首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper bears on the main effects of lindane (gamma isomer of hexachlorocyclohexane) on endocrine and reproductive functions in mammals. This pesticide, once widely used to kill lice and a variety of pests that attack agricultural products, livestock and trees, has been progressively eliminated from many applications since the mid-1970s in Europe or USA, but is still used in the rest of the world. Lindane is absorbed through respiratory, digestive or cutaneous routes and accumulates in fat tissues. It damages human liver, kidney, neural and immune systems and induces birth defects, cancer and death. Chronic administration results in endocrine disruption in birds as well as in mammals. Treatment with 1-40 mg of lindane/kg b.w. disrupts testicular morphology, decreases spermatogenesis, inhibits testicular steroidogenesis, reduces plasma androgen concentrations and may adversely affect reproductive performances in males. In females, lindane disrupts the estrous cycle, reduces serum estrogen and progesterone levels, decreases sexual receptivity whereas in pregnant dams it decreases whelping rate and litter size. These effects were also observed in some rats exposed to residual environmental doses. In addition, there is concern that irreversible effects may be induced when animals are exposed to endocrine disrupting chemicals during critically susceptible phases of sexual differentiation or development. These effects would results from (i) alterations of gonade or gamete cell membranes (ii) cell metabolism changes including alterations of ionic exchanges (mainly calcium or potassium), direct or free radical-mediated inhibition of steroidogenesis (iii) or neuroendocrine changes leading to a decrease in sexual performance of either parents or their offsprings exposed in utero or through lactation.  相似文献   

2.
Summary Lindane immediately inhibits cell growth and morphogenesis. This inhibition is reversible without anomalies in the development. During treatment, the cellular metabolism is lower than normal and no intracellular morphogenesis seems to occur; the cells behave as if they were in a dormant stage.  相似文献   

3.
4.
The effects of lindane on Acetabularia mediterranea   总被引:1,自引:0,他引:1  
  相似文献   

5.
Partition coefficients of the insecticide γ-1,2,3,4,5,6-hexachlorocyclohexane (trivially, lindane) were determined in model and native membranes. Partition in egg phosphatidylcholine bilayers decreases linearly with temperature, over a range (10–40°C) at which the lipid is in the liquid-crystalline state. Addition of 50 mol% cholesterol dramatically decreases partition (2100 falls to 100, at 10°C) and abolishes the temperature dependence. First-order phase transitions of dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC) are accompanied by a sharp increase in lindane partition. Apparently, the insecticide is easily accommodated in bilayers of short-aliphatic-chain lipids, since the partitions were 2450, 600 and 50 in DMPC, DPPC and DSPC, respectively, at temperatures 10 Cdeg below the midpoint of their transitions. The lindane partition sequence in native membranes is as follows: mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes. This sequence correlates reasonably well with the relative content of cholesterol and is similar in liposomes of total extracted lipids, although the absolute partitions showed decreased values. Therefore, the presence of proteins in native membranes contributes to the insecticide partition, probably by favouring its interaction with lipids.  相似文献   

6.
Three lindane (-1,2,3,4,5,6-hexachlorocyclohexane) treated soils were studied under laboratory conditions to determine the interaction between lindane and the soil microorganisms. Microbial populations and respiration were monitored to study insecticide effects. Formation of lindane degradation products and chloride content were examined to determine effects of the microorganisms. Some populations in lindane treated soils showed temporary declines but all ultimately recovered to at least the level of the controls in 16 weeks. Respiration was stimulated over a 9-week period especially in the sandy and clay loams, suggesting the possibility of microbial degradation of the insecticide. Lindane degradation products separated and identified by TLC included -2,3,4,5,6-pentachloro-1-cyclohexene (-PCCH), -3,4,5,6-tetrachloro-1-cyclohexene (-TCCH), -3,4,5,6-tetrachloro-1-cyclohexene (-TCCH), and pentachlorobenzene (PCB). Chloride production increased in soils treated with higher levels of lindane.Contribution No. 609, Research Institute, Agriculture Canada, University Sub Post Office, London, Ontario N6A 5B7.  相似文献   

