首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Nef protein of human immunodeficiency virus type 1 is an important factor in AIDS pathogenesis. In addition to downregulating CD4 and major histocompatibility complex class I molecules from the cell surface, as well as increasing virion infectivity, Nef triggers activation of the T-cell receptor (TCR) cascade to facilitate virus spread. Signaling pathways that are induced by Nef have been identified; however, it is unclear how and in which subcellular compartment Nef triggers signaling. Nef recruits a multiprotein complex to activate the cellular Pak kinase that mediates downstream effector functions. Since a subpopulation of Nef is present in detergent-insoluble microdomains (lipid rafts) from where physiological TCR signaling is initiated, we tested whether lipid rafts are instrumental for Nef-mediated Pak activation. In flotation analysis, Nef-associated Pak activity exclusively fractionated with lipid rafts. Activation of Pak in the presence of Nef coincided with lipid raft recruitment of the kinase, which was otherwise excluded from detergent-insoluble microdomains. Experimental solubilization of lipid rafts interfered with the association of Pak activity with Nef. To analyze the importance of the raft localization for Nef function more rigorously, we generated a palmitoylated Nef (PalmNef). PalmNef was highly enriched in lipid rafts and associated with significantly higher levels of Pak activity than Nef. Notably, activation of Pak by its physiological activators, Cdc42 and Rac, also occurred in lipid rafts and required raft integrity. Together, these data suggest that Nef induces signal transduction via the recruitment of a signaling machinery including Pak into lipid rafts, thereby mimicking a physiological cellular mechanism to initiate the TCR cascade.  相似文献   

2.
The Nef protein of the human immunodeficiency virus type 1 (HIV-1) has been shown to enhance the infectivity of virus particles, downmodulate cell surface proteins, and associate with many intracellular proteins that are thought to facilitate HIV infection. One of the challenges in defining the molecular events regulated by Nef has been obtaining good expression of Nef protein in T cells. This has been attributed to effects of Nef on cell proliferation and apoptosis. We have designed a Nef protein that is readily expressed in T-cell lines and whose function is inducibly activated. It is composed of a fusion between full-length Nef and the estrogen receptor hormone-binding domain (Nef-ER). The Nef-ER is kept in an inactive state due to steric hindrance, and addition of the membrane-permeable drug 4-hydroxytamoxifen (4-HT), which binds to the ER domain, leads to inducible activation of Nef-ER within cells. We demonstrate that Nef-ER inducibly associates with the 62-kDa Ser/Thr kinase and is localized to specific membrane microdomains (lipid rafts) only after activation. Using this inducible Nef, we also compared the specific requirements for CD4 and HLA-A2 downmodulation in a SupT1 T-cell line. Half-maximal downmodulation of cell surface CD4 required very little active Nef-ER and occurred as early as 4 h after addition of 4-HT. In contrast, 50% downmodulation of HLA-A2 by Nef required 16 to 24 h and about 50- to 100-fold-greater concentrations of 4-HT. These data suggest that HLA-A2 downmodulation may require certain threshold levels of active Nef. The differential timing of CD4 and HLA-A2 downmodulation may have implications for HIV pathogenesis and immune evasion.  相似文献   

3.
Nef is a myristoylated protein of 27 to 35 kDa that is conserved in primate lentiviruses. In vivo, Nef is required for high viral load and full pathological effects. In vitro, Nef has at least four activities: induction of CD4 and major histocompatibility complex (MHC) class I downregulation, enhancement of viral infectivity, and alteration of T-cell activation pathways. We previously reported that the Nef protein from human immunodeficiency virus type 1 interacts with a novel human thioesterase (hTE). In the present study, by mutational analysis, we identified a region of the Nef core, extending from the residues D108 to W124, that is involved both in Nef-hTE interaction and in Nef-induced CD4 downregulation. This region of Nef is located on the oligomer interface and is in close proximity to the putative CD4 binding site. One of the mutants carrying a mutation in this region, targeted to the conserved residue D123, was also found to be defective in two other functions of Nef, MHC class I downmodulation and enhancement of viral infectivity. Furthermore, mutation of this residue affected the ability of Nef to form dimers, suggesting that the oligomerization of Nef may be critical for its multiple functions.  相似文献   

