首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The brain of the Pacific hagfish, Eptatretus stouti, was studied immunocytochemically using antisera against somatostatin (SRIH), arginine vasopressin (AVP), and adrenocorticotropic hormone (ACTH). SRIH-immunoreactive perikarya were distributed bilaterally in the postoptic nucleus and in the hypothalamic nucleus. Although several short, stained fibers were observed in the vicinity of the perikarya, SRIH-immunoreactivity was not found in the neurohypophysis, nor in other parts of the brain. On the other hand, presumed arginine vasotocin (AVT) perikarya were distributed in an arc-shaped region extending from the posterior part of the preoptic nucleus to the anterior-most end of the hypothalamic nucleus and projected their fibers to the neurohypophysis. Most presumptive AVT perikarya were located close to the paired prehypophysial arteries near the anterior end of the postoptic nucleus. In the neurohypophysis, abundant presumptive AVT-fibers terminated in the posterior dorsal wall, although some fibers terminated in the anterior dorsal wall and only a few fiber endings were found in the ventral wall. No ACTH-positive cells were detected in the hagfish brain or in the pituitary gland.Supported from a grant from the National Science Foundation PCM 8141393  相似文献   

2.
Summary In order to identify clearly the nervous structures containing somatostatin in the human hypothalamus, an immunohistochemical localization of this neurohormone was performed at light-microscopic level. Using a antiserum specific to somatostatin and the unlabeled antibody peroxidase-antiperoxidase technique, we have found somatostatin in neurons with cell bodies in an area in the anterior hypothalamus corresponding to the infundibular nucleus. Somatostatin-containing fibers were also detected in the neurovascular zone of the pituitary stalk, suggesting that somatostatin is released in that region to reach the capillaries in the pituitary portal plexus. A large bundle of somatostatin fibers extending from the anterior part of the paraventricular nucleus up to the posterior portion of the mammillary bodies has also been detected. The role of these fibers still remains to be clarified.  相似文献   

3.
4.
Summary Hypothalamic tissue from 16 to 18-day fetal rats was transplanted onto the choroidal pia overlying the superior colliculus in adult female rats. After survival periods of 2 weeks to 19 months, brains containing transplants were processed for monoamine fluorescence histochemistry, immunohistochemistry for three neuropeptides (LHRH, somatostatin, neurophysin), or for autoradiography in ovariectomized hosts that received [3H] estradiol. Most of the transplants survived and retained or increased in size; 14 of 25 transplants examined by fluorescence histochemistry were found to contain median eminence-like structures. In almost all of the transplants that were stained for neuropeptides, beaded processes and occasional cell bodies were observed. Although immunoreactive fibers were found near blood vessels, no palisade arrangement typical of the normal median eminence was evident. Each of the hypothalamic transplants on which steroid autoradiography was performed contained clusters of estrophilic neurons, the intensity of labeling of which was comparable to that seen in the host hypothalamus. These results indicate that many characteristic morphological and chemical features of the hypothalamus, which are not evident in the 16 to 18-day fetus, are elaborated in transplants during the survival period in the host. Transplantation of fetal hypothalamus to adult choroidal pia thus appears to be a valuable approach for studying the factors, humoral or neural, that regulate the differentiation of this brain region.  相似文献   

5.
Summary Somatostatin cells in the stomach of the rat have a characteristic shape and distribution. In the antral mucosa they occur together with gastrin cells and enterochromaffin cells at the base of the glands. In the oxyntic mucosa they are scattered along the entire glands with some predominance in the zone of parietal cells. Throughout the gastric mucosa the somatostatin cells possess long and slender processes that emerge from the base of the cell and end in clublike swellings. Such processes appear to contact a certain proportion of neighbouring gastrin cells in the antral mucosa and parietal cells in the oxyntic mucosa.Exogenous somatostatin given by intravenous infusion to conscious rats counteracted the release of gastrin stimulated by feeding, elevated antral pH or vagal excitation. Gastrin causes parietal cells to secrete HCl and endocrine cells in the oxyntic mucosa to mobilise and synthesise histamine. Somatostatin is known to block the response of the parietal cells to gastrin. In contrast, somatostatin did not block the response of the histamine-storing endocrine cells to gastrin, perhaps because these endocrine cells lack receptors to somatostatin. Conceivably, somatostatin in the gastric mucosa has a paracrine mode of action. The observations of the present study suggest that somatostatin may affect some, but not all of the various cell types in the stomach. Under physiological conditions this selectivity may be achieved in the following ways: 1) Communication may be based on direct cell-to-cell contact. 2) Only certain cell types are supplied with somatostatin receptors.  相似文献   

