首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to localize substance P-like immunoreactivity (SP) in the nerve fibers innervating the palate, identify the ganglion of the palatine nerve and determine whether it contains SP cell bodies, in the frog Rana pipiens. The palatine nerve which is a branch of the maxillo-mandibular subdivision of the trigeminal nerve was traced to the trigeminal ganglion that connects to the medulla by the trigeminal nerve root. Using an immunocytochemical method, SP containing fibers with varicosities were found in the connective tissue layer of the palate. Some of these fibers were observed adjacent to blood vessels to the epithelial layer of the palate in apparent innervation of the ciliated epithelial and mucus cells. SP-labeling was also observed in small to medium cells of the trigeminal ganglion. These results appear to support the pharmacological studies of SP on the regulation of mucociliary activity in the frog R. pipiens.  相似文献   

2.
Summary Innervation of the cirri in three teleost species (Hypsoblennius gilberti, Hypsoblennius gentilis, Oxylebius pictus) was investigated with the use of HRP- and cobalttracing techniques. All projections were found to be ipsilateral. Labeled cells were demonstrated in both portions of the trigeminal ganglion and in the facial ganglion. Cirrus nerve fibers running in the trigeminal nerve project to terminal fields in an isthmic sensory trigeminal nucleus, to areas adjacent to the descending trigeminal root in the brainstem, and to the medial funicular nucleus in the medulla. Distribution of labeled cells in the trigeminal ganglion complex suggests a functional distinction of the two ganglion portions. Cirrus nerve fibers belonging to the facial nerve terminate in a circumscribed part of of the facial lobe, indicating a somatotopic projection. Pathways were principally the same in all three species investigated. Findings of facial innervation of teleost cirri suggest a suspected gustatory function of teleost head appendages.  相似文献   

3.
Summary The extracellular responses of single sensory afferent cell bodies were recorded from the geniculate ganglion of the chicken following chemical, mechanical and thermal stimulation of the oral cavity using glass coated tungsten microelectrodes. Forty eight chemoreceptive units were identified from the anterior and posterior palate, and from the anterior mandibular area of the lower jaw. Their response characteristics to tyrode Ringer solution, distilled water, 0.05M hydrochloric acid, 0.5M sodium chloride, 1M fructose and 0.05M quinine hydrochloride were investigated. Only 5 units responded to a single stimulus and all of the other units responded to 2 or more stimuli. Thirty seven of the units which did not show single stimulus specificity did however respond best to one of the stimuli tested. The firing rates of these chemoresponsive units was slow, they showed little or no spontaneous activity and showed variable response patterns.Rapidly adapting and slowly adapting mechanoreceptors were also identified together with thermoreceptors (cold and warm units) and ear units.The results show that the facial nerve plays the major role in gustatory physiology of the chicken and these results are discussed in relation to the mammalian gustatory system.Abbreviations AMA anterior mandibular area - AP anterior palate - PP posterior palate - QHCl quinine hydrochloride  相似文献   

4.
Development of the facial nerve was studied in normal chicken embryos and after surgical disruption of ingrowing sensory facial nerve fibers at 38–72 h of incubation. Disruption of facial nerve fibers by otocyst removal often induced a rostral deviation of the facial nerve and ganglion to the level of the trigeminal ganglion. Cell bodies of the geniculate ganglion trailed their deviating neurites and occupied an abnormal rostral position adjacent to the trigeminal ganglion. Deviating facial nerve fibers were labeled with the carbocyanine fluorescent tracer Dil in fixed tissue. Labeled fibers penetrated the cranium adjacent to the trigeminal ganglion, but they did not follow the trigeminal nerve fibers into the brain stem. Rather, after entering the cranium, they projected caudally to their usual site of entrance and proceeded towards their normal targets. This rostral deviation of the facial nerve was observed only after surgery at 48–72 h of incubation, but not in cases with early otocyst removal (38–48 h). A rostral deviation of the facial nerve was seen in cases with partial otocyst removal when the vestibular nerve was absent. The facial nerve followed its normal course when the vestibular nerve persisted. We conclude that disruption of the devloping facial pathway altered the routes of navigating axons, but did not prevent pathfinding and innervation of the normal targets. Pathfinding abilities may not be restricted to pioneering axons of the facial nerve; later-developing facial nerve fibers also appeared to have positional information. Our findings are consistent with the hypothesis that navigating axons may respond to multiple guidance cues during development. These cues appear to differ as a function of position of the navigating axon. © 1992 John Wiley & Sons, Inc.  相似文献   

