首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two transmembrane spike protein subunits of Semliki Forest virus (SFV) form a heterodimeric complex in the rough endoplasmic reticulum. This complex is then transported to the plasma membrane, where spike-nucleocapsid binding and virus budding take place. By using an infectious SFV clone, we have characterized the effects of mutations within the putative fusion peptide of the E1 spike subunit on spike protein dimerization and virus assembly. These mutations were previously demonstrated to block spike protein membrane fusion activity (G91D) or cause an acid shift in the pH threshold of fusion (G91A). During infection of BHK cells at 37 degrees C, virus spike proteins containing either mutation were efficiently produced and transported to the plasma membrane, where they associated with the nucleocapsid. However, the assembly of mutant spike proteins into mature virions was severely impaired and a cleaved soluble fragment of E1 was released into the medium. In contrast, incubation of mutant-infected cells at reduced temperature (28 degrees C) dramatically decreased E1 cleavage and permitted assembly of morphologically normal virus particles. Pulse-labeling studies showed that the critical period for 28 degrees C incubation was during virus assembly, not spike protein synthesis. Thus, mutations in the putative fusion peptide of SFV confer a strong and thermoreversible budding defect. The dimerization of the E1 spike protein subunit with E2 was analyzed by using either cells infected with virus mutants or mutant virus particles assembled at 28 degrees C. The altered-assembly phenotype of the G91D and G91A mutants correlated with decreased stability of the E1-E2 dimer.  相似文献   

2.
Semliki Forest virus (SFV) infects cells by an acid-dependent membrane fusion reaction catalyzed by the virus spike protein, a complex containing E1 and E2 transmembrane subunits. E1 carries the putative virus fusion peptide, and mutations in this domain of the spike protein were previously shown to shift the pH threshold of cell-cell fusion (G91A), or block cell-cell fusion (G91D). We have used an SFV infectious clone to characterize virus particles containing these mutations. In keeping with the previous spike protein results, G91A virus showed limited secondary infection and an acid-shifted fusion threshold, while G91D virus was noninfectious and inactive in both cell- cell and virus-liposome fusion assays. During the low pH- induced SFV fusion reaction, the E1 subunit exposes new epitopes for monoclonal antibody (mAb) binding and forms an SDS-resistant homotrimer, the virus associates hydrophobically with the target membrane, and fusion of the virus and target membranes occurs. After low pH treatment, G91A spike proteins were shown to bind conformation-specific mAbs, associate with target liposome membranes, and form the E1 homotrimer. However, both G91A membrane association and homotrimer formation had an acid-shifted pH threshold and reduced efficiency compared to wt virus. In contrast, studies of the fusion-defective G91D mutant showed that the virus efficiently reacted with low pH as assayed by mAb binding and liposome association, but was essentially inactive in homotrimer formation. These results suggest that the G91D mutant is noninfectious due to a block in a late step in membrane fusion, separate from the initial reaction to low pH and interaction with the target membrane, and involving the lack of efficient formation of the E1 homotrimer.  相似文献   

3.
Membrane fusion activity of influenza virus.   总被引:31,自引:2,他引:29       下载免费PDF全文
A simple assay is described to monitor fusion between fowl plague virus (FPV, an avian influenza A virus) and liposomes which allows the simultaneous quantitation of both lytic and non-lytic fusion events. As in fusion between viruses and the plasma membrane and in FPV-induced cell-cell fusion, the reaction only occurs at pH 5.5 or below, and it is fast, highly efficient, and essentially non-lytic when fresh virus and liposomes are used. The fusion occurs over a broad temperature range, and has no requirement for divalent cations. The fusion factor of influenza virus is a hemagglutinin (HA) spike which protrudes from the virus membrane and which is also responsible for virus binding to the host cell. The finding that fusion occurs as efficiently with liposomes containing or lacking virus receptor structures, further emphasizes the remarkable division of labor in the HA molecule: the receptor-binding sites are located in the globular HA1 domains and the fusion activation peptide is found at the N-terminal of HA2 in the stem region of the protein. The mechanism of fusion is discussed in terms of the three-dimensional structure of the HA and the conformational change which the protein undergoes at the fusion pH optimum.  相似文献   

