation of Cd is associated with differential production of organic acids was tested by measuring Cd content in tissues, Cd partitioning within the root, and organic acids in tissues. In solution culture, the high and low isolines of W9261-BG did not differ in any of the variables measured. Within W9260-BC, the low isoline had half the Cd in its shoot, 30% more tightly bound Cd in the root and higher concentrations of fumaric, malic, and succinic acids in the root compared to the high isoline. Differential Cd accumulation may be linked to differential adsorption and retention of Cd in the roots of the low Cd-accumulating isolines, possibly via chelation with organic acids.  相似文献   

9.
Cadmium (Cd) accumulation has been found to vary between cultivars of durum wheat (Triticum turgidum var. durum), and it is hypothesized that low-molecular-weight organic acids (LMWOAs) produced at the soil-root interface (rhizosphere) may play an important role in the availability and uptake of Cd by these plants. The objective of this study, therefore, was to (1) investigate the nature and quantity of LMWOAs present in the rhizosphere of durum wheat cultivars Arcola (low Cd accumulator) and Kyle (high Cd accumulator) grown in three different soils: Yorkton, Sutherland and Waitville, and (2) determine the relationship between Cd accumulation in these plants and LMWOAs present in the rhizosphere. Plants were grown for two weeks in pot-cultures under growth chamber conditions. Oxalic, fumaric, succinic, L-malic, tartaric, citric, acetic, propionic and butyric acids were found and quantified in the water extracts of rhizosphere soil, with acetic and succinic acids being predominant. No water extractable LMWOAs were identified in the bulk soil. Total amount of LMWOAs in the rhizosphere soil of the high Cd accumulator (Kyle) was significantly higher than that for the low Cd accumulator (Arcola) in all three soils. Furthermore, large differences in amounts of LMWOAs were found in the rhizosphere soil for the same cultivars grown in different soils and followed the pattern: Sutherland > Waitville > Yorkton. Extractable soil Cd (M NH4Cl) and Cd accumulation in the plants also followed the same soil sequence as LMWOA production. Cadmium accumulation by the high and low Cd accumulating cultivars was proportional to the levels of LMWOAs found in the rhizosphere soil of each cultivar. These results suggest that the differing levels of LMWOAs present in the rhizosphere soil played an important role in the solubilization of particulate-bound Cd into soil solution and its subsequent phytoaccumulation by the high and low Cd accumulating cultivars.  相似文献   

10.
Durum wheat (Triticum turgidum L. var. durum) accumulates Cd from the soil depending on various factors. When grown in hydroponic solution containing Cd (20 microg l(-1)), roots had higher tissue Cd concentrations than shoots or heads. Kyle (the higher grain-Cd accumulating cultivar) had lower root-Cd, and greater shoot-Cd and head-Cd concentrations than Arcola (the lower grain-Cd accumulating cultivar). These cultivar differences were greater at flowering and ripening than at tillering. Much of the root-Cd was lost between the flowering and ripening stages of development. Distribution of (106)Cd among plant parts, after a single 24 h feeding, demonstrated that root-to-shoot transfer of Cd in Arcola was similar to that of Kyle at tillering, but it had ceased at flowering in Arcola but not Kyle. None of the Cd in wheat heads at ripening originated from (106)Cd exposure in the previous 24 h, suggesting that grain-Cd is a function of total shoot accumulation. Both cultivars demonstrated basipetal translocation of Cd; Arcola at tillering translocated more Cd from shoots to roots than Kyle. The proportion of Cd(2+)/Cd(total) in the nutrient solution decreased with time, suggesting that plant activity altered the solution chemistry. The alteration probably resulted from either preferential depletion of solution Cd(2+) and/or addition of root exudates. Lower grain-Cd accumulation in Arcola possibly resulted from a combination of reduced root-to-shoot transfer of Cd at flowering, as well as enhanced shoot-to-root retranslocation of Cd, at least in younger plants. Plant-mediated changes in solution-Cd speciation did not play a role.  相似文献   