5.
Development of the facial nerve was studied in normal chicken embryos and after surgical disruption of ingrowing sensory facial nerve fibers at 38-72 h of incubation. Disruption of facial nerve fibers by otocyst removal often induced a rostral deviation of the facial nerve and ganglion to the level of the trigeminal ganglion. Cell bodies of the geniculate ganglion trailed their deviating neurites and occupied an abnormal rostral position adjacent to the trigeminal ganglion. Deviating facial nerve fibers were labeled with the carbocyanine fluorescent tracer DiI in fixed tissue. Labeled fibers penetrated the cranium adjacent to the trigeminal ganglion, but they did not follow the trigeminal nerve fibers into the brain stem. Rather, after entering the cranium, they projected caudally to their usual site of entrance and proceeded towards their normal targets. This rostral deviation of the facial nerve was observed only after surgery at 48-72 h of incubation, but not in cases with early otocyst removal (38-48 h). A rostral deviation of the facial nerve was seen in cases with partial otocyst removal when the vestibular nerve was absent. The facial nerve followed its normal course when the vestibular nerve persisted. We conclude that disruption of the developing facial pathway altered the routes of navigating axons, but did not prevent pathfinding and innervation of the normal targets. Pathfinding abilities may not be restricted to pioneering axons of the facial nerve; later-developing facial nerve fibers also appeared to have positional information. Our findings are consistent with the hypothesis that navigating axons may respond to multiple guidance cues during development. These cues appear to differ as a function of position of the navigating axon.  相似文献   

6.
The horseradish peroxidase (HRP) histochemical technique was used to examine the peripheral distribution and afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. Sensory fibers of the trigeminal nerve distribute over the head via four branches. The ophthalmic branch distributes fibers to the region above the eye and naris. The maxillary and mandibular branches innervate the regions of the upper and lower lip, respectively. A fourth branch of the trigeminal nerve was demonstrated to be present in the hyomandibular trunk. Upon entering the medulla the trigeminal afferent fibers divide into a rostromedially directed bundle and a caudally directed bundle. The rostromedially directed bundle terminates in the sensory trigeminal nucleus (STN) located within the rostral medulla. The majority of fibers turn caudally, forming the descending trigeminal tract. Fibers of the descending trigeminal tract terminate within three medullary nuclei: the nucleus of the descending trigeminal tract (NDTV), the spinal trigeminal nucleus (Spv), and the medial funicular nucleus (MFn). All projections, except for those to the MFn, are ipsilateral. Contralateral projections were observed at the level of the MFn following the labeling of the ophthalmic and maxillomandibular branches. All branches of the trigeminal nerve project to all four of the trigeminal medullary nuclei. Projections to the STN and MFn were found to be topographically organized such that the afferents of the ophthalmic branch project onto the ventral portion of these nuclei, while the afferents of the maxillo- and hyomandibular branches project to the dorsal portion of these nuclei. Cells of the mesencephalic trigeminal nucleus were retrogradely labeled following HRP application to the ophthalmic, maxillary, and mandibular branches of the trigeminal nerve. In addition to demonstrating the ascending mesencephalic trigeminal root fibers, HRP application to the above-mentioned branches also revealed descending mesencephalic trigeminal fibers. The descending mesencephalic trigeminal fibers course caudally medial to the branchiomeric motor column and terminate in the ventromedial portion of the MFn.  相似文献   