4.
Most strains of murine coronavirus mouse hepatitis virus (MHV) express a cleavable spike glycoprotein that mediates viral entry and pH-independent cell-cell fusion. The MHV type 2 (MHV-2) strain of murine coronavirus differs from other strains in that it expresses an uncleaved spike and cannot induce cell-cell fusion at neutral pH values. We show here that while infection of the prototype MHV-A59 strain is not sensitive to pretreatment with lysosomotropic agents, MHV-2 replication is significantly inhibited by these agents. By use of an A59/MHV-2 chimeric virus, the susceptibility to lysosomotropic agents is mapped to the MHV-2 spike, suggesting a requirement of acidification of endosomes for MHV-2 spike-mediated entry. However, acidification is likely not a direct trigger for MHV-2 spike-mediated membrane fusion, as low-pH treatment is unable to overcome ammonium chloride inhibition, and it also cannot induce cell-cell fusion between MHV-2-infected cells. In contrast, trypsin treatment can both overcome ammonium chloride inhibition and promote cell-cell fusion. Inhibitors of the endosomal cysteine proteases cathepsin B and cathepsin L greatly reduce MHV-2 spike-mediated entry, while they have little effect on A59 entry, suggesting that there is a proteolytic step in MHV-2 entry. Finally, a recombinant virus expressing a cleaved MHV-2 spike has the ability to induce cell-cell fusion at neutral pH values and does not require low pH and endosomal cathepsins during infection. These studies demonstrate that endosomal proteolysis by cathepsins is necessary for MHV-2 spike-mediated entry; this is similar to the entry pathway recently described for severe acute respiratory syndrome coronavirus and indicates that coronaviruses may use multiple pathways for entry.  相似文献   

5.
Semliki Forest virus (SFV), an alphavirus, infects cells via a low pH-triggered membrane fusion reaction that takes place within the cellular endocytic pathway. Fusion is mediated by the heterotrimeric virus spike protein, which undergoes conformational changes upon exposure to low pH. The SFV E1 spike subunit contains a hydrophobic domain of 23 amino acids that is highly conserved among alphaviruses. This region is also homologous to a domain of the rotavirus outer capsid protein VP4. Mutagenesis of an SFV spike protein cDNA was used to evaluate the role of the E1 domain in membrane fusion. Mutant spike proteins were expressed in COS cells and assayed for cell-cell fusion activity. Four mutant phenotypes were identified: (i) substitution of Gln for Lys-79 or Leu for Met-88 had no effect on spike protein fusion activity; (ii) substitution of Ala for Asp-75, Ala for Gly-83, or Ala for Gly-91 shifted the pH threshold of fusion to a more acidic range; (iii) mutation of Pro-86 to Asp, Gly-91 to Pro, or deletion of amino acids 83 to 92 resulted in retention of the E1 subunit within the endoplasmic reticulum; and (iv) substitution of Asp for Gly-91 completely blocked cell-cell fusion activity without affecting spike protein assembly or transport. These results argue that the conserved hydrophobic domain of SFV E1 is closely involved in membrane fusion and suggest that the homologous region in rotavirus VP4 may be involved in the entry pathway of this nonenveloped virus.  相似文献   