4.
The HIV-1 Nef protein is a critical virulence factor that exerts multiple effects during viral replication. Nef modulates surface expression of various cellular proteins including CD4 and MHC-I, enhances viral infectivity, and affects signal transduction pathways. Nef has been shown to partially associate with rafts, where it can prime T cells for activation. The contribution of rafts during Nef-induced CD4 down-regulation and enhancement of viral replication remains poorly understood. We show here that Nef does not modify the palmitoylation state of CD4 or its partition within rafts. Moreover, CD4 mutants lacking palmitoylation or unable to associate with rafts are efficiently down-regulated by Nef. In HIV-infected cells, viral assembly and budding occurs from rafts, and Nef has been suggested to increase this process. However, using T cells acutely infected with wild-type or nef-deleted HIV, we did not observe any impact of Nef on raft segregation of viral structural proteins. We have also designed a palmitoylated mutant of Nef (NefG3C), which significantly accumulates in rafts. Interestingly, the efficiency of NefG3C to down-regulate CD4 and MHC-I, and to promote viral replication was not increased when compared with the wild-type protein. Altogether, these results strongly suggest that rafts are not a key element involved in the effects of Nef on trafficking of cellular proteins and on viral replication.  相似文献   

5.
Polarization of membrane rafts and signaling proteins to form an immunological synapse is a hallmark of T cell stimulation. However, the kinetics of raft polarization and associated proteins in relation to the initial contact of the T cell with the APC are poorly defined. We addressed this question by measuring the distribution of membrane-targeted fluorescent protein markers during initial T cell interactions with B cell APCs. Experiments with unpulsed B cells lacking cognate Ag demonstrated an MHC class II-independent capping that was specific to membrane raft markers and required actin rearrangements and signals from Src kinases and PI3K. By live cell imaging experiments, we identified a similar specific polarization of membrane raft markers before TCR-dependent stop signals, and which occurred independently of cognate peptide-MHC class II. T cells conjugated to unpulsed B cells exhibited capping of CD4 and microclusters of the TCR zeta-chain, but only the CD4 enrichment was cholesterol dependent. Furthermore, raft association of CD4 was necessary for its efficient targeting to the Ag-independent caps. Interestingly, anergic Vbeta8(+) T cells isolated from staphylococcal enterotoxin B-injected mice did not exhibit Ag-independent capping of membrane rafts, showing that inhibition of these early, Ag-independent events is a property associated with tolerance. Altogether, these data show that membrane raft capping is one of the earliest events in T cell activation and represents one avenue for promoting and regulating downstream peptide-MHC-dependent signaling within the T cell.  相似文献   

6.
Simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) Nef proteins are related regulatory proteins that share several functions, including the ability to downregulate class I major histocompatibility complex (MHC) and CD4 expression on the cell surface and to alter T-cell-receptor-initiated signal transduction in T cells. We compared the mechanisms used by SIV mac239 Nef and HIV-1 Nef to downregulate class I MHC and found that the ability of SIV Nef to downregulate class I MHC requires a unique C-terminal region of the SIV mac239 Nef molecule which is not found in HIV-1 Nef. Interestingly, mutation of the PxxP motif in SIV Nef, unlike in HIV-1 Nef, does not affect class I MHC downregulation. We also found that downregulation of class I MHC by SIV Nef requires a conserved tyrosine in the cytoplasmic domain of the class I MHC heavy chain and involves accelerated endocytosis of class I complexes, as previously found with HIV-1 Nef. Thus, while SIV and HIV-1 Nef proteins use a similar mechanism to downregulate class I MHC expression, they have evolved different surfaces for molecular interactions with cell factors that regulate class I MHC traffic. Mutations in the C-terminal domain of SIV mac239 Nef selectively disrupt class I MHC downregulation, having no detectable effect on other functions of Nef, such as the downregulation of CD4 and CD3 surface expression, the stimulation of SIV virion infectivity, and the induction of SIV replication from T cells infected in the absence of stimulation. The resulting mutants will be useful reagents for studying the importance of class I MHC downregulation for SIV replication and AIDS pathogenesis in infected rhesus macaques.  相似文献   

7.
In immature dendritic cells (DCs), CD1a is almost exclusively expressed at the cell surface and its membrane organization is poorly understood. In this study, we report that MHC class II, invariant chain (Ii), and CD9 molecules are coimmunoprecipitated with CD1a in immature DCs, and that CD1a/Ii colocalization is dependent on lipid raft integrity. In HeLa-CIITA cells CD1a expression leads to increased Ii trafficking to the cell surface, confirming the relevance of this association. Furthermore, silencing of Ii in DCs induces significant CD1a accumulation on the plasma membrane whereas the total CD1a expression remains similar to that of control cells. These data suggest that CD1a recycling is facilitated by the association with the Ii. The CD1a localization in lipid rafts has functional relevance as demonstrated by inhibition of CD1a-restricted presentation following raft disruption. Overall, these findings identify Ii and lipid rafts as key regulators of CD1a organization on the surface of immature DCs and of its immunological function as Ag-presenting molecule.  相似文献   