7.
The cell bodies of the lingual branch of the trigeminal nerve were localized in the trigeminal ganglion using extracellular recordings together with horseradish peroxidase labeling from the tongue. Individual lingual nerve fibers were characterized with regard to their conduction velocities, receptive fields, and response to thermal, mechanical, and chemical stimuli. Fibers were classified as C, A delta, A beta, cold, and warm. The chemical stimuli included NaCl, KCl, NH4Cl, CaCl2, menthol, nicotine, hexanol, and capsaicin. With increasing salt concentration the latency of the response decreased and the activity increased. The responses elicited by salts (to 2.5 M), but not nonpolar stimuli such as menthol, were reversibly inhibited by 3.5 mM of the tight junction blocker, LaCl3. These data suggest that salts diffuse into stratified squamous epithelia through tight junctions in the stratum corneum and stratum granulosum, whereupon they enter the extracellular space. 11 C fibers were identified and 5 were characterized as polymodal nociceptors. All of the C fibers were activated by one or more of the salts NaCl, KCl, or NH4Cl. Three C fibers were activated by nicotine (1 mM), but none were affected by CaCl2 (1 M), menthol (1 mM), or hexanol (50 mM). However, not all C fibers or even the subpopulation of polymodals were activated by the same salts or by nicotine. Thus, it appears that C fibers display differential responsiveness to chemical stimuli. A delta fibers also showed differential sensitivity to chemicals. Of the 35 characterized A delta mechanoreceptors, 8 responded to NaCl, 9 to KCl, 9 to NH4Cl, 0 to CaCl2, menthol, or hexanol, and 2 to nicotine. 8 of 9 of the cold fibers (characterized as A delta''s) responded to menthol, none responded to nicotine, 8 of 16 were inhibited by hexanol, 9 of 19 responded to 2.5 M NH4Cl, 5 of 19 responded to 2.5 M KCl, and 1 of 19 responded to 2.5 M NaCl. In summary, lingual nerve fibers exhibit responsiveness to chemicals introduced onto the tongue. The differential responses of these fibers are potentially capable of transmitting information regarding the quality and quantity of chemical stimuli from the tongue to the central nervous system.  相似文献   

8.
Central mechanisms of vascular headaches   总被引:1,自引:0,他引:1  
The intracranial blood vessels supplying the dura and brain are innervated by sensory afferents from the trigeminal nerve. These fibers are believed to be responsible for conveying the pain associated with vascular head pain such as migraines. This paper reviews recently published data describing the existence of neurons within the cat trigeminal nucleus and thalamus that respond to electrical stimulation of the middle meningeal artery and superior sagittal sinus. Almost all of these neurons receive convergent input from the facial skin and most of the receptive fields include the periorbital region. On the basis of their cutaneous inputs, most of the neurons are classified as nociceptive. The characteristics of these cerebrovascular-activated neurons are consistent with their role in mediating vascular head pains and with the typical referral of such pains in man to the orbital region. This paper also presents preliminary results of recordings from rat trigeminal ganglion neurons activated by electrical stimulation of the middle meningeal artery and sagittal sinus. The latencies of activation of these neurons are indicative of conduction in slowly conducting myelinated axons and in unmyelinated axons. Some of the neurons could also be activated by mechanical stimuli applied to the vessels.  相似文献   

9.
The beta-2 subunit of the mammalian brain voltage-gated sodium channel (SCN2B) was examined in the rat trigeminal ganglion (TG) and trigeminal sensory nuclei. In the TG, 42.6 % of sensory neurons were immunoreactive (IR) for SCN2B. These neurons had various cell body sizes. In facial skins and oral mucosae, corpuscular nerve endings contained SCN2B-immunoreactivity. SCN2B-IR nerve fibers formed nerve plexuses beneath taste buds in the tongue and incisive papilla. However, SCN2B-IR free nerve endings were rare in cutaneous and mucosal epithelia. Tooth pulps, muscle spindles and major salivary glands were also innervated by SCN2B-IR nerve fibers. A double immunofluorescence method revealed that about 40 % of SCN2B-IR neurons exhibited calcitonin gene-related peptide (CGRP)-immunoreactivity. However, distributions of SCN2B- and CGRP-IR nerve fibers were mostly different in facial, oral and cranial structures. By retrograde tracing method, 60.4 and 85.3 % of TG neurons innervating the facial skin and tooth pulp, respectively, showed SCN2B-immunoreactivity. CGRP-immunoreactivity was co-localized by about 40 % of SCN2B-IR cutaneous and tooth pulp TG neurons. In trigeminal sensory nuclei of the brainstem, SCN2B-IR neuronal cell bodies were common in deep laminae of the subnucleus caudalis, and the subnuclei interpolaris and oralis. In the mesencephalic trigeminal tract nucleus, primary sensory neurons also exhibited SCN2B-immunoreactivity. In other regions of trigeminal sensory nuclei, SCN2B-IR cells were very infrequent. SCN2B-IR neuropil was detected in deep laminae of the subnucleus caudalis as well as in the subnuclei interpolaris, oralis and principalis. These findings suggest that SCN2B is expressed by various types of sensory neurons in the TG. There appears to be SCN2B-containing pathway in the TG and trigeminal sensory nuclei.  相似文献   