6.
Summary Using an antibody against somatostatin (antiserum F), two somatostatin-immunoreactive systems, (i) a hypothalamic and (ii) an extrahypothalamic cortical system, are demonstrated in the rat. Another antiserum raised against somatostatin (antiserum BS 102) stains only the axons but not the perikarya of the hypothalamic system; the cortical somatostatin system does not react with this antiserum. The electron microscopic findings do not allow decision whether the above-mentioned hypothalamic and cortical neurons possess a common prohormonal form of somatostatin, immunoreactive only with antiserum F. They show, however, that the granules in both neuronal systems differ considerably; in the cortical neurons they measure approximately 65 nm in diameter, in the hypothalamic neurons 90–120 nm in diameter. Thus, both somatostatin systems are different and independent from one another.Supported by the Deutsche Forschungsgemeinschaft (Grant Nr. Kr 569/3) and the Stiftung Volkswagenwerk  相似文献   

7.
Summary The reaction of neural structures of the medial basal hypothalamus (MBH) to its complete deafferentation was studied in male rats by means of enzyme-histochemical and histoautoradiographic methods. Particular attention was paid to nerve cells of the arcuate nucleus and to the tanycytes. The metabolic activity of these cells increased upon the whole.According to the indices of metabolic activity in normal conditions and following deafferentation, the authors distinguish among the ependymal cells of the recessus infundibularis in rats, -tanycytes, which correspond to the ependymal lining at the level of the arcuate nucleus, and -tanycytes, which correspond to the ependyma of the median eminence. In normal conditions both were marked by a sufficiently high level of metabolism, which did not exclude the possibility of protein synthesis. Following deafferentation, -tanycytes seemed most reactive. The most active elements among the -tanycytes were the ependymal cells of the lateral part of the median eminence (1-tanycytes).The metabolic peculiarities of the nerve cells of the arcuate nuclei and the tanycytes, revealed in normal conditions and after deafferentation, are discussed in connection with the modern concepts of the role of these cells in hypothalamic-hypophyseal transmission.  相似文献   

8.
Cells and fibers containing somatostain (SRIF) or SRIF-like peptides were detected immunocytochemically in the brain of the garden dormouse (Eliomys quercinus L.). The periventricular preoptic nucleus and the paraventricular nucleus encompass a component of the SRIF-immunoreactive hypothalamo-infundibular and hypothalamo-neurohypophyseal systems. The suprachiastmatic, ventromedial and arcuate nuclei contain a number of SRIF-positive cells and receive a rich SRIF innervation. The extrahypothalamic systems containing SRIF can be subdivided into the following groups: (1) Afferents, the cellular origin of which is not always clearly evident, i.e., fibers of the septum, the lateral preoptic area, the thalamus, the superior olivary nucleus, the mesencephalic gray matter, and the subfornical organ; (2) dispersed cells with short projections (neocortex, caudate nucleus, putamen); (3) scattered cells with short projections (nucleus accumbens) or innervating remote territories (nucleaus interpeduncularis); (4) vascular organ of the lamina terminalis, a neurohemal area comparable to the median eminence. These observations lead to a theory of a functional bipotentiality of the somatostatin molecule. Immunocytological results depend on the antisera employed, the type of fixation and the experimental conditions. Adrenalectomy is followed by an accumulation of immunoreactive material in all SRIF-containing systems of the brain. These results clearly indicate the SRIF participates in the function of the CRF-ACTH-adrenal axis. The endocrine disturbance induced by adrenalectomy appears to modify the activity of both the neurohormonal and neuromodulator components of the SRIF system.  相似文献   

