首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration requirements of calmodulin in altering basal, GTP-, and dopamine-stimulated adenylate cyclase activities in an EGTA-washed particulate fraction from bovine striatum were examined. In the bovine striatal particulate fraction, calmodulin activated basal adenylate cyclase activity 3.5-fold, with an EC50 of 110 nM. Calmodulin also potentiated the activation of adenylate cyclase by GTP by decreasing the EC50 for GTP from 303 +/- 56 nM to 60 +/- 10 nM. Calmodulin did not alter the maximal response to GTP. The EC50 for calmodulin in potentiating the GTP response was only 11 nM as compared to 110 nM for activation of basal activity. Similarly, calmodulin increased the maximal stimulation of adenylate cyclase by dopamine by 50-60%. The EC50 for calmodulin in eliciting this response was 35 nM. These data demonstrate that calmodulin can both activate basal adenylate cyclase and potentiate adenylate cyclase activities that involve the activating GTP-binding protein, Ns. Mechanisms that involve potentiation of Ns-mediated effects are much more sensitive to calmodulin than is the activation of basal adenylate cyclase activity. Potentiation of GTP-stimulated adenylate cyclase activity by calmodulin was apparent at 3 and 5 mM MgCl2, but not at 1 or 10 mM MgCl2. These data further support a role for calmodulin in hormonal signalling and suggest that calmodulin can regulate cyclic AMP formation by more than one mechanism.  相似文献   

2.
3.
4.
5.
A 20-residue peptide analogue (IASGRTGRRNAIHDILVSSA) of the 8000-dalton heat-stable cAMP-dependent protein kinase inhibitor undergoes efficient calcium-dependent binding by calmodulin, with Kd approximately 70 nM when calcium is present. It is a potent inhibitor of smooth muscle myosin light chain kinase and of the calmodulin-dependent phosphatase activity of calcineurin. At concentrations above 3 microM, the peptide stimulates the basal activity of calcineurin. The native protein kinase inhibitor has no effect on the catalytic activity of myosin light chain kinase and is moderately inhibitory to both the calmodulin-dependent and -independent phosphatase activity of calcineurin. Competition experiments using excess concentrations of calcineurin and calmodulin suggest that the primary interaction of the native heat-stable inhibitor is with the catalytic subunit of protein kinase. Dansylcalmodulin exhibits only a weak interaction with the inhibitor. Observations on deletion peptides of the 20-residue analogue help to delineate the overlapping peptide binding specificities of the cAMP-dependent protein kinase [Scott, J. D., Glaccum, M. B., Fischer, E. H., & Krebs, E. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 1613-1616] and calmodulin. In both cases, the most effectively bound peptides contain the RTGRR sequence.  相似文献   

6.
Heat shock proteins (HSPs) are potent protectors of cellular integrity against environmental stresses, including toxic microbial products. To investigate the mechanism of HSP-70 cell protection against bacterial lipopolysaccharide (LPS), we established a stable HSP-70 gene-transfected RAW 264.7 murine macrophage model of LPS-induced cell death. Bacterial LPS increases the activity of sphingosine kinase 1 (SK1), which catalyzes formation of sphingosine-1-phosphate (S1P). S1P functions as a critical signal for initiation and maintenance of diverse aspects of immune cell activation and function. When mouse macrophages were incubated with Escherichia coli LPS (1 μg/ml) and sphingosine kinase inhibitor (SKI, 5 μM), 90% of cells died. Neither LPS nor SKI alone at these doses damaged the cells. The LPS/SKI-induced cell death was partially reversed by overexpression of HSP-70 in gene-transfected macrophages. The specificity of HSP-70 in this reversal was demonstrated by transfection of HSP-70-specific siRNA. Down-regulation of HSP-70 expression after transfection of siRNA specific for HSP-70 was associated with increased LPS/SKI-induced cell damage. Overexpression of human or murine HSP-70 (HSPA1A and Hspa1a, respectively) increased both cellular SK1 mRNA and protein levels. Cellular heat shock also increased SK1 protein. These studies confirm the importance of SK1 as a protective moiety in LPS-induced cell injury and demonstrate that HSP-70-mediated protection from cells treated with LPS/SKI is accompanied by upregulating expression of SK1. HSP-70-mediated increases in SK1 and consequent increased levels of S1P may also play a role in protection of cells from other processes that lead to programmed cell death.  相似文献   