6.
The spike glycoproteins of Semliki Forest virus mediate membrane fusion between the viral envelope and cholesterol-containing target membranes under conditions of mildly acidic pH (pH less than 6.2). The fusion reaction is critical for the infectious cycle, catalyzing virus penetration from the acidic endosome compartment. To define the role of the viral spike glycoproteins in the fusion reaction, conformational changes in the spikes at acid pH were studied using protease digestion and binding assays to liposomes and nonionic detergent. A method was also developed to prepare fragments of both transmembrane subunit glycopolypeptides of the spike, E1 and E2, which lacked the hydrophobic anchor peptides. Unlike the intact spikes the fragments were monomeric and therefore useful for obtaining information on conformational changes in individual subunits. The results showed that both E1 and E2 undergo irreversible conformational changes at the pH of fusion, that the conformational change of E1 depends, in addition to acidic pH, on the presence of cholesterol, and that no major changes in the solubility properties of the spikes takes place. On the basis of these findings it was concluded that fusion involves both subunits of the spike and that E1 confers the stereo-specific sterol requirement. The results indicated, moreover, that acid-induced fusion of Semliki Forest virus differs in important respects from that of influenza virus, another well-defined model system for protein-mediated membrane fusion.  相似文献   

7.
Infection of primary mouse glial cell cultures with mouse hepatitis virus strain A59 results in a productive, persistent infection, but without any obvious cytopathic effect. Mutant viruses isolated from infected glial cultures 16 to 18 weeks postinfection replicate with kinetics similar to those of wild-type virus but produce small plaques on fibroblasts and cause only minimal levels of cell-to-cell fusion under conditions in which wild type causes nearly complete cell fusion. However, since extensive fusion is present in mutant-infected cells at late times postinfection, the defect is actually a delay in kinetics rather than an absolute block in activity. Addition of trypsin to mutant-infected fibroblast cultures enhanced cell fusion a small (two- to fivefold) but significant degree, indicating that the defect could be due to a lack of cleavage of the viral spike (fusion) protein. Sequencing of portions of the spike genes of six fusion-defective mutants revealed that all contained the same single nucleotide mutation resulting in a substitution of aspartic acid for histidine in the spike cleavage signal. Mutant virions contained only the 180-kDa form of spike protein, suggesting that this mutation prevented the normal proteolytic cleavage of the 180-kDa protein into the 90-kDa subunits. Examination of revertants of the mutants supports this hypothesis. Acquisition of fusion competence correlates with the replacement of the negatively charged aspartic acid with either the wild-type histidine or a nonpolar amino acid and the restoration of spike protein cleavage. These data confirm and extend previous reports concluding cleavage of S is required for efficient cell-cell fusion by mouse hepatitis virus but not for virus-cell fusion (infectivity).  相似文献   

8.
Semliki Forest virus is among the prototypes for Class II virus fusion and targets the endosomal membrane. Fusion protein E1 and its envelope companion E2 are both anchored in the viral membrane and form an external shell with protruding spikes. In acid environments, mimicking the early endosomal milieu, surface epitopes in the virus rearrange along with exposure of the fusion loop. To visualize this transformation into a fusogenic stage, we determined the structure of the virus at gradually lower pH values. The results show that while the fusion loop is available for external interaction and the shell and stalk domains of the spike begin to deteriorate, the E1 and E2 remain in close contact in the spike head. This unexpected observation points to E1 and E2 cooperation beyond the fusion loop exposure stage and implies a more prominent role for E2 in guiding membrane close encounter than has been earlier anticipated.  相似文献   

9.
The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.  相似文献   

10.
In alphaviruses, here represented by Semliki Forest virus, infection requires an acid-responsive spike configuration to facilitate membrane fusion. The creation of this relies on the chaperone function of glycoprotein E2 precursor (p62) and its maturation cleavage into the small external E3 and the membrane-anchored E2 glycoproteins. To reveal how the E3 domain of p62 exerts its control of spike functions, we determine the structure of a p62 cleavage-impaired mutant virus particle (SQL) by electron cryomicroscopy. A comparison with the earlier solved wild type virus structure reveals that the E3 domain of p62(SQL) forms a bulky side protrusion in the spike head region. This establishes a gripper over part of domain II of the fusion protein, with a cotter-like connection downward to a hydrophobic cluster in its central beta-sheet. This finding reevaluates the role of the precursor from being only a provider of a shield over the fusion loop to a structural playmate in formation of the fusogenic architecture.  相似文献   