7.
Partition of lindane in synthetic and native membranes   总被引:2,自引:0,他引:2  
Partition coefficients of the insecticide gamma-1,2,3,4,5,6-hexachlorocyclohexane (trivially, lindane) were determined in model and native membranes. Partition in egg phosphatidylcholine bilayers decreases linearly with temperature, over a range (10-40 degrees C) at which the lipid is in the liquid-crystalline state. Addition of 50 mol% cholesterol dramatically decreases partition (2100 falls to 100, at 10 degrees C) and abolishes the temperature dependence. First-order phase transitions of dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC) are accompanied by a sharp increase in lindane partition. Apparently, the insecticide is easily accommodated in bilayers of short-aliphatic-chain lipids, since the partitions were 2450, 600 and 50 in DMPC, DPPC and DSPC, respectively, at temperatures 10 Cdeg below the midpoint of their transitions. The lindane partition sequence in native membranes is as follows: mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes. This sequence correlates reasonably well with the relative content of cholesterol and is similar in liposomes of total extracted lipids, although the absolute partitions showed decreased values. Therefore, the presence of proteins in native membranes contributes to the insecticide partition, probably by favouring its interaction with lipids.  相似文献   

8.
Treatment of rats with daily dosis of 20 mg of lindane/kg for 3 consecutive days led to the accumulation of the insecticide in several tissues, including erythrocytes and liver. Lindane did not alter the hematocrit and hemoglobin concentration but reduced methemogiobin levels by 17%. Red blood cells from controls and lindane-treated rats, exposed to t-butyl hydroperoxide, exhibited comparable rates of oxygen uptake and visible chemiluminescence, whereas the induction period that precedes oxygen uptake was significantly enhanced in the latter group. Lindane treatment did not modify the activity of erythrocyte glutathione peroxidase, glucose-6-phosphate dehydrogenase, catalase, and methemoglobin reductase, being the total content of glutathione and superoxide dismutase activity significantly increased. The liver from lindane-treated rats showed an enhanced microsomal pro-oxidant activity, evidenced by higher cytochrome P450 content and NADPH-cytochrome c reductase and NADPH oxidase activities. The higher enzyme activities led to an increased superoxide anion generation (adrenochrome formation) and lipid peroxidation (measured either by the production of thiobarbituric acid reactants and spontaneous visible chemiluminescence). Concomitantly, liver glutathione content and the activity of glutathione peroxidase-glutathione reductase couple were augmented by lindane treatment, without any change in superoxide dismutase activity, together with a reduction in that of catalase. Results suggest that lindane does not alter the prooxidant/antioxidant status of the erythrocyte in conditions of a significant cellular accumulation of the insecticide, which might exert direct action on enzymatic systems leading to enhanced superoxide dismutase activity and glutathione content. In the liver, lindane-induced pro-oxidant condition was not accompanied by cell injury, probably due to the adaptative increase in some antioxidant mechanisms of the hepatocyte.  相似文献   

9.
During chronic peroral (PO) treatment of weanling, female Fischer 344 rats with daily injections (0.069 mmol/kg) of either 1,1′-(2,2,2-trichloroethylidene) bis [4-chlorobenzene] (p,p′-DDT), 2,4-dichlorophenoxy acetic acid (2,4-D), or γ-hexachlorocyclohexane (lindane), the lindane treatment induced a significant 20% increase in body weight after 110 days. Further investigation with 0,5,10,20, and 40 mg/kg lindane confirmed a significant increase in average body weight gain at the two highest doses after ten weeks of treatment. Significantly greater food consumption was observed, and the Lee index indicated that lindane treatment induced obesity. In addition to obesity, lindane caused a delay in vaginal opening, disrupted estrous cycling, reduced pituitary and uterine weight, and elevated food consumption during proestrus (when appetite is normally suppressed by estradiol). These responses suggest that, by inducing alterations in the reproductive function of the female rat and by interfering with hormonal regulation of energy balance, lindane may be antiestrogenic rather than estrogenic as previously proposed.  相似文献   