7.
Calcineurin was isolated from bovine cerebrum extracts by sequential chromatography on Affi-Gel blue and calmodulin affinity columns. Calcineurin so isolated was approximately 90% pure and was composed of equimolar amounts of subunit A (Mr = 61 000-63 000) and subunit B (Mr = 15 000-17 000) when examined by sodium dodecyl sulfate gel electrophoresis. A polypeptide (less than 10%) with Mr = 71 000 whose function and role remains to be investigated, was routinely detected in the calcineurin preparation. Both inhibitory activity (towards calmodulin-dependent cAMP phosphodiesterase) and phosphatase activity (with 32P-labelled myelin basic protein as substrate) were associated with calcineurin as evidenced by (i) coelution from Affi-Gel blue, Affi-Gel calmodulin, diethythaminoethyl-Sepharose, and Sephacryl S-200 chromatography columns; (ii) association with the same protein band on nondenaturing gels; (iii) similar stability upon storage at 4 degrees C and with repeated freezing and thawing; and (iv) parallel heat inactivation. Phosphatase activity of calcineurin was maximal with 32P-labelled myelin basic protein as the substrate. Using this substrate, enzyme activity was generally stimulated 5- to 10-fold in the presence of Ca2+ and calmodulin; half-maximal activation (A0.5) was observed with 25 nM calmodulin. Calmodulin increased the Vmax of the reaction without affecting the Km for the substrate. Optimum temperature and pH for the reaction were 45 degrees C and 7, respectively, in both the absence and presence of Ca2+ and calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Calcineurin A was purified by calmodulin-Sepharose affinity chromatography from Sf9 cells infected with recombinant baculovirus containing the cDNA of a rat calcineurin A isoform. The Sf9-expressed calcineurin A has a low basal phosphatase activity in the presence of EDTA (0.9 nmol/min/mg) which is stimulated 3-5-fold by Mn2+. Calmodulin increased the Mn2+ stimulated activity 3-5-fold. Bovine brain calcineurin B increased the A subunit activity 10-15-fold, and calmodulin further stimulated the activity of reconstituted A and B subunits 10-15-fold (644 nmol/min/mg). The Km of calcineurin A for 32P-RII pep (a peptide substrate (DLDVPIPGRFDRRVSVAAE) for CaN), was 111 microM with or without calmodulin, and calmodulin increased the Vmax about 4-fold. The Km of reconstituted calcineurin A plus B for 32P-RII pep was 20 microM, and calmodulin increased the Vmax 18-fold without affecting the Km. CaN A467-492, a synthetic autoinhibitory peptide (ITSFEEAKGLDRINERMPPRRDAMP) from calcineurin, inhibited the Mn2+/calmodulin-stimulated activities of the reconstituted enzyme and the A subunit with IC50's of 25 microM and 90 microM, respectively. The reconstitution of the phosphatase activity of an expressed isoform of calcineurin A by purified B subunit and calmodulin may facilitate comparative studies of the regulation of calcineurin A activity by the B subunit and calmodulin.  相似文献   

9.
Effect of tricyclohexylhydroxytin (plictran) on Ca2+-ATPase activity was studied in rat brain synaptosomes under in vitro and in vivo conditions. Plictran inhibited basal Ca2+-ATPase activity with an IC50 value of 6 nM suggesting its interaction with calcium transport phenomenon. Plictran inhibited calmodulin (CaM) activated Ca2+-ATPase in a concentration-dependent manner. A complete reversal of calmodulin activation of Ca2+-ATPase was observed with 2-3 nM plictran. A 50 per cent decrease of CaM activated Ca2+-ATPase was observed with 0.5 nM plictran, a concentration at which no significant effect was observed on basal enzyme activity. Of all the brain fractions studied, calmodulin levels in P2 fractions alone were reduced significantly to about 75 per cent of control values in plictran treated rats. The synaptosomal Ca2+-ATPase was also decreased by 35 per cent, 42 per cent and 65 per cent in 10, 20 and 40 mg plictran kg-1 day-1 treated rats for 3 days respectively. The activity levels of Ca2+-ATPase in 10 and 20 mg plictran kg-1 day-1 treated rats were restored to normal level by exogenously added calmodulin. These results suggest that plictran may disrupt synaptic function by altering calcium and calmodulin regulated processes in the central nervous system.  相似文献   