11.
Severe acute respiratory syndrome coronavirus is a newly emergent virus responsible for a recent outbreak of an atypical pneumonia. The coronavirus spike protein, an enveloped glycoprotein essential for viral entry, belongs to the class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions are understood to form a fusion-active conformation similar to those of other typical viral fusion proteins. This hairpin structure likely juxtaposes the viral and cellular membranes, thus facilitating membrane fusion and subsequent viral entry. The fusion core protein of severe acute respiratory syndrome coronavirus spike protein was crystallized, and the structure was determined at 2.8 A of resolution. The fusion core is a six-helix bundle with three HR2 helices packed against the hydrophobic grooves on the surface of central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. This structure shares significant similarity with the fusion core structure of mouse hepatitis virus spike protein and other viral fusion proteins, suggesting a conserved mechanism of membrane fusion. Drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation, which have been successfully used in human immunodeficiency virus 1 inhibitor development, may be applicable to the inhibition of severe acute respiratory syndrome coronavirus on the basis of structural information provided here. The relatively deep grooves on the surface of the central coiled coil will be a good target site for the design of viral fusion inhibitors.  相似文献   

12.
Infection of cells with enveloped viruses is accomplished through membrane fusion. The binding and fusion processes are mediated by the spike proteins in the envelope of the virus particle and usually involve a series of conformational changes in these proteins. We have studied the low-pH-mediated fusion process of the alphavirus Semliki Forest virus (SFV). The spike protein of SFV is composed of three copies of the protein heterodimer E2E1. This structure is resistant to solubilization in mild detergents such as Nonidet P-40 (NP40). We have recently shown that the spike structure is reorganized during virus entry into acidic endosomes (J. M. Wahlberg and H. Garoff, J. Cell Biol. 116:339-348, 1992). The original NP40-resistant heterodimer is dissociated, and the E1 subunits form new NP40-resistant protein oligomers. Here, we show that the new oligomer is represented by an E1 trimer. From studies that use an in vitro assay for fusion of SFV with liposomes, we show that the E1 trimer is efficiently expressed during virus-mediated membrane fusion. Time course studies show that both E1 trimer formation and fusion are fast processes, occurring in seconds. It was also possible to inhibit virus binding and fusion with a monoclonal antibody directed toward the trimeric E1. These results give support for a model in which the E1 trimeric structure is involved in the SFV-mediated fusion reaction.  相似文献   

13.
The Semliki Forest virus spike protein has a potent membrane fusion activity which is activated in vivo by the low pH of endocytic vacuoles. The spike protein is composed of two transmembrane subunits, E1 and E2, plus E3, a peripheral polypeptide. Acid-induced conformational changes in the E1 or E2 subunits were analyzed by using monoclonal antibodies specific for the acid-treated spike protein. E1 and E2 reacted with the antibodies after treatment of wild-type or mutant virus at the pH of fusion. The E1 conformational change resembled fusion in its requirement for both low pH and cholesterol. Pulse-chase analysis and intracellular pH treatment were then used to determine the ability of the newly synthesized spike to undergo acid-induced conformational changes. p62, the precursor to E2 and E3, was shown to undergo a pH-dependent conformational change similar to that of E2 and was sensitive to acid very soon after biosynthesis. In contrast, a posttranslational maturation event was required for the conversion of E1 to the pH-sensitive form. E1 maturation occurred fairly late in the exocytic pathway, after the virus spike had passed the medial Golgi but before incorporation of the spike into a new virus particle.  相似文献   

