首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the patterns of host cell and virus deoxyribonucleic acid (DNA) synthesis in synchronized cultures of KB cells infected at different stages of the cell cycle with herpes simplex virus (HSV). We found that the initiation of HSV DNA synthesis, we well as the production of new infectious virus, is independent of the S, G1, and G2 phases of the mitotic cycle of the host cell. This is in contrast to data previously found with equine abortion virus. Because HSV replicates independently of the cell cycle, we were able to establish conditions that would permit the study of rates of HSV DNA synthesized in logarithmically growing cells in the virtual absence of cellular DNA synthesis. This eliminates the need for separation of viral and cellular DNA by isopycnic centrifugation in CsCl. We found that HSV DNA synthesis was initiated between 2 to 3 hr after infection. The rate of DNA synthesis increased rapidly, reaching a maximum 4 hr after infection, and decreased to 50% of maximum by 8 hr. Evidence is also presented which suggests that HSV infection can inhibit both the ongoing synthesis of host DNA as well as the initiation of the S phase.  相似文献   

2.
Autoradiographic analyses of deoxyribonucleic acid (DNA) synthesis in randomly growing KB cell cultures infected with equine abortion virus (EAV) suggested that viral DNA synthesis was initiated only at times that coincided with the entry of noninfected control cells into the S phase of the cell cycle. Synchronized cultures of KB cells were infected at different stages of the cell cycle, and rates of synthesis of cellular and viral DNA were measured. When cells were infected at different times within the S phase, viral DNA synthesis was initiated 2 to 3 hr after infection. However, when cells in G1 and G2 were infected, the initiation of viral DNA synthesis was delayed and occurred only at times corresponding to the S phase. The times when viral DNA synthesis began were independent of the time of infection and differed by as much as 5 hr, depending on the stage of the cell cycle at which cells were infected. Viral one-step growth curves were also related to the S phase in a manner which indicated a relationship between the initiation of viral DNA synthesis and the S phase. These data support the concept that initiation of EAV DNA synthesis is dependent upon some cellular function(s) which is related to the S phase of the cell cycle.  相似文献   

3.
The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle.  相似文献   

4.
Both exponentially growing and serum-arrested subcloned CV-1 cell cultures were infected with simian virus 40 (SV40). By 24 h after infection 96% of the nuclei of these permissive cells contained SV40 T-antigen. Analysis of the average DNA content per cell at various times after infection indicated that by 24 h most of the cells contained amounts of DNA similar to those normally found in G(2) cells. Analysis of cell cycle distributions indicated that a G(2) DNA complement was maintained by over 90% of the cells in the infected populations 24 to 48 h postinfection. Cells continued to synthesize SV40 DNA during the first 50 h after infection, and cytopathic effect was first observed 60 h after inoculation. After infection the number of mitotic cells that could be recovered by selective detachment decreased precipitously and was drastically reduced by 24 h. A study of the kinetics of decline in the number of mitotic cells suggests that this decline is related to an event during the cell cycle at or near the G(1)-S-phase border upon which commencement of SV40 DNA replication apparently depends. It was concluded that after SV40 infection, stationary cells are induced to cycle, and cycling cells complete one round of cellular DNA synthesis but do not divide. Although the infected cells continue to synthesize viral DNA, they do not appear able to reinitiate cellular DNA replication units. These results imply that the abundance of T-antigen (produced independently of cell cycle phase) in the presence of the enzymes required for continued DNA synthesis is not sufficient for reinitiation of cellular DNA synthesis.  相似文献   

5.
6.
The relationship between replication of simian virus 40 (SV40) DNA and the various periods of the host-cell cycle was investigated in synchronized CV(1) cells. Cells synchronized through a double excess thymidine procedure were infected with SV40 at the beginning or the middle of S, or in G(2). The first viral progeny DNA molecules were in all instances detected approximately 20 h after release from the thymidine block, independent of the time of infection. The length of the early, prereplicative phase of the virus growth cycle therefore depended upon the period of the cell cycle at which the cells were infected. Infection with SV40 was also performed on cells obtained in early G(1) through selective detachment of cells in metaphase. As long as the cells were in G(1) at the time of infection, the first viral progeny DNA molecules were detected during the S period immediately following, whereas if infection took place once the cells had entered S, no progeny DNA molecule could be detected until the S period of the next cell cycle. These results suggest that the infected cell has to pass through a critical stage situated in late G(1) or early S before SV40 DNA replication can eventually be initiated.  相似文献   