11.
In each wheat type, cultivars have different propensities to accumulate Cd in their grains, likely depending on Cd uptake by roots and/or Cd distribution in the plant. This study investigates the processes in the root–soil interface and their role in high or low grain Cd accumulation. Twenty-four cultivars of spring bread, winter bread, durum, and spelt wheat with different grain Cd accumulation levels were investigated regarding removal of Cd from soil, pH, Cd and organic acids in root exudates, and cation-exchange capacity of roots (rootCEC). In addition, we investigated 109Cd uptake from a nutrient solution resembling soil solution. The removal of Cd from the rhizosphere soil increased, likely due to increased rootCEC with increased grain Cd accumulation propensity, except in spring bread wheat. The 109Cd uptake from solution did not differ between high and low grain Cd accumulators. If the soil Cd concentration was elevated, rootCEC increased, as did pH, and succinic acid levels in the exudates, while lactic and citric acid levels in root exudates decreased. This work indicates that high grain Cd accumulators take up more Cd from soil than do low accumulators. But not by a different capacity to take up Cd from soil solution. The higher rootCEC in high accumulating cultivars may influence the release of Cd from the soil particles.  相似文献   

12.
Cakmak  I.  Welch  R.M.  Erenoglu  B.  Römheld  V.  Norvell  W.A.  Kochian  L.V. 《Plant and Soil》2000,219(1-2):279-284
Effect of varied zinc (Zn) supply (0, 0.1, 1, 5 M) on re-translocation of radio-labeled cadmium (109Cd) and rubidium (86Rb) from mature leaf to root and other parts of shoot was studied in 11-day-old durum wheat (Triticum durum cv. C-1252) plants grown in nutrient solution under controlled environmental conditions. Application of 109Cd and 86Rb was carried out by immersing the tips (3 cm) of mature leaf in radio-labeled solutions for 10 s at three different times over a 42 h period. Differences in Zn supply for 11 days did not affect plant growth nor did it cause visual leaf symptoms, such as necrosis and chlorosis, at either the lowest or the highest Zn supply. Only at the nil Zn supply (0 M), shoot and root dry weights tended to decrease and increase, respectively, causing a lower shoot/root dry weight ratio. Partitioning of more dry matter to roots rather than shoots, a typical phenomena for Zn-deficient plants in nutrient solution experiments, indicated existence of a mild Zn deficiency stress at the nil-Zn treatment. Irrespective of Zn supply, plants could, on average, retranslocate 3.8% and 38% of the total absorbed 109Cd and 86Rb from the treated leaf to roots and other parts of shoots within 42 h, respectively. At nil-Zn treatment, 2.8% of the total absorbed 109Cd was re-translocated from the treated leaf, particularly into roots. The highest re-translocation of 109Cd (6.5%) was found in plants supplied with 0.1 M Zn. Increases in Zn supply from 0.1 M reduced 109Cd re-translocation from 6.5% to 4.3% at 1 M Zn and 1.3% at 5 M Zn. With the exception of the nil-Zn treatment, the proportion of re-translocated 109Cd was greater in the remainder of the shoot than in the roots. Contrary to the 109Cd results, re-translocation of 86Rb was not (at 0, 0.1 and 1 M Zn), or only slightly (at 5 M), affected by changing Zn supply. The results indicate an inhibitory action of increased concentrations of Zn in shoot tissues on phloem-mediated Cd transport. This effect is discussed in relation to competitive inhibition of Cd loading into phloem sap by Zn.  相似文献   