10.
The goal of the present review is to collect information concerning membrane effects induced by lindane intoxication, a y isomer of hexachiorocyclohexane (gamma-HCH) that has been largely used as an insecticide and disinfectant in agriculture and entered also in the composition of some lotions, creams and shampoos used against parasites (lice and scabies). Absorbed through respiratory, digestive or transcutaneous pathways, lindane accumulates within lipid rich tissues. Lindane accumulation depends on the duration of the exposure and affects tissues in the following order: adipose tissues > brain > kidney > muscle > lungs > heart > liver > blood. Whatever the mode of lindane absorption, it accumulates in blood and is distributed throughout the body. It may affect human health by exerting systemic, immunologic, teratogenic, and/or cancerogenic effects. The symptoms of lindane intoxication are different according to the mode of intoxication, acute or chronic. The absorption of high doses of gamma-HCH is particularly toxic for the central nervous system and for the female and male reproduction apparatus in mammals where lindane is considered as an endocrine disruptor. Lindane is highly lipophilic and incorporates into biological membranes according to the following sequence: mitochondria > sarcoplasmic reticulum > myelin > brain microsomes > erythrocytes. Lindane exerts a stimulating action on synaptic transmission and inhibits the chloride current activated by gamma-amino butyric acid (GABA) of many muscular and nervous preparations by interacting with the receptors GABA-chloride channel complex. It seems to affect calcium homeostasis of many tissues. The similarity between lindane and inositol (1, 4, 5) phosphate (IP3) suggested that lindane releases Ca2+ from IP3-sensitive intracellular stores in macrophages and myometrial cells. Ca2+ release from reticulum endoplasmic, mitochondria and other Ca2+ stores has been reported in cat kidney cells. Lindane altered energetic metabolism of hepatic mitochondria and the inositol-phosphate synthesis in neuronal cells. However, lindane does not compete with the IP3 receptor. Lindane produces a Ca2+ influx in mice peritoneal macrophage cells responsible for the Ca2+ induced Ca2+ release produced by phospholipase C via IP3 pathway and resulting in a maintained increase of the free cytosolic Ca2+ concentration. Lindane decreased the membrane erythrocyte and cerebral cell concentration of phosphatidyl inositol PI, PIP and PIP2 in rats repetitively exposed to lindane for 3 or 6 months. Lindane induces oxidative stress; it modifies the activity of the scavenger enzymes. This effect is involved in the inhibition of intercellular gap junctions. Modifications of the electrocardiogram (ECG), sinusal rhythm alteration and negative and dysphasic variations of T wave, similar to those produced by hyperkaliemia, have been reported after lindane absorption. During acute lindane poisoning, the activities of serum transaminases (SGOT, SGTP), and lactate deshydrogenase (LDH) increase. Lindane produces histological alterations of cardiac tissues and a cardio-vascular dystrophy (contracture, degenerescence and necrosis) mainly in the left ventricular wall and a hypertrophy of the left ventricle. Chronic application of residual doses of lindane shortened the action potential duration in rat papillary muscle. These effects were similar to those induced by hyperthyroidism. Lindane increases the triiodothyronine (T3) serum level in hyperthyroid rats. T3 plays an important role in the postnatal development of the rat ventricle by increasing the density of potassium channels which contribute to action potential shortening during the development. Thyroid hormones influence the regulation and the expression of messengers ARN which encode different potassium channels involved in action potential repolarization (Kvl.2; Kvl.4; Kvl.5; Kv2.1; Kv4; HCN2). The thyrotropine-releasing hormone (TRH) modulates the HERG-type rapid delayed potassium channel (IKr) encoded by the human gene ether-a-go-go in rat anterior pituitary cells GH3/B6. This channel is involved in the cardiac long QT syndrome. TRH modifies the current kinetics of human HERG potassium channel co-expressed in Xenopus oocytes with the TRH receptor, whose activity is modulated via the protein kinase C pathway linked to a G protein-coupled receptor and is regulated by changes in the PIP2 concentration in the membrane. IKr channels regulation is also dependent on sexual hormones. In conclusion, lindane affects the excitable membranes and the cardio circulatory system. These alterations (may) represent a potential risk for human health.  相似文献   