9.
Summary An extensive system of somatostatin-immunoreactive neurons has been localized in the forebrain and pituitary of the molly (Poecilia latipinna), using the unlabelled antibody immunocytochemical method.In the hypothalamus, reactive perikarya were scattered throughout the parvocellular divisions of the preoptic nucleus. These cells were smaller in size and more ventral in position than those which stained with antisera to the neurohypophysial hormones, vasotocin and isotocin. A few very small somatostatin-immunoreactive cells were observed in the tuberal region and in the nuclei of the lateral and posterior recesses — areas which were rich in somatostatin-immunoreactive fibres.Somatostatin cells were also found in a small area of the ventral thalamus, mainly in the dorsolateral nucleus. Some of these neurons were large and multipolar, and appeared to form tracts of fibres into the posterior hypothalamus. In the telencephalon there were a few stained cells in the ventral area, with a complex pattern of fibres occurring in parts of the dorsal area.Somatostatin-immunoreactivity was intense in the central and posterior neurohypophysis, and particularly in its finger-like projections into the proximal pars distalis, around groups of growth hormone cells. Examination of material from fishes under various experimental conditions provided evidence for the somatostatin fibres originating from the preoptic neurons being involved in the control of growth hormone secretion.  相似文献   

10.
Summary Somatostatin cells are numerous in the pancreas and digestive tract of mammals as well as birds. In the pancreas of chicken, cat and dog they occur in both the exocrine parenchyma and in the islets. In the rat and rabbit, somatostatin cells have a peripheral location in the islets, whereas in the cat, dog and man the cells are usually more randomly distributed. In the stomach of rabbits and pigs, somatostatin cells are more numerous in the oxyntic gland area than in the pyloric gland area, whereas the reverse is true for the cat, dog and man. In the cat, pig and man, somatostatin cells are fairly numerous in the duodenum, whereas in the rat, rabbit and dog they are few in this location. In the remainder of the intestines somatostatin cells are few but regularly observed. Somatostatin cells are numerous in the human fetal pancreas and gut. In the fetal rat, somatostatin cells first appear in the pancreas and duodenum (at about the 16–17th day of gestation) and subsequently in the remainder of the intestine. Somatostatin cells do not appear in the gastric mucosa until after birth. Three weeks after birth, somatostatin cells show the adult frequency of occurrence and pattern of distribution. In the chicken, somatostatin cells are numerous in the proventriculus, absent from the gizzard, abundant in the gizzard-duodenal junction (antrum), infrequent in the duodenum and virtually absent from the remainder of the intestines. No immunoreactive cells can be observed in the thyroid of any species nor in the ultimobranchial gland of the chicken. In the chick embryo, somatostatin cells are first detected in the pancreas and proventriculus (at about the 12th day of incubation). They appear in the remainder of the gut much later, in the duodenum at the 16th day, in the antrum at about the 19th day and still later in the lower small intestine. The ultrastructure of the somatostatin cells was studied in the chicken, rat, cat and man; the cells were identified by the consecutive semithin/ultrathin section technique. The somatostatin cells display the properties of the D cell. There was no difference in granule ultrastructure between somatostatin cells in the gut and the pancreas. The granules, which are the storage site of the peptide, are round, supplied with a tightly fitting membrane and have a moderately electron-dense, fine-granulated core. The mean diameter of the somatostatin granules is smallest in rat (155–170 nm) and largest in the chicken (270–290 nm).  相似文献   