14.
J M Wahlberg  W A Boere    H Garoff 《Journal of virology》1989,63(12):4991-4997
The budding and the fusion processes of the enveloped animal virus Semliki Forest virus serve the purpose of transporting its nucleocapsid, containing its genome, from the cytoplasm of an infected cell into that of an uninfected one. We show here that, in the infected cell, the viral membrane (spike) proteins p62 and E1 are organized as heterodimers which are very resistant to dissociation in acidic conditions. In contrast, the mature form of the heterodimer, E2E1, which is found in the virus particle and which is generated by proteolytic processing of p62, is very prone to dissociate upon treatment with mildly acidic buffers. We discuss the possibility that this difference in behavior of the intracellular precursor form and the mature form of the spike protein complex represents an important regulatory mechanism for the processes involving membrane binding around the nucleocapsid during budding and membrane release from the nucleocapsid at the stage of virus fusion.  相似文献   

15.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   

16.
The alphavirus Semliki Forest virus (SFV) and a number of other enveloped animal viruses infect cells via a membrane fusion reaction triggered by the low pH within endocytic vesicles. In addition to having a low pH requirement, SFV fusion and infection are also strictly dependent on the presence of cholesterol in the host cell membrane. A number of conformational changes in the SFV spike protein occur following low-pH treatment, including dissociation of the E1-E2 dimer, conformational changes in the E1 and E2 subunits, and oligomerization of E1 to a homotrimer. To allow the ordering of these events, we have compared the kinetics of these conformational changes with those of fusion, using pH treatment near the fusion threshold and low-temperature incubation to slow the fusion reaction. Dimer dissociation, the E1 conformational change, and E1 trimerization all occur prior to the mixing of virus and cell membranes. Studies of cells incubated at 20 degrees C showed that as with virus fusion, E1 trimerization occurred in the endosome before transport to lysosomes. However, unlike the strictly cholesterol-dependent membrane fusion reaction, the E1 homotrimer was produced in vivo during virus uptake by cholesterol-depleted cells or in vitro by low-pH treatment of virus in the presence of artificial liposomes with or without cholesterol. Purified, lipid-free spike protein rosettes were assayed to determine the requirement for virus membrane cholesterol in E1 homotrimer formation. Spike protein rosettes were found to undergo E1 oligomerization upon exposure to low pH and target liposomes and showed an enhancement of oligomerization with cholesterol-containing membranes. The E1 homotrimer may represent a perfusion complex that requires cholesterol to carry out the final coalescence of the viral and target membranes.  相似文献   

17.
Semliki Forest virus (SFV) is an enveloped alphavirus that infects cells via a membrane fusion reaction triggered by acidic pH in the endocytic pathway. Fusion is mediated by the spike protein E1 subunit, an integral membrane protein that contains the viral fusion peptide and forms a stable homotrimer during fusion. We have characterized four monoclonal antibodies (MAbs) specific for the acid conformation of E1. These MAbs did not inhibit fusion, suggesting that they bind to an E1 region different from the fusion peptide. Competition analyses demonstrated that all four MAbs bound to spatially related sites on acid-treated virions or isolated spike proteins. To map the binding site, we selected for virus mutants resistant to one of the MAbs, E1a-1. One virus isolate, SFV 4-2, showed reduced binding of three acid-specific MAbs including E1a-1, while its binding of one acid-specific MAb as well as non-acid-specific MAbs to E1 and E2 was unchanged. The SFV 4-2 mutant was fully infectious, formed the E1 homotrimer, and had the wild-type pH dependence of infection. Sequence analysis demonstrated that the relevant mutation in SFV 4-2 was a change of E1 glycine 157 to arginine (G157R). Decreased binding of MAb E1a-1 was observed under a wide range of assay conditions, strongly suggesting that the E1 G157R mutation directly affects the MAb binding site. These data thus localize an E1 region that is normally hidden in the neutral pH structure and becomes exposed as part of the reorganization of the spike protein to its fusion-active conformation.  相似文献   