10.
The possible interaction among different sensory units in the frog tongue was studied using several single papillae dually innervated by the medial and lateral branches of the glossopharyngeal (IXth) nerve. The afferent activity in one branch exposed to NaCl stimulation of the papilla revealed marked inhibition after antidromic electrical stimulation (100 Hz, 30 s, and 3 V) of the other branch. The degree of inhibition depended on the number of sensory responses observed in the electrically stimulated branch as well as the nature of the stimulated sensory units. Statistical analysis suggested that antidromic activation of gustatory units conducting the responses to NaCl and quinine and slowly adapting mechanosensitive units produced a large antidromic inhibition amounting to 19-25%, but that of gustatory units conducting the responses to acetic acid and rapidly adapting mechanosensitive units gave rise to only a slight inhibition. To examine the differential effects of these sensory units in antidromic inhibition, antidromic impulses were evoked by chemical stimulation of the adjacent papilla neuronally connected with the dually innervated papilla under study. Antidromic volleys of impulses elicited by NaCl or quinine stimulation produced a large inhibition of the afferent activity in the other branch, as induced by NaCl stimulation of the dually innervated papilla. Plausible mechanisms of synaptic interaction in peripheral gustatory systems are considered.  相似文献   

11.
Recent studies suggest that the capsaicin receptor [transient receptor potential vanilloid (TRPV)1] may play a role in visceral mechanosensation. To address the potential role of TRPV1 in vagal sensory neurons, we developed a new in vitro technique allowing us to determine TRPV1 expression directly in physiologically characterized gastric sensory neurons. Stomach, esophagus, and intact vagus nerve up to the central terminations were carefully dissected and placed in a perfusion chamber. Intracellular recordings were made from the soma of nodose neurons during mechanical stimulation of the stomach. Physiologically characterized neurons were labeled iontophoretically with neurobiotin and processed for immunohistochemical experiments. As shown by action potential responses triggered by stimulation of the upper thoracic vagus with a suction electrode, essentially all abdominal vagal afferents in mice conduct in the C-fiber range. Mechanosensitive gastric afferents encode stimulus intensities over a wide range without apparent saturation when punctate stimuli are used. Nine of 37 mechanosensitive vagal afferents expressed TRPV1 immunoreactivity, with 8 of the TRPV1-positive cells responding to stretch. A small number of mechanosensitive gastric vagal afferents express neurofilament heavy chains and did not respond to stretch. By maintaining the structural and functional integrity of vagal afferents up to the nodose ganglion, physiological and immunohistochemical properties of mechanosensory gastric sensory neurons can be studied in vitro. Using this novel technique, we identified TRPV1 immunoreactivity in only one-fourth of gastric mechanosensitive neurons, arguing against a major role of this ion channel in sensation of mechanical stimuli under physiological conditions.  相似文献   

12.
Receptive fields and responsiveness of single fibers of the glossopharyngeal (IXth) nerve were investigated using electrical, gustatory (NaCl, quinine HCl, acetic acid, water, sucrose, and CaCl2), thermal, and mechanical stimulation of the single fungiform papillae distributed on the dorsal tongue surface in frogs. 172 single fibers were isolated. 58% of these fibers (99/172) were responsive to at least one of the gustatory stimuli (taste fibers), and the remaining 42% (73/172) were responsive only to touch (touch fibers). The number of papillae innervated by a single fiber (receptive field) was between 1 and 17 for taste fibers and between 1 and 10 for touch fibers. The mean receptive field of taste fibers (X = 6.6, n = 99) was significantly larger than that of touch fibers (X = 3.6, n = 73) (two-tailed t test, P less than 0.001). In experiments with natural stimulation of single fungiform papillae, it was found that every branch of a single fiber has a similar responsiveness. Taste fibers were classified into 14 types (Type N, Q, A, NA, NCa, NCaA, NCaW, NCaAW, NCaWS, NQ, NQA, NQAS, NQWarm, Multiple) on the basis of their responses to gustatory and thermal stimuli. The time course of the response in taste fibers was found to be characteristic of their types. For example, the fibers belonging to Type NQA showed phasic responses, those in Type NCa showed tonic responses, etc. These results indicate that there are several groups of fibers in the frog IXth nerve and that every branch of an individual fiber has a similar responsiveness to the parent fiber.  相似文献   