11.
Summary The synthetic peptides somatostatin (SRIF) and growth hormone-releasing hormone (GRH) were coupled directly to colloidal gold of different particle sizes. Both conjugates were biologically active in displacing the corresponding radiolabeled hormones from high affinity binding sites in pituitary membranes. Release of growth hormone (GH) from cultured anterior pituitary cells was modulated by both conjugates alone or in combination. Ultrastructural studies were performed with cells incubated at 4° C (2 h) and 37° C (2 min-2 h) with one of the labeled peptides or their combination. Somatotropes were identified by immunostaining with anti-rGH followed by protein A-ferritin, thus obtaining a triple labeling. Both hormone conjugates were internalized in different vesicles in the beginning but accumulated during longer incubation times in the same compartment. The secretory vesicles and the nucleus were not labeled by any hormone conjugate. In contrast to SRIF-gold, the uptake of GRH-gold conjugate decreased with longer incubation times. This effect could be neutralized by simulatenous incubation of the somatotropes with both regulating hormones. Hence, whereas the binding and internalization of SRIF by somatotropes do not seem to be influenced by GRH, the corresponding processes for GRH are stimulated by the presence of SRIF.  相似文献   

12.
Summary Calcitonin cells are relatively numerous in the thyroid gland of the rat. In contrast, somatostatin cells are very scarce except at the time of birth and a few days thereafter, when they are conspicuously numerous. Somatostatin cells of the thyroid gland, which are ultrastructurally similar to somatostatin cells in gut and pancreas, also contain immunoreactive calcitonin. It is not clear whether somatostatin cells in the rat thyroid gland produce calcitonin or accumulate calcitonin from the environment.  相似文献   

13.
Summary Immunocytochemical investigations show that somatostatin (SRIF)-like immunoreactive material is present in the brain and the pituitary of nine different species of teleosts. In the brain, immunoreactive perikarya and fibers are observed in the preoptic periventricular nucleus, the entopeduncular nucleus, the anterior periventricular nucleus, and the nucleus lateralis tuberis. In the pituitary, SRIF-like-immunoreactive fibers occur in the proximal pars distalis (PPD), which contains the growth hormone (GH)-secreting cells. Nerve fibers are scattered among GH cells (cyprinids), or end on the basal lamina at the neuroglandular interface of the PPD (eel, salmonids). In the eel, the proximal neurohypophysis does not penetrate deeply into the PPD that is very poorly vascularized. In some species, e.g. Myoxocephalus, SRIF-like immunoreactive fibers are also observed in the caudal neurohypophysis, and even among MSH cells of the pars intermedia.In long-term starved carps and eels, the amount of SRIF-like material in the pituitary is clearly reduced. A possible role of SRIF in the concomitant stimulation of GH cells is discussed.  相似文献   

14.
Summary The hypothalamic hormones arginine-vasopressin (AVP), oxytocin (OXT), somatostatin (SOM), and luteinizing hormone-releasing hormone (LHRH) were localized in the rat neurohypophysis by the use of semithin serial sections and the unlabeled antibody enzyme method. Clusters of AVP fibres are present within the central region of the neural lobe, clusters of OXT fibres mainly in the peripheral part. The AVP fibres enter bilaterally into the neural lobe.The results call into question previous reports on the presence of AVP on receptors in the pars intermedia cells, since incubation with anti-AVP resulted in similar staining in the pars intermedia of the Wistar and homozygous Brattleboro rat, a mutant strain deficient in AVP. The same intermediate lobe cells are stained after incubation of serial sections with anti-AVP and anti--melanocyte-stimulating hormone (-MSH). This staining of anti-AVP could be removed by solid phase absorption to -MSH and is thus most probably due to cross reaction with -MSH. SOM fibres appear to be present in the peripheral parts of the proximal neurohypophysial stalk and mainly lateral in its more distal parts. In the neural lobe they rapidly decrease in number, although some fibres continue into the distal part of the neural lobe, running bilaterally and situated adjacent to the pars intermedia. The SOM staining within magnocellular elements, which has been reported in the literature, can most probably be explained by cross reaction of anti-SOM with neurophysins. LHRH fibres are very scarce in the neurohypophysial stalk and absent in the neural lobe.Supported by the Foundation for Medical Research FUNGOThe authors wish to thank Drs. J. De Mey (Beerse, Belgium), A. Arimura (New Orleans, U.S.A.), M.P. Dubois (Nouzilly, France), B.L. Baker (Ann Arbor, U.S.A.) and A.G.E. Pearse (London, U.K.) for their gifts of anti-somatostatin serum, Dr. B. Kerdelhué (Gif-sur-Yvette, France) for anti-LHRH serum, and Dr. F. Vandesande (Ghent, Belgium) for anti-neurophysin I and II serum and bovine neurophysin I and II. Dr. J.G. Streefkerk (Free University, Amsterdam) is acknowledged for critical comments and Mr. A.T. Potjer and Miss J. van der Velden for their skilled assistance  相似文献   