11.
Of 147 microorganisms isolated from a loamy sand, 71 showed good growth with lindane (-1,2,3,4,5,6-hexachlorocyclohexane) and produced chloride in an aqueous medium. Thirteen soil microorganisms were selected to study the utilization of lindane. Lindane was metabolized by the microbes to -2,3,4,5,6-pentachloro-1-cyclohexene (-PCCH), -3,4,5,6-tetrachloro-1-cyclohexene (-TCCH), -3,4,5,6-tetrachloro-1-cyclohexene (-TCCH), -3,4,5,6-tetrachloro-1-cyclohexene (-TCCH), and pentachlorobenzene (PCB). Cells of Pseudomonas sp. No. 62 grown on lindane simultaneously adapted to -PCCH, -TCCH, -TCCH, -TCCH, PCB, 1,2,3,4-tetrachlorobenzene (1,2,3,4-TCB) and 1,2,4,5-tetrachlorobenzene (1,2,4,5-TCB). The bacteria degraded each of these chemicals at least partially as indicated by an increased rate of oxygen consumption.Abbreviations Lindane -1,2,3,4,5,6-hexachlorocyclohexane - -PCCH -2,3,4,5,6-pentachloro-1-cyclohexene - -TCCH -3,4,5,6-tetrachloro-1-cyclohexene - -TCCH -3,4,5,6-tetrachloro-1-cyclohexene - -TCCH -3,4,5,6-tetrachloro-1-cyclohexene - PCB pentachlorobenzene - 1,2,3,4-TCB 1,2,3,4-tetrachlorobenzene - 1,2,3,5-TCB 1,2,3,5-tetrachlorobenzene - 1,2,4,5-TCB 1,2,4,5-tetrachlorobenzene - 1,2,3-tCB 1,2,3-trichlorobenzene - 1,2,4-tCB 1,2,4-trichlorobenzene - 1,3,5-tCB 1,3,5-trichlorobenzene - 1,2-DCB 1,2-dichlorobenzene - 1,3-DCB 1,3-dichlorobenzene - 1,4-DCB 1,4-dichlorobenzene - MCB monochlorobenzene Contribution No. 631, Research Institute, Agriculture Canada, University Sub Post Office, London, Ontario N6A 5B7  相似文献   

12.
13.
Z. M. Munk  A. Nantel 《CMAJ》1977,117(9):1050
A 35-year-old man ingested food contaminated with lindane, an insecticide containing almost pure gamma hexachlorocyclohexane. Grand mal seizures and severe acidemia developed rapidly. The seizures recurred for nearly 2 hours, then ceased. In addition, the patient had muscle weakness and pain, headaches, episodic hypertension, myoglobinuria, acute renal failure and anemia. Pancreatitis developed 13 days after the ingestion of lindane. A muscle biopsy on the 15th day of illness demonstrated widespread necrosis and regeneration of muscle fibres. The patient''s condition improved and he was discharged 24 days after the onset of his illness. During the year following the poisoning the patient noted difficulty with recent memory, loss of libido and easy fatigability. One year after lindane ingestion the results of physical examination, including those for muscle power and bulk, were normal.  相似文献   

14.
We used a two‐step enrichment approach to isolate root‐colonizing hexachlorocyclohexane (HCH)‐degrading microorganisms. The first step consists of the use of classical liquid enrichment to isolate γ‐HCH degraders. The γ‐HCH‐degrading microbes were attached in mass to corn seeds sown in soil with γ‐HCH, and after plant development we rescued bacteria growing on root tips. Bacteria were then subjected to a second enrichment round in which growth on liquid medium with γ‐HCH and inoculation of corn seeds were repeated. We then isolated bacteria on M9 minimal medium with γ‐HCH from root tips. We were able to isolate four Sphingomonas strains, all of which degraded α‐, β‐, γ‐ and δ‐HCH. Two of the strains were particularly good colonizers of corn roots, reaching high cell density in vegetated soil and partly removing γ‐HCH. In contrast, these bacteria performed poorly in unplanted soils. This study supports the hypothesis that the removal of persistent toxic chemicals can be accelerated by combinations of plants and bacteria, a process generally known as rhizoremediation.  相似文献   