13.
Cadmium is readily taken up from soils by plants, depending on soil chemistry, and variably among species and cultivars; altered transpiration and xylem transport and/or translocation in the phloem could cause this variation in Cd accumulation, some degree of which is heritable. Using Triticum turgidum var. durum cvs Kyle and Arcola (high and low grain Cd accumulating, respectively), the objectives of this study were to determine if low-concentration Cd exposure alters transpiration, to relate transpiration to accumulation of Cd in roots and shoots at several life stages, and to evaluate the role of apoplastic bypass in the accumulation of Cd in shoots. The low abundance isotope (106)Cd was used to probe Cd translocation in plants which had been exposed to elemental Cd or were Cd-na?ve; apoplastic bypass was monitored using the fluorescent dye PTS (8-hydroxy-1,3,6-pyrenetrisulphonate). Differential accumulation of Cd by 'Kyle' and 'Arcola' could be partially attributed to the effect of Cd on transpiration, as exposure to low concentrations of Cd increased mass flow and concomitant Cd accumulation in 'Kyle'. Distinct from this, exposure of 'Arcola' to low concentrations of Cd reduced translocation of Cd from roots to shoots relative to root accumulation of Cd. It is possible, but not tested here, that sequestration mechanisms (such as phytochelatin production, as demonstrated by others) are the genetically controlled difference between these two cultivars that results in differential Cd accumulation. These results also suggest that apoplastic bypass was not a major pathway of Cd transport from the root to the shoot in these plants, and that most of the shoot Cd resulted from uptake into the stele of the root via the symplastic pathway.  相似文献   

14.
Deficiencies of zinc (Zn) and iron (Fe) are global nutritional problems and caused most often by their limited dietary intake. Increasing Zn and Fe concentrations of staple food crops such as wheat is therefore an important global challenge. This study investigated the effects of varied nitrogen (N) and Zn supply on the total uptake, remobilization and partitioning of Zn, Fe and N in durum wheat throughout its ontogenesis. Plants were grown under greenhouse conditions with high or low supply of N and Zn, and harvested at 8 different developmental stages for analysis of Zn, Fe and N in leaves, stems, husks and grains. The results obtained showed that the Zn and Fe uptake per plant was enhanced up to 4-fold by high N supply while the increases in plant growth by high N supply were much less. When both the Zn and N supplies were high, approximately 50% of grain Zn and 80% of grain Fe were provided by post-anthesis shoot uptake, indicating that the contribution of remobilization to grain accumulation was higher for Zn than for Fe. At the high N and Zn application, about 60% of Zn, but only 40% of Fe initially stored in vegetative parts were retranslocated to grains, and nearly 80% of total shoot Zn and 60% of total shoot Fe were harvested with grains. All these values were significantly lower at the low N treatment. Results indicate that N nutrition is a critical factor in both the acquisition and grain allocation of Zn and Fe in wheat.  相似文献   

15.

Background  

Cadmium (Cd) concentrations in durum wheat (Triticum turgidum L. var durum) grain grown in North American prairie soils often exceed proposed international trade standards. To understand the physiological processes responsible for elevated Cd accumulation in shoots and grain, Cd uptake and translocation were studied in seedlings of a pair of near-isogenic durum wheat lines, high and low for Cd accumulation in grain.  相似文献   