8.
Major-histocompatibility-complex (MHC) proteins are used to display, on the surface of a cell, peptides derived from foreign material - such as a virus - that is infecting that cell. Cytotoxic T lymphocytes then recognize and kill the infected cell. The HIV-1 Nef protein downregulates the cell-surface expression of class I MHC proteins, and probably thereby promotes immune evasion by HIV-1. In the presence of Nef, class I MHC molecules are relocalized from the cell surface to the trans-Golgi network (TGN) through as-yet-unknown mechanisms. Here we show that Nef-induced downregulation of MHC-I expression and MHC-I targeting to the TGN require the binding of Nef to PACS-1, a molecule that controls the TGN localization of the cellular protein furin. This interaction is dependent on Nef's cluster of acidic amino acids. A chimaeric integral membrane protein containing Nef as its cytoplasmic domain localizes to the TGN after internalization, in an acidic-cluster- and PACS-1-dependent manner. These results support a model in which Nef relocalizes MHC-I by acting as a connector between MHC-I's cytoplasmic tail and the PACS-1-dependent protein-sorting pathway.  相似文献   

9.
Cell-based tumor vaccines, consisting of MHC class I+ tumor cells engineered to express MHC class II molecules, stimulate tumor-specific CD4+ T cells to mediate rejection of established, poorly immunogenic tumors. Previous experiments have demonstrated that these vaccines induce immunity by functioning as APCs for endogenously synthesized, tumor-encoded Ags. However, coexpression of the MHC class II accessory molecule invariant chain (Ii), or deletion of the MHC class II cytoplasmic domain abrogates vaccine immunogenicity. Recent reports have highlighted the role of lipid microdomains in Ag presentation. To determine whether Ii expression and/or truncation of MHC class II molecules impact vaccine efficacy by altering MHC class II localization to lipid microdomains, we examined the lipid raft affinity of MHC class II molecules in mouse M12.C3 B cell lymphomas and SaI/A(k) sarcoma vaccine cells. Functional MHC class II heterodimers were detected in lipid rafts of both cell types. Interestingly, expression of Ii in M12.C3 cells or SaI/A(k) cells blocked the MHC class II interactions with cell surface lipid rafts. In both cell types, truncation of either the alpha- or beta-chain decreased the affinity of class II molecules for lipid rafts. Simultaneous deletion of both cytoplasmic domains further reduced localization of class II molecules to lipid rafts. Collectively, these data suggest that coexpression of Ii or deletion of the cytoplasmic domains of MHC class II molecules may reduce vaccine efficacy by blocking the constitutive association of MHC class II molecules with plasma membrane lipid rafts.  相似文献   

10.
By mutagenesis, we demonstrated that the palmitoylation of the membrane-proximal Cys(396) and Cys(399)of CD4, and the association of CD4 with Lck contribute to the enrichment of CD4 in lipid rafts. Ab cross-linking of CD4 induces an extensive membrane patching on the T cell surface, which is related to lipid raft aggregation. The lipid raft localization of CD4 is critical for CD4 to induce the aggregation of lipid rafts. The localization of CD4 in lipid rafts also correlates to the ability of CD4 to enhance receptor tyrosine phosphorylation. Thus, our data suggest that CD4-induced aggregation of lipid rafts may play an additional role in CD4 signaling besides its adhesion to MHC molecules and association with Lck.  相似文献   