13.
The source of innervation of the corpuscular bodies in the palate and the central projections of the afferent fibres of the entire palate was studied in rats by transganglionic transport of horseradish peroxidase conjugated to wheat germ agglutinin (WGA-HRP) and with substance P (SP) immunohistochemistry. WGA-HRP injected into the incisal papilla was taken up by the nerve fibres that terminated in the corpuscles. Retrogradely labelled neurons were observed in the trigeminal ganglion as well as anterogradely labelled terminals in the dorsolateral part of the spinal trigeminal nucleus and in the lateral part of the nucleus of the solitary tract. No labelling could be found in the geniculate ganglion, the facial nerve and the hypoglossal nucleus. Following WGA-HRP injection in the intermolar area and in the soft palate, labelling was only restricted to the trigeminal ganglion. The lamina propria of the entire palate and the corpuscle-enriched area of the incisal papilla and the soft palate were richly innervated by SP-containing fibres. Numerous SP-containing fibres were also observed in the nerve plexus at the base of the corpuscle. In addition, SP-positive neurons were identified in the trigeminal ganglion and SP-labelled terminals in the sensory trigeminal nuclear complex and in the solitary tract nucleus. On the basis of our morphological observations we conclude that the palatal corpuscular bodies are involved in taste perception which is of trigeminal origin.  相似文献   

14.
Horseradish peroxidase histochemical studies of afferent and efferent projections of the trigeminal nerve in two species of chondrostean fishes revealed medial, descending and ascending projections. Entering fibers of the trigeminal sensory root project medially to terminate in the medial trigeminal nucleus, located along the medial wall of the rostral medulla. Other entering sensory fibers turn caudally within the medulla, forming the trigeminal spinal tract, and terminate within the descending trigeminal nucleus. The descending trigeminal nucleus consists of dorsal (DTNd) and ventral (DTNv) components. Fibers of the trigeminal spinal tract descend through the lateral alar medulla and into the dorsolateral cervical spinal cord. Fibers exit the spinal tract throughout its length, projecting to the ventral descending trigeminal nucleus (DTNv) in the medulla and to the funicular nucleus at the obex. Retrograde transport of HRP through sensory root fibers also revealed an ascending bundle of fibers that constitutes the neurites of the mesencephalic trigeminal nucleus, cell bodies of which are located in the rostral optic tectum. Retrograde transport of HRP through motor root fibers labeled ipsilateral cells of the trigeminal motor nucleus, located in the rostral branchiomeric motor column.  相似文献   

15.
C B Kimmel  K Hatta  W K Metcalfe 《Neuron》1990,4(4):535-545
We have identified the initial synaptic contacts made onto the Mauthner (M) cell, an identified neuron that arises during early development of the zebrafish hindbrain. The contacts are made by a small bundle of pioneering trigeminal sensory axons onto the M cell soma before it forms dendrites. The sensory bundle is then partially enveloped by the M cell. The lateral dendrite appears at about the site of the contact, and eventually the trigeminal inputs are shifted to its trunk. As the dendrite elongates, other sensory contacts are made on its distal regions, sequentially from the acoustico-vestibular nerve and the lateral line nerves. To learn whether the earliest inputs induce the initial outgrowth of the M cell dendrite, we ablated the trigeminal neurons by laser irradiation before they contacted the M cell. Morphogenesis of the M cell, including its dendrite, appeared normal.  相似文献   

16.
Immunohistochemistry for transient receptor potential melastatin-8 (TRPM8), the cold and menthol receptor, was performed on the rat soft palate, epiglottis and pharynx. TRPM8-immunoreactive (IR) nerve fibers were located beneath the mucous epithelium, and occasionally penetrated the epithelium. These nerve fibers were abundant in the posterior portion of the soft palate and at the border region of naso-oral and laryngeal parts of the pharynx. The epiglottis was free from such nerve fibers. The double immunofluorescence method demonstrated that TRPM8-IR nerve fibers in the pharynx and soft palate were mostly devoid of calcitonin gene-related peptide-immunoreactivity (CGRP-IR). The retrograde tracing method also demonstrated that 30.1 and 8.7 % of sensory neurons in the jugular and petrosal ganglia innervating the pharynx contained TRPM8-IR, respectively. Among these neurons, the co-expression of TRPM8 and CGRP-IR was very rare. In the nodose ganglion, however, pharyngeal neurons were devoid of TRPM8-IR. Taste bud-like structures in the soft palate and pharynx contained 4–9 TRPM8-IR cells. In the epiglottis, the mucous epithelium on the laryngeal side had numerous TRPM8-IR cells. The present study suggests that TRPM8 can respond to cold stimulation when food and drinks pass through oral and pharyngeal cavities.  相似文献   