16.
Zinc deficiency as a critical problem in wheat production in Central Anatolia   总被引:19,自引:0,他引:19  
In a soil and plant survey, and in field and greenhouse experiments the nutritional status of wheat plants was evaluated for Zn, Fe, Mn and Cu in Central Anatolia, a semi-arid region and the major wheat growing area of Turkey.All 76 soils sampled in Central Anatolia were highly alkaline with an average pH of 7. 9. More than 90% of soils contained less than 0.5 mg kg-1 DTPA-extractable Zn, which is widely considered to be the critical deficiency concentration of Zn for plants grown on calcareous soils. About 25% of soils contained less than 2.5 mg kg-1 DTPA-extractable Fe which is considered to be the critical deficiency concentration of Fe for plants. The concentrations of DTPA-extractable Mn and Cu were in the sufficiency range. Also the Zn concentrations in leaves were very low. More than 80% of the 136 leaf samples contained less than 10 mg Zn kg–1. By contrast, concentrations of Fe, Mn and Cu in leaves were in the sufficient range.In the field experiments at six locations, application of 23 kg Zn ha-1 increased grain yield in all locations. Relative increases in grain yield resulting from Zn application ranged between 5% to 554% with a mean of 43%. Significant increases in grain yield (more than 31%) as a result of Zn application were found for the locations where soils contained less than 0.15 mg kg-1 DTPA-extractable Zn.In pot experirnents with two bread (Triticum aestivum, cvs. Gerek-79 and Kirac-66) and two durum wheats (Triticum durum, cvs. Kiziltan-91 and Kunduru-1149), an application of 10 mg Zn kg-1 soil enhanced shoot dry matter production by about 3.5-fold in soils containing 0.11 mg kg-1 and 0.15 mg kg-1 DTPA-extractable Zn. Results from both field observations and greenhouse experiments showed that durum wheats were more susceptible to Zn deficiency than the bread wheats. On Zn deficient soils, durum wheats as compared to bread wheats developed deficiency symptoms in shoots earlier and to a greater extent, and had lower Zn concentration in shoot tissue and lower Zn content per shoot than the bread wheats.The results presented in this paper demonstrate that (i) Zn deficiency is a critical nutritional problem in Central Anatolia substantially limiting wheat production, (ii) durum wheats possess higher sensitivity to Zn deficient conditions than bread wheats, and (iii) wheat plants grown in calcareous soils containing less than 0.2 mg kg-1 DTPA-extractable Zn significantly respond to soil Zn applications. The results also indicate that low levels of Zn in soils and plant materials (i.e. grains) could be a major contributing factor for widespread occurrence of Zn deficiency in children in Turkey, whose diets are dominated by cereal-based foods.  相似文献   

17.
Erenoglu  B.  Cakmak  I.  Römheld  V.  Derici  R.  Rengel  Z. 《Plant and Soil》1999,209(2):245-252
Effect of zinc (Zn) nutritional status on uptake of inorganic 65Zn was studied in rye (Secale cereale, cv. Aslim), three bread wheat (Triticum aestivum, cvs. Dagdas, Bezostaja, BDME-10) and durum wheat (Triticum durum, cv. Kunduru-1149) cultivars grown for 13 days in nutrient solution under controlled environmental conditions. The cultivars were selected based on their response to Zn deficiency and to Zn fertilization in calcareous soils under field conditions. When grown in Zn-deficient calcareous soil in the field, the rye cultivar had the highest, and the durum wheat the lowest Zn efficiency. Among the bread wheats, BDME-10 showed higher susceptibility to Zn deficiency and Bezostaja and Dagdas were less affected by Zn deficiency. Similarly to field conditions, in nutrient solution visual Zn deficiency symptoms (i.e. necrotic lesions on leaf blade) appeared to be more severe in Kunduru-1149 and BDME-10 and less severe in rye cultivar Aslim. Under Zn deficiency, shoot concentrations of Zn were similar between all cultivars. Cultivars with adequate Zn supply did not differ in uptake and root-to-shoot translocation rate of 65Zn, but under Zn deficiency there were distinct differences; rye showed the highest rate of Zn uptake and the durum wheat the lowest. In the case of bread wheat cultivars, 65Zn uptake rate was about the same and not related to their differential Zn efficiency. Under Zn deficiency, rye had the highest rate of root-to-shoot translocation of 65Zn, while all bread and durum wheat cultivars were similar in their capacity to translocate 65Zn from roots to shoots. When Zn2+ activity in uptake solution ranged between 117 p M and 34550 pM, Zn-efficient and Zn-inefficient bread wheat genotypes were again similar in uptake and root-to-shoot translocation rate of 65Zn. The results indicate that high Zn efficiency of rye can be attributed to its greater Zn uptake capacity from soils. The inability of the durum wheat cultivar Kunduru-1149 to have a high Zn uptake capacity seems to be an important reason for its Zn inefficiency. Differential Zn efficiency between the bread wheat cultivars used in this study is not related to their capacity to take up inorganic Zn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The present study aimed to evaluate the effect of soil-applied Zn and Cu on absorption and accumulation of Cd applied through irrigation water in legume (chickpea and mung bean) and cereal (wheat and maize) crops. The results revealed that Cd in irrigation water at higher levels (2 and 5 mg L?1) significantly (p < 0.05) reduced the plant biomass while the soil application of Zn and Cu, singly or combined, favored the biomass production. Plant tissue Cd concentration increased linearly with the increasing application of Cd via irrigation water. While Cd application caused a redistribution of metals in grains, straw, and roots with the highest concentration of Cd, Zn, and Cu occurred in roots followed by straw and grains. Zinc addition to soil alleviated Cd toxicity by decreasing Cd concentration in plant tissues due to a possible antagonistic effect. The addition of Cu to the soil had no consistent effects on Zn and Cd contents across all crops. Inhibitory effects of Cd on the uptake and accumulation of Zn and Cu have also been observed at higher Cd load. Thus, soil-applied Zn and Cu antagonized Cd helping the plant to cope with its toxicity and suppressed the toxic effects of Cd in plant tissues, thus favoring plant growth.  相似文献   