11.
Point mutations in SIVmac239 Nef disrupting CD4 downmodulation and enhancement of virion infectivity attenuate viral replication in acutely infected rhesus macaques, but changes selected later in infection fully restore Nef function (A. J. Iafrate et al., J. Virol. 74:9836-9844, 2000). To further evaluate the relevance of these Nef functions for viral persistence and disease progression, we analyzed an SIVmac239 Nef mutant containing a deletion of amino acids Q64 to N67 (delta64-67Nef). This mutation inactivates the N-distal AP-2 clathrin adaptor binding element and disrupts the abilities of Nef to downregulate CD4, CD28 and CXCR4 and to stimulate viral replication in vitro. However, it does not impair the downmodulation of CD3 and class I major histocompatibility complex (MHC-I) or MHC-II and the upregulation of the MHC-II-associated invariant chain, and it has only a moderate effect on the enhancement of virion infectivity. Replication of the delta64-67Nef variant in acutely infected macaques was intermediate between grossly nef-deleted and wild-type SIVmac239. Subsequently, three of six macaques developed moderate to high viral loads and developed disease, whereas the remaining animals efficiently controlled SIV replication and showed a more attenuated clinical course of infection. Sequence analysis revealed that the deletion in nef was not repaired in any of these animals. However, some changes that slightly enhanced the ability of Nef to downmodulate CD4 and moderately increased Nef-mediated enhancement of viral replication and infectivity in vitro were observed in macaques developing high viral loads. Our results imply that both the Nef functions that were disrupted by the delta64-67 mutation and the activities that remained intact contribute to viral pathogenicity.  相似文献   

12.

Background

The human EED protein, a member of the superfamily of Polycomb group (Pc G) proteins with WD-40 repeats, has been found to interact with three HIV-1 components, namely the structural Gag matrix protein (MA), the integrase enzyme (IN) and the Nef protein. The aim of the present study was to analyze the possible biological role of EED in HIV-1 replication, using the HIV-1-based vector HIV-Luc and EED protein expressed by DNA transfection of 293T cells.

Results

During the early phase of HIV-1 infection, a slight negative effect on virus infectivity occurred in EED-expressing cells, which appeared to be dependent on EED-MA interaction. At late times post infection, EED caused an important reduction of virus production, from 20- to 25-fold as determined by CAp24 immunoassay, to 10- to 80-fold based on genomic RNA levels, and this decrease was not due to a reduction of Gag protein synthesis. Coexpression of WTNef, or the non-N-myristoylated mutant NefG2A, restored virus yields to levels obtained in the absence of exogenous EED protein. This effect was not observed with mutant NefΔ57 mimicking the Nef core, or with the lipid raft-retargeted fusion protein LAT-Nef. LATAA-Nef, a mutant defective in the lipid raft addressing function, had the same anti-EED effect as WTNef. Cell fractionation and confocal imaging showed that, in the absence of Nef, EED mainly localized in membrane domains different from the lipid rafts. Upon co-expression with WTNef, NefG2A or LATAA-Nef, but not with NefΔ57 or LAT-Nef, EED was found to relocate into an insoluble fraction along with Nef protein. Electron microscopy of HIV-Luc producer cells overexpressing EED showed significant less virus budding at the cell surface compared to control cells, and ectopic assembly and clustering of nuclear pore complexes within the cytoplasm.

Conclusion

Our data suggested that EED exerted an antiviral activity at the late stage of HIV-1 replication, which included genomic RNA packaging and virus assembly, resulting possibly from a mistrafficking of viral genomic RNA (gRNA) or gRNA/Gag complex. Nef reversed the EED negative effect on virus production, a function which required the integrity of the Nef N-terminal domain, but not its N-myristoyl group. The antagonistic effect of Nef correlated with a cellular redistribution of both EED and Nef.  相似文献   

13.
14.
The multifunctional simian and human immunodeficiency virus (SIV and HIV) Nef proteins are important for virulence. We studied the importance of selected Nef functions using an SIV Nef with mutations in two regions that are required for CD4 downregulation. This Nef mutant is defective for downregulating CD4 and, in addition, for enhancing SIV infectivity and induction of SIV replication from infected quiescent peripheral blood mononuclear cells, but not for other known functions, including downregulation of class I major histocompatibility complex (MHC) cell surface expression. Replication of SIV containing this Nef variant in rhesus monkeys was attenuated early during infection. Subsequent increases in viral load coincided with selection of reversions and second-site compensatory changes in Nef. Our results indicate that the surfaces of Nef that mediate CD4 downregulation and the enhancement of virion infectivity are critical for SIV replication in vivo. Furthermore, these findings indicate that class I MHC downregulation by Nef is not sufficient for SIV virulence early in infection.  相似文献   