15.
Summary Correlative morphological and physiological analysis was carried out in order to clarify the role of somatostatin in the inhibition of the secretion of growth hormone (GH) from somatotrophs of the rat anterior pituitary gland in vivo. Transmission electron microscopy combined with immunogold labelling showed an increased number of exocytotic GH-containing secretory granules in somatotrophs fixed between 2 and 10 min after injection of GH-releasing factor (GRF). Injection of GRF also induced the appearance of immunopositive material in cisternae of the Golgi apparatus, many coated vesicles and multivesicular bodies. Microtubules were observed more frequently throughout the cytoplasm, particularly in and near the Golgi region. At 2 and 10 min after injection of somatostatin (SRIF), both the number of exocytotic figures in the somatotrophs previously stimulated by GRF and the amount of radioimmunoassayable GH in the plasma were clearly decreased. Undulation of the plasma membrane (PM) induced by GRF rapidly disappeared, and the number of granules just beneath the plasma membrane was significantly reduced. After injection of SRIF, parallel bundles of microfilaments were often observed in the space between the granules and the plasma membrane. SRIF did not cause a noticeable decrease in the amount of immunopositive material, coated vesicles and multivesicular bodies in the Golgi areas or any significant changes in the distribution of microtubules. SRIF therefore appears to inhibit hormone release mainly at the level of the plasma membrane, probably through changes in the distribution of microfilaments.  相似文献   

16.
Summary A light microscopic immunocytochemical study of the brain of frogs with hypothalamic lesions was performed in order to obtain evidence concerning the origin of somatostatin fibers in the median eminence and neural lobe of the hypophysis. The results indicate that the somatostatin fibers of the neural lobe originate from somatostatin perikarya located in the prechiasmatic part of the hypothalamus and possibly also in the telencephalon. The somatostatin neurons of the pars ventralis tuberis cinerei do not send axons to the neural lobe. The frog median eminence contains axon terminals of somatostatin neurons located in the pars ventralis of the tuber cinereum. Many other somatostatin fibers of the frog median eminence originate from somatostatin neurons located outside the tuber cinereum. Most of these neurons probably lie in the preoptic hypothalamic region.This investigation was supported by a grant from the Belgian Nationaal Fonds voor Geneeskundig Wetenschappelijk Onderzoek  相似文献   

17.
Summary Total antral gastrin and somatostatin cell populations as well as their relative distribution pattern throughout the antrum were studied in rats with advancing age from birth time to old age. Both endocrine cell populations were estimated, after staining by immunoperoxidase technique, with a quantitative method using serial parallel strips from entire stomachs. Gastrin cells were regularly found at less than 1 h of post-natal life, but were few in number (447±82 cells). Somatostatin cells, not seen at birth, were observed in all rats at seven post-natal days; then they increased in number less rapidly but more regularly than gastrin cells. During the normal adult period, corrected gastrin cell population corresponds to about 330,000–500,000 cells and corrected somatostatin cell populations to about 130,000–200,000 cells. For the whole antrum the ratio of gastrin cell to somatostatin cell populations decreases through the rat life from 6.5 at 7 days to 1.5 in old age with a stable value, 2.5, during adult period. Examination of the topographical distribution throughout the antrum of these two populations shows that, strip per strip, their numerical ratio varies. Homogeneous values for the latter occur in the middle part of antrum and, as a rule, in each group they reflect the mean value calculated for the whole of the antrum.  相似文献   