10.
This study describes a novel mode of activation for the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin. Using purified calcineurin from Dictyostelium discoideum we found a reversible, Ca(2+)/calmodulin-independent activation by the long chain unsaturated fatty acids arachidonic acid, linoleic acid, and oleic acid, which was of the same magnitude as activation by Ca(2+)/calmodulin. Half-maximal stimulation of calcineurin occurred at fatty acid concentrations of approximately 10 microM with either p-nitrophenyl phosphate or RII phosphopeptide as substrates. The methyl ester of arachidonic acid and the saturated fatty acids palmitic acid and arachidic acid did not activate calcineurin. The activation was shown to be independent of the regulatory subunit, calcineurin B. Activation by Ca(2+)/calmodulin and fatty acids was not additive. In binding assays with immobilized calmodulin, arachidonic acid inhibited binding of calcineurin to calmodulin. Therefore fatty acids appear to mimic Ca(2+)/calmodulin action by binding to the calmodulin-binding site.  相似文献   

11.
Spermine binding to calmodulin and its effects on two calmodulin-dependent enzymes were studied. Spermine bound to dansylated calmodulin with an apparent Ki of 0.7 mM, and to native calmodulin with a Kd of 1.1 mM in equilibrium dialysis experiments. Its binding was found to be independent of calcium. Spermine inhibited calmodulin-activated cyclic nucleotide phosphodiesterase noncompetitively with respect to calcium (Ki = 1.1 mM). Calmodulin activation of calcineurin was inhibited at similar concentrations (Ki = 1.2 mM). Spermine had little effect on basal phosphodiesterase activity or nickel-activated calcineurin activity. Inhibition of both enzymes correlated well with spermine binding to dansylcalmodulin. These findings suggest that spermine might modulate calcium-dependent events in the cell by inactivation of calmodulin via a novel calcium-independent mechanism.  相似文献   

12.
Summary Calcineurin was dicovered as an inhibitor of calmodulin stimulated cyclic AMP phosphodiesterase and its ability to act as a calmodulin binding protein largely explains its inhibitory action on calmodulin regulated enzymes. Recent studies establish calcineurin as the enzyme protein phosphatase whose activity is regulated by calmodulin and a variety of divalent metals. In this work, we have investigated the effects of several agents including sulfhydryl agents, trifluoperazine (a calmodulin antagonist), PPi, NaF and orthovanadate and of tryptic proteolysis on the calcineurin inhibition of cyclic AMP phosphodiesterase (called inhibitory activity) and on protein phosphatase activity. Inhibitors for sulfhydryl groups (pHMB, NEM) inhibited phosphatase activity without any effect on the inhibitory activity. Dithioerythritol completely reversed the inhibition by pHMB. Limited proteolysis of calcineurin caused an activation of basal phosphatase activity with a complete loss of inhibitory activity. Phosphatase activity of the proteolyzed calcineurin was not stimulated by calmodulin. The presence of calmodulin along with calcineurin during tryptic digestion appeared to preserve the stimulation of phosphatase by Ca2+-calmodulin. [3H]-Trifluoperazine (TFP) was found to be incorporated irreversibly into calcineurin in the presence of ultraviolet light. This incorporation was evident into the A and B subunits of calcineurin. TFP-caused a decrease in the phosphatase activity and an increase in its inhibitory activity. [3H]-TFP incorporation into the A subunit was drastically decreased in the proteolyzed calcineurin. This was also true when the [3H]-TFP incorporated calcineurin was subjected to tryptic proteolysis. The incorporation into the B unit was essentially unaffected in the trypsinized calcineurin. Phosphatase activity was inhibited by orthovanadate, NaF, PPi, and EDTA. Inhibitions by these compounds were more pronounced when the phosphatase was determined in the presence of Ca2+-cahnodulin than in their absence.  相似文献   