15.
Substitution of Y223F disrupts the ability of simian immunodeficiency virus (SIV) Nef to down-modulate major histocompatibility complex (MHC) class I from the cell surface but has no effect on other Nef functions, such as down-regulation of CD4, CD28, and CD3 cell surface expression or stimulation of viral replication and enhancement of virion infectivity. Inoculation of three rhesus macaques with the SIVmac239 Y223F-Nef variant revealed that this point mutation consistently reverts and that Nef activity in MHC class I down-modulation is fully restored within 4 weeks after infection. Our results demonstrate a strong selective pressure for a tyrosine at amino acid position 223 in SIV Nef, and they constitute evidence that Nef-mediated MHC class I down-regulation provides a selective advantage for viral replication in vivo.  相似文献   

16.
Nef increases infectivity of HIV via lipid rafts   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
The accessory protein negative factor (Nef) from human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is required for optimal viral infectivity and the progression to acquired immunodeficiency syndrome (AIDS). Nef interacts with the endocytic machinery, resulting in the down-regulation of cluster of differentiation antigen 4 (CD4) and major histocompatibility complex class I (MHCI) molecules on the surface of infected cells. Mutations in the C-terminal flexible loop of Nef result in a lower rate of internalization by this viral protein. However, no loop-dependent binding of Nef to adaptor protein-2 (AP-2), which is the adaptor protein complex that is required for the internalization of proteins from the plasma membrane, could be demonstrated. In this study we investigated the relevance of different motifs in Nef from SIV(mac239) for its internalization, CD4 down-regulation, binding to components of the trafficking machinery, and viral infectivity. Our data suggest that the binding of Nef to the catalytic subunit H of the vacuolar membrane ATPase (V-ATPase) facilitates its internalization. This binding depends on the integrity of the whole flexible loop. Subsequent studies on Nef mutant viruses revealed that the flexible loop is essential for optimal viral infectivity. Therefore, our data demonstrate how Nef contacts the endocytic machinery in the absence of its direct binding to AP-2 and suggest an important role for subunit H of the V-ATPase in viral infectivity.  相似文献   

19.
Nef, a regulatory protein of human and simian immunodeficiency viruses, downregulates cell surface expression of both class I MHC and CD4 molecules in T cells by accelerating their endocytosis. Fibroblasts were used to study alterations in the traffic of class I MHC complexes induced by Nef. We found that Nef downregulates class I MHC complexes by a novel mechanism involving the accumulation of endocytosed class I MHC in the trans-Golgi, where it colocalizes with the adaptor protein-1 complex (AP-1). This effect of Nef on class I MHC traffic requires the SH3 domain-binding surface and a cluster of acidic amino acid residues in Nef, both of which are also required for Nef to downregulate class I MHC surface expression and to alter signal transduction in T cells. Downregulation of class I MHC complexes from the surface of T cells also requires a tyrosine residue in the cytoplasmic domain of the class I MHC heavy chain molecule. The requirement of the same surfaces of the Nef molecule for downregulation of surface class I MHC complexes in T cells and for their accumulation in the trans-Golgi of fibroblasts indicates that the two effects of Nef involve similar interactions with the host cell machinery and involve a molecular mechanism regulating class I MHC traffic that is common for both of these cell types. Interestingly, the downregulation of class I MHC does not require the ability of Nef to colocalize with the adaptor protein-2 complex (AP-2). We showed previously that the ability of Nef to colocalize with AP-2 correlates with the ability of Nef to downregulate CD4 expression. Our observations indicate that Nef downregulates class I MHC and CD4 surface expression via different interactions with the protein sorting machinery, and link the sorting and signal transduction machineries in the regulation of class I MHC surface expression by Nef.  相似文献   

20.
The adhesion molecule CD58 is involved in intercellular adhesion and in signal transduction. It is natively expressed in both a transmembrane form and a glycosylphosphatidylinositol (GPI)-anchored form, and hence provides a model for the study of two distinct membrane-anchored forms of the same protein in the same cell. We demonstrate here that the two isoforms of CD58 are localized in distinct membrane compartments. The GPI-anchored form localizes in lipid rafts, while the transmembrane form resides in nonraft domains. In addition to distinct membrane localization, the two isoforms of CD58 differ in their association with protein kinases. GPI-anchored CD58, residing in raft domains, is constitutively associated with protein kinases. However, cross-linking mediates a substantial increase in kinase activity which is predominantly associated with the transmembrane CD58 in nonraft membrane domains. The extensive inducible kinase activity, associated with transmembrane CD58, is demonstrated in wild-type cells as well as in GPI-deficient variant cells. Thus, although the transmembrane CD58 is excluded from rafts, it may trigger signaling independently of the GPI-linked isoform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号