18.
Semliki Forest virus is an enveloped alphavirus that infects cells by a membrane fusion reaction triggered by the low pH present in endocytic vacuoles. Fusion is mediated by the E1 spike protein subunit. During fusion, several conformational changes occur in E1 and E2, the two transmembrane subunits of the spike protein. These changes include dissociation of the E1-E2 dimer, alteration of the trypsin sensitivity and monoclonal antibody binding patterns of E1, and formation of a sodium dodecyl sulfate (SDS)-resistant E1 homotrimer. A critical characteristic of Semliki Forest virus fusion is also its dependence on the presence of both cholesterol and sphingomyelin in the target membrane. We have here examined the conformational changes induced by low pH treatment of E1*, the water-soluble, proteolytically truncated ectodomain of the E1 subunit. Following low pH treatment, E1* was shown to bind efficiently to artificial liposomes. Similar to virus fusion, optimal E1*-liposome binding required low pH, cholesterol, and sphingomyelin. The E1 ectodomain, although monomeric in its neutral pH form, assembled into an SDS-resistant oligomer following treatment at low pH. This low pH-induced oligomerization required target membranes containing both cholesterol and sphingomyelin. Our results demonstrate that the E1 ectodomain responds to low pH similarly to the full-length E1 subunit. The ectodomain facilitates the characterization of conformational changes and membrane binding in the absence of virus fusion or other virus components.  相似文献   

19.
Processing of the p62 envelope precursor protein of Semliki Forest virus   总被引:5,自引:0,他引:5  
The spike protein of Semliki Forest virus is composed of three subunits, E1, E2, and E3, which mediate the fusion of the virus membrane with that of the host cell. E2 and E3 are synthesized as a precursor, p62, which is cleaved post-translationally after an Arg-His-Arg-Arg sequence. In vitro mutagenesis of a cDNA clone of the spike proteins was used to specifically alter amino acids in this cleavage site. Cleavage of p62 was completely blocked by mutation of the proximal Arg residue to Phe, without affecting transport or surface expression of the spike protein. The cleavage mutation resulted in the loss of spike protein fusion activity within the physiological pH range. Fusion activity was restored by cleavage with exogenous chymotrypsin and showed the same low pH dependence as that of wild type. The cleavage sensitivity of newly synthesized p62 was investigated by pulse-chase analysis and chymotrypsin treatment in detergent solution. p62 was sensitive to cleavage immediately following its synthesis. Protein trapped in the rough endoplasmic reticulum or Golgi apparatus by carbonyl cyanide m-chlorophenylhydrazone, monensin, or Brefeldin A treatment was also fully sensitive to cleavage. These results suggest that p62 does not require an organelle-mediated conformational change for processing. Thus, in vivo, the site of p62 processing is probably controlled by the location or activity of the cleavage enzyme, rather than the sensitivity of the p62 substrate.  相似文献   

20.
This paper presents a kinetic analysis of low-pH-induced fusion of Semliki Forest virus (SFV) with cholesterol-containing unilamellar lipid vesicles (liposomes), consisting otherwise of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. Fusion is monitored continuously with a lipid mixing assay, involving virus bio-synthetically labeled with the fluorophore pyrene. At pH 5.55, 37 degrees C, SFV-liposome fusion occurs on the time scale of seconds. Extensive fusion (up to 60% of the virus) requires an excess of liposomes, while a low-pH preincubation of the virus alone results in inactivation of its fusion capacity. The onset of fusion after acidification of virus-liposome mixtures is preceded by a pH- and temperature-dependent lag phase. Early in this lag phase, a conformational change in the E2E1 spike glycoprotein occurs, involving formation of a trypsin-resistant E1 homotrimer, exposing a conformation-specific epitope (E1"). These changes are followed by a rapid, cholesterol-dependent binding of the virus to the liposomes (as assessed by sucrose density gradient analysis), subsequent fusion starting only after an additional delay. This sequence of events strongly suggests that the E1 homotrimeric structure represents the fusion-active conformation of the SFV spike, the actual fusion complex possibly involving a higher order oligomer of E1 trimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号