13.
Chromium at very low concentrations is an essential trace element--at higher concentrations it is associated with contact dermatitis and other toxicity problems. Its ionic radius is just outside that of other metal cations which have been found to activate calmodulin in vitro. We found that chromium was able to activate calmodulin at two different concentration ranges--over the micromolar range (which would probably never be achieved in man) a small degree of activation was found--but a much greater activation (76% of the maximum possible) was also found at nanomolar concentrations of chromium. In welders, who work with stainless steel and who were not reporting any physical symptoms of chromium toxicity, red cell chromium levels were 28.2 +/- 3.3 nM (n = 22) compared to 7.5 +/- 0.7 nM (n = 11) for normal controls. Thus, the concentration of chromium experienced within the cell can be of the order which will activate calmodulin in vitro. The possibility exists, therefore, that inappropriate activation of calmodulin could be relevant to chromium biology possibly contributing to the symptoms of chromium toxicity.  相似文献   

14.
15.
Purified porcine erythrocyte membrane Ca(2+)-ATPase and 3':5'-cyclic nucleotide phosphodiesterase were stimulated in a dose-dependent, saturable manner with the vitamin D-dependent calcium binding protein from rat kidney, calbindin-D28k (CaBP-D28k). The concentration of CaBP-D28k required for half-maximal activation (K0.5 act.) of the Ca(2+)-ATPase was 28 nM compared to 2.2 nM for calmodulin (CaM), with maximal activation equivalent upon addition of either excess CaM or CaBP-D28k. 3':5'-Cyclic nucleotide phosphodiesterase (PDE) also showed equivalent maximum saturable activation by calbindin (K0.5 act. = 90 nM) or calmodulin (K0.5 act. = 1.2 nM). CaBP-D28k was shown to effectively compete with CaM-Sepharose for PDE binding. Immunoprecipitation with CaBP-D28k antiserum completely inhibited calbindin-mediated activation of PDE but had no effect on calmodulin's ability to activate PDE. While the physiological significance of these results remains to be established, they do suggest that CaBP-D28k can activate enzymes and may be a regulator of yet to be identified target enzymes in certain tissues.  相似文献   

16.
Endothelin-1 (ET-1) induces cardiac hypertrophy. Because Ca(2+) is a major second messenger of ET-1, the role of Ca(2+) in ET-1-induced hypertrophic responses in cultured cardiac myocytes of neonatal rats was examined. ET-1 activated the promoter of the beta-type myosin heavy chain gene (beta-MHC) (-354 to +34 base pairs) by about 4-fold. This activation was inhibited by chelation of Ca(2+) and the blocking of protein kinase C activity. Similarly, the beta-MHC promoter was activated by Ca(2+) ionophores and a protein kinase C activator. beta-MHC promoter activation induced by ET-1 was suppressed by pretreatment with the calmodulin inhibitor, W7, the Ca(2+)/calmodulin-dependent kinase II (CaMKII) inhibitor, KN62, and the calcineurin inhibitor, cyclosporin A. beta-MHC promoter activation by ET-1 was also attenuated by overexpression of dominant-negative mutants of CaMKII and calcineurin. ET-1 increased the activity of CaMKII and calcineurin in cardiac myocytes. Pretreatment with KN62 and cyclosporin A strongly suppressed ET-1-induced increases in [(3)H]phenylalanine uptake and in cell size. These results suggest that Ca(2+) plays a critical role in ET-1-induced cardiomyocyte hypertrophy by activating CaMKII- and calcineurin-dependent pathways.  相似文献   