19.
Cadmium (Cd) accumulation in edible crops is undesirable due to its hazardous influences on human health. The objectives of this study were: i) to evaluate the spatial variability of grain Cd and its relationships with soil properties in 4000 km2 wheat farms; ii) to evaluate the effect of wheat cultivar on the soil properties vs. grain Cd relationships. A number of 255 soil (0–20 cm) and grain samples were taken and Cd concentrations in grain samples and some soil properties were measured. Grain Cd concentrations in 95 percent of the samples exceeded the threshold of 0.2 mg kg?1. Durum wheat had more potential to accumulate Cd in grain (0.76 mg kg?1) than bread (0.69 mg kg?1). There was significant (p < 0.01) correlation between grain Cd and organic carbon (r = 0.66), CEC (r = 0.77) and DTPA-extractable Cd (p < 0.05) (r = 0.57) of the soils. Greater Pearson coefficient values for durum wheat showed that, in the studied calcareous soils, organic carbon, CEC, Cd-DTPA had more effects on durum wheat than bread wheat cultivar. The obtained Kriging map of grain Cd identified three hotspots at the east (durum wheat cultivation), the west (intensive irrigated wheat farms), and south (wheat farms around petrochemical industries) of the region. Agricultural mismanagement due to overusing P-fertilizers increased Cd concentration in the topsoils and grains of wheat farms in the study area.  相似文献   

20.
Durum wheat is capable of accumulating cadmium, a toxic heavy metal, in the grain at levels that have been deemed unsafe for human consumption. Previous studies have identified genetic variation as well as markers associated with Cd accumulation in durum wheat, which can be exploited to develop low Cd cultivars. Because the phenotyping for Cd content is very expensive, KASP markers were developed from molecular markers associated with grain Cd and tested for their usefulness for marker-assisted breeding. A total of 1278 unique genotypes from preliminary and advanced yield trials grown at multiple locations for 2 years were evaluated for grain Cd as well as screened for markers associated with Cd uptake. One marker on chromosome 5B was polymorphic in all crosses between high and low Cd parents and had r2 values ranging from 0.38 to 0.85. Two other markers on the same chromosome predicted similar levels of variation in many trials; however, they were not polymorphic in all populations. The KASP markers accurately predicted up to 97% of the lines for Cd phenotype in different trials. This study identified two markers, Cad-5B and Ex_c1343_2570756, with an average prediction accuracy of 84–88%. These markers could be useful for marker-assisted selection for low grain Cd in durum wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号