18.
Summary The presence and distribution of bombesin-like material were investigated in the brain of the cartilaginous fishScyliorhinus canicula using conventional immunocytochemical techniques. Perikarya containing bombesin-like immunoreactivity were identified in the hypothalamus, within the magnocellular component of the preoptic nucleus. Some immunopositive elements appeared to be of cerebrospinal fluid-contacting type. Beaded immunoreactive fibers were seen crossing the ventral telencephalon and the whole hypothalamus. An important tract of fibers was found in the infundibular floor and in the median eminence, in close contact with the vascular system of the pituitary portal plexus. A moderate number of positive fibers innervated the habenular complex and the dorsal wall of the posterior tuberculum. These findings indicate that a neuropeptide strictly related to amphibian bombesin is located in specific hypothalamic neurons ofS. canicula. The distribution of the immunoreactive fibers and terminals suggests that, in fish, this peptide, may be involved in neuroendocrine and neuromodulator functions.  相似文献   

19.
Intracellular trafficking of G protein-coupled receptors (GPCRs) regulates their surface availability and determines cellular response to agonists. Rab GTPases regulate membrane trafficking and identifying Rab networks controlling GPCR trafficking is essential for understanding GPCR signaling. We used real time imaging to show that somatostatin receptor 3 (SSTR3) traffics through Rab4-, Rab21-, and Rab11-containing endosomes, but largely bypasses Rab5 and Rab7 endosomes. We show that SSTR3 rapidly traffics through Rab4 endosomes but moves slower through Rab21 and Rab11 endosomes. SSTR3 passage through each endosomal compartment is regulated by the cognate Rab since expression of the inactive Rab4/S22N, Rab21/T33N, and Rab11/S25N inhibits SSTR3 trafficking. Thus, Rab4, Rab21, and Rab11 may represent therapeutic targets to modulate surface availability of SSTR3 for agonist binding. Our novel finding that Rab21 regulates SSTR3 trafficking suggests that Rab21 may play a role in trafficking of other GPCRs.  相似文献   

20.
D G Baskin  J W Ensinck 《Peptides》1984,5(3):615-621
Region-specific antisera to [Tyr14]-SS28(1-14) were used to identify cells containing immunoreactivity to the SS28(1-14) fragment of somatostatin 28 (SS28) in gastric and intestinal mucosal epithelium and in pancreatic islets by immunoperoxidase staining. Radioimmunoassay with iodinated [Tyr14]-SS28(1-14) identified one antiserum (F4) to SS28(1-14) that cross-reacted equally with SS28(1-12), SS28(1-14) and SS28. Two other antisera (F3 and F8) to SS28(1-14) did not cross-react with SS28(1-12) and showed insignificant cross-reactivity to SS28. Immunostaining results showed that F4 stained the same cells that reacted with antiserum AS-10, which is specific for the cyclic tetradecapeptide somatostatin, SS28(15-28). Antisera F3, F4, and F8 all reacted with islet D cells and with somatostatin cells in the antral mucosa. However, only antiserum F4 detected immunoreactivity in mucosal epithelial cells; F3 and F8 did not bind to these cells. After sections of intestine were exposed to trypsin, however, epithelial cells containing immunoreactivity to SS28(1-14) were detected in intestinal mucosa with antisera F3 and F8. These results were obtained for duodenum, jejunum, ileum, and colon, but most of the epithelial cells with immunoreactivity to SS28(1-14) were in the duodenum. Both radioimmunoassay and immunostaining results suggest that F3 and F8 bind to a region of SS28(1-14) that is unavailable to antibodies in the intact SS28 molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号