17.
The gustatory receptors of the eel palate were found to be extremely sensitive to amino acids and carboxylic acids. The results obtained are as follows: (a) 11 amino acids which are among naturally occurring amino acids elicited responses in the palatine nerve, but 9 amino acids did not elicit a response even at a high concentration. The effect of D-amino acids was always much less than that of their corresponding L-isomers. There was no appreciable difference in the effectiveness of an alpha-amino acid (alpha-alanine) and beta-amino acid (beta-alanine). (b) The threshold concentrations of the most potent amino acids (arginine, glycine) were between 10(-8) and 10(-9) M. A linear relation between the magnitude of the response and log stimulus concentration held for a wide concentration range for all the amino acids examined. (c) The palatine receptors responded sensitively to various carboxylic acid solutions whose pH was adjusted to neutral. The threshold concentrations varied between 10(-4) and 10(-7) M. The magnitude of the response at 10(-2) M increased with an increase of carbon chain length. (d) The extent of cross-adaptation was examined with various combinations of amino acids. A variety of the response patterns showing complete cross-adaptation, no cross-adaptation, or synergetic interaction was observed. The synergetic interaction was also observed when one amino acid below its threshold concentration was added to the other amino acid below its threshold concentration was added to the other amino acid. No cross-adaptation was observed between amino acids and fatty acids. (e) The treatment of the palate with papain led to loss of the responses to arginine, glycine, and histidine without affecting those to proline and acetic acid. The treatment with pronase E eliminated selectively the response to proline. The possibility that the eel gustatory receptors are responsible for sensing food at a distance was discussed.  相似文献   

18.
革胡子鲇上颌须离体标本味觉反应的测定   总被引:1,自引:0,他引:1  
龙天澄  黄溢明 《动物学报》1995,41(2):158-166
本实验采用革胡子鲇离体上颌须-传入神经标本,记录传入神经电活动,测定了须部味蕾对动物组织浸提液、氨基酸、酸盐化合物等多种化学刺激的反应。发现某些物质有较强的刺激作用。另外,机械刺激也引起较强的反应。分析传入神经单纤维的记录结果,可将化学刺激引起的味觉反应分为3种单元类型:(1)对精氨酸特别敏感;(2)对柠檬酸和氯化胺有较强的反应;(3)对多种刺激都有一定的反应。实验表明,革胡子鲇的须部味蕾可能是一  相似文献   

19.
The autonomic nervous system affects the gustatory responses in animals. Frog glossopharyngeal nerve (GPN) contains the parasympathetic nerve. We checked the effects of electrical stimulation (ES) of the parasympathetic nerves on the gustatory neural responses. The gustatory neural impulses of the GPNs were recorded using bipolar AgCl wires under normal blood circulation and integrated with a time constant of 1 s. Electrical stimuli were applied to the proximal side of the GPN with a pair of AgCl wires. The parasympathetic nerves of the GPN were strongly stimulated for 10 s with 6 V at 30 Hz before taste stimulation. The integrated neural responses to 0.5 M NaCl, 2.5 mM CaCl2, water, and 1 M sucrose were enhanced to 130–140% of the controls. On the other hand, the responses for 1 mM Q-HCl and 0.3 mM acetic acid were not changed by the preceding applied ES. After hexamethonium (a blocker of nicotinic ACh receptor) was intravenously injected, ES of the parasympathetic nerve did not modulate the responses for all six taste stimuli. The mechanism for enhancement of the gustatory neural responses is discussed.  相似文献   

20.
The afferent and efferent components of the facial nerve were traced within the brain stem of Rana catesbeiana, using three different neuroanatomical techniques. Primary afferent fibers could be traced to the spinal tract of trigeminal nerve and to fasciculus solitarius as far caudally as the first or second spinal segment, using silver degeneration methods. Cobalt filling of of the entire nerve showed the same distribution of afferent fibers, as well as the filling of the cells within the mesencephalic nucleus of trigeminal, indicating the origin of a proprioceptive component of the facial nerve. Cobalt iontophoresis and horseradish perioxidase experiments showed that the motor nucleus of the facial nerve was located just ventral to the fourth ventricle, and caudal to the motor nucleus of trigeminal. The distribution of afferent fibers to fasciculus solitarius and the spinal tract of trigeminal is similar in some respects to the distribution of afferent fibers from the trigeminal and vagal nerves in the bullfrog. The afferent fibers from the three cranial nerves are found as far caudally in the brain stem as the second spinal segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号