15.
Membrane fluidity as affected by the insecticide lindane   总被引:3,自引:0,他引:3  
Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to study the interaction of lindane with model and native membranes. Lindane disorders the gel phase of liposomes reconstituted with dimyristoyl-, dipalmitoyl- and distearoylphosphatidylcholines (DMPC, DPPC and DSPC), since it broadens and shifts the main phase transition, but no apparent effect is detected in the fluid phase. These effects of lindane are more pronounced in bilayers of short-chain lipids, e.g., DMPC. In equimolar mixtures containing DMPC and DSPC, lindane preferentially interacts with the more fluid lipid species inducing lateral phase separations. However, in mixtures of DMPC and DPPC, the insecticide only broadens and shifts the main phase transition, i.e., an effect similar to that observed in bilayers of pure lipids. Lindane has no apparent effect in DMPC bilayers enriched with high cholesterol content (greater than or equal to 30 mol%), whereas disordering effects can still be detected in bilayers with low cholesterol (less than 30 mol%). Apparently, lindane does not perturb the fluid phase of representative native membranes, namely, mitochondria, sarcoplasmic reticulum, myelin, brain microsomes and erythrocytes in agreement with the results obtained in fluid phospholipid bilayers, despite the reasonable incorporation of the insecticide in these membranes, as previously reported (Antunes-Madeira, M.C. and Madeira, V.M.C. (1985) Biochim. Biophys. Acta 820, 165-172).  相似文献   

16.
Three lindane (gamma-1,2,3,4,5,6-hexachlorocyclohexane) treated soils were studied under laboratory conditions to determine the interaction between lindane and the soil microorganisms. Microbial populations and respiration were monitored to study insecticide effects. Formation of lindane degradation products and chloride content were examined to determine effects of the microorganisms. Some populations in lindane treated soils showed temporary declines but all ultimately recovered to at least the level of the controls in 16 weeks. Respiration was stimulated over a 9-week period especially in the sandy and clay loams, suggesting the possibility of microbial degradation of the insecticide. Lindane degradation products separated and identified by TLC included gamma-2,3,4,5,6-pentachloro-1-cyclohexene (gamma-PCCH), gamma-3,4,5,6,-tetrachloro-1-cyclohexene (gamma-TCCH), gamma-3,4,5,6-tetrachloro-1-cyclohexene (gamma-TCCH), and pentachlorobenzene (PCB). Chloride production increased in soils treated with higher levels of lindane.  相似文献   

17.
Cell-free preparation of Clostridium sphenoides degraded the insecticide lindane, the gamma-isomer of 1,2,3,4,5,6-hexachlorocyclohexane, to the gamma-isomer of 3,4,5,6-tetrachloro-1-cyclohexene. The activity appeared to be associated with the membrane fraction and required reduced glutathione. The tetrachlorocy-clohexene intermediate was further metabolized by the membrane fraction to unknown substances.  相似文献   

18.
Dehalogenation of lindane by a variety of porphyrins and corrins   总被引:2,自引:0,他引:2  
The dehalogenation of lindane by a range of hemoproteins, porphyrins, and corrins has been tested under reducing conditions in the presence of dithiothreitol. In addition, a series of porphyrin-metal ion complexes have been prepared and have also been screened for the capacity to dehalogenate lindane. Hemoglobin, hemin, hematin, and chlorophyll alpha all catalyzed the dehalogenation of lindane, as did all of the corrins tested. The porphyrins which did not contain metal centers--coproporphyrin, hematoporphyrin, protoporphyrin, and uroporphyrin--were inactive. However, when these porphyrins were then complexed with Co, Fe, Mg, Mo, Ni, or V, lindane dehalogenation was observed. In all cases, the reaction proceeded by an initial dechlorination to produce tetrachlorocyclohexene, which was further dehalogenated to yield chlorobenzene as the end product.  相似文献   

19.
Cell-free preparation of Clostridium sphenoides degraded the insecticide lindane, the gamma-isomer of 1,2,3,4,5,6-hexachlorocyclohexane, to the gamma-isomer of 3,4,5,6-tetrachloro-1-cyclohexene. The activity appeared to be associated with the membrane fraction and required reduced glutathione. The tetrachlorocy-clohexene intermediate was further metabolized by the membrane fraction to unknown substances.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号