17.
Purification of recombinant and endogenous HSP70s   总被引:10,自引:0,他引:10  
Heat shock proteins (HSPs) are powerful immunogens against the antigenic peptides they chaperone. The antigenic peptides are MHC I-binding peptides and their elongated precursors derived from tumor antigens, viral antigens, minor histocompatibility antigens, or model antigens. HSP-peptide complexes can immunize against tumors and pathogen-infected cells. Remarkably, HSPs do not immunize after elution of the peptides they chaperone, demonstrating that HSPs are not immunogenic per se, whereas HSP-peptide complexes are. Additionally, HSPs activate professional antigen presenting cells (APC) through specific receptor(s) to stimulate secretion of pro-inflammatory cytokines, up-regulation of co-stimulatory molecules and activation of dendritic cells. The mechanistic exploration of the role of the HSPs on the innate and adaptive component of the immune system requires their isolation in large quantity. On one hand, isolation of naturally formed HSP-peptide complexes is key to study their specific immunogenicity. On the other hand, purification of HSPs free of endotoxin contamination is an absolute requirement for the analysis of their ability to activate APC in vitro. This chapter describes a convenient and fast method of purification of endogenous and recombinant HSP of 70 kDa (HSP70) that addresses these two considerations.  相似文献   

18.
19.
Cofilin, an essential regulator of actin filament dynamics, is inactivated by phosphorylation at Ser-3 and reactivated by dephosphorylation. Although cofilin undergoes dephosphorylation in response to extracellular stimuli that elevate intracellular Ca2+ concentrations, signaling mechanisms mediating Ca2+-induced cofilin dephosphorylation have remained unknown. We investigated the role of Slingshot (SSH) 1L, a member of a SSH family of protein phosphatases, in mediating Ca2+-induced cofilin dephosphorylation. The Ca2+ ionophore A23187 and Ca2+-mobilizing agonists, ATP and histamine, induced SSH1L activation and cofilin dephosphorylation in cultured cells. A23187- or histamine-induced SSH1L activation and cofilin dephosphorylation were blocked by calcineurin inhibitors or a dominant-negative form of calcineurin, indicating that calcineurin mediates Ca2+-induced SSH1L activation and cofilin dephosphorylation. Importantly, knockdown of SSH1L expression by RNA interference abolished A23187- or calcineurin-induced cofilin dephosphorylation. Furthermore, calcineurin dephosphorylated SSH1L and increased the cofilin-phosphatase activity of SSH1L in cell-free assays. Based on these findings, we suggest that Ca2+-induced cofilin dephosphorylation is mediated by calcineurin-dependent activation of SSH1L.  相似文献   

20.
Src family kinases are implicated in cellular proliferation and transformation. Terminally differentiated myocytes have lost the ability to proliferate, indicating the existence of a down-regulatory mechanism(s) for these mitogenic kinases. Here we show that feline cardiomyocyte lysate contains thermostable components that inhibit c-Src kinase in vitro. This inhibitory activity, present predominantly in heart tissue, involves two components acting combinatorially. After purification by sequential chromatography, one component was identified by mass and nuclear magnetic resonance spectroscopies as 5'-AMP, while the other was identified by peptide sequencing as a small heat shock protein (sHSP). 5'-AMP and to a lesser extent 5'-ADP inhibit c-Src when combined with either HSP-27 or HSP-32. Other HSPs, including alphaB-crystallin, HSP-70, and HSP-90, did not exhibit this effect. The inhibition, observed preferentially on Src family kinases and independent of the Src tyrosine phosphorylation state, occurs via a direct interaction of the c-Src catalytic domain with the inhibitory components. Our study indicates that sHSPs increase the affinity of 5'-AMP for the c-Src ATP binding site, thereby facilitating the inhibition. In vivo, elevation of ATP levels in the cardiomyocytes results in the tyrosine phosphorylation of cellular proteins including c-Src at the activatory site, and this effect is blocked when the 5'-AMP concentration is raised. Thus, this study reveals a novel role for sHSPs and 5'-AMP in the regulation of Src family kinases, presumably for the maintenance of the terminally differentiated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号