7.
Vero cells, a line of African green monkey kidney cells, failed to produce interferon when infected with Newcastle disease, Sendai, Sindbis, and rubella viruses, although the cells were sensitive to interferon. Further, infection of Vero cells with rubella virus did not result in interference with the replication of echovirus 11, Newcastle disease virus, or vesicular stomatitis virus, even in cultures where virtually every cell was infected with rubella virus. Under the same conditions, BSC-1 cells and other cells of primate origin produced interferon and showed rubella virus interference. The results indicate that the presence of rubella virus in the cell does not in itself exclude multiplication of other viruses and that rubella virus interference appears to be linked to the capability of the cell to produce interferon.  相似文献   

8.
Oxygen uptake rates (OUR) of Sf9 insect cells propagated in a serum-free medium (SF900II, Gibco) and of cells infected with a recombinant AcNPV were investigated before and after infection in a laboratory-scale bioreactor. The volumetric OURs of uninfected and exponentially growing cells were found to be proportional to the cell density. For infected cultures, the specific OUR of cells increased immediately after addition of virus and a maximum of 1.3 times the value of uninfected cells was noted for all the cultures between 8 to 30 hours post infection, which coincides with the period at which most viral replication and the majority of DNA synthesis takes place. It was observed that the rate of rise in the specific OUR decreased as the cell density at the time of infection increased, which meant that the later the infection, the later the maximum sOUR was observed. We therefore suggest that OUR measurement can be used to reflect the efficiency of a batch infection. Carbohydrate and amino acid consumption rates from an infected run were analysed in an effort to identify substrate(s) that may be used at increased rates to fuel the rise in oxygen demand observed early in the infection cycle. No observable rise in the consumption rates of glucose or glutamine, which are the major energy sources for animal cells, were seen after infection but an increase in the consumption rates of some amino acids suggests that infected Sf9 cells may utilise amino acids at an enhanced rate for energy post infection.  相似文献   

9.
The antiviral activity of interferon, measured as the reduction of viral yield, was studied as a function of the cell cycle phases. The present study shows that cells which are about to enter DNA replication phase S and cells that are in mitosis phase M are not refractive to viral infection when treated with interferon. The growth of Sindbis virus, used as the challenger, dropped considerably at the G1-S junction, at mitosis phase M, and as cells entered into a deeper quiescent state.  相似文献   

10.
Dubbs, D. R. (University of Minnesota, Minneapolis), and W. F. Scherer. Inapparent viral infection of cells in vitro. III. Manifestations of infection of L mouse cells by Japanese encephalitis virus. J. Bacteriol. 91:2349-2355. 1966.-Nine strains of Japanese encephalitis (JE) virus were propagated serially in cultures of L cells reaching titers of 10(3.5) to 10(6.3). Although cytopathic effects were not seen in cultures of contiguous L cells after infection with JE virus, cell growth was inhibited. Moreover, cell destruction was readily apparent in infected cultures of sparse, noncontiguous L cells. Differences in the size of cell population of infected and noninfected cultures (i) occurred despite only 0.2 to 3.5% of the cells in infected cultures being associated with infectious virus, (ii) were greater in actively growing cultures than in those kept in maintenance media, and (iii) were probably in part related to an interferon produced in infected cultures.  相似文献   

11.
Aleutian disease virus (ADV) infection was analyzed in vivo and in vitro to compare virus replication in cell culture and in mink. Initial experiments compared cultures of Crandell feline kidney (CRFK) cells infected with the avirulent ADV-G strain or the highly virulent Utah I ADV. The number of ADV-infected cells was estimated by calculating the percentage of cells displaying ADV antigen by immunofluorescence (IFA), and several parameters of infection were determined. Infected cells contained large quantities of viral DNA (more than 10(5) genomes per infected cell) as estimated by dot-blot DNA-DNA hybridization, and much of the viral DNA, when analyzed by Southern blot hybridization, was found to be of a 4.8-kilobase-pair duplex monomeric replicative form (DM DNA). Furthermore, the cultures contained 7 to 67 fluorescence-forming units (FFU) per infected cell, and the ADV genome per FFU ratio ranged between 2 X 10(3) and 164 X 10(3). Finally, the pattern of viral antigen detected by IFA was characteristically nuclear, although cytoplasmic fluorescence was often found in the same cells. Because no difference was noted between the two virus strains when cultures containing similar numbers of infected cells were compared, it seemed that both viruses behaved similarly in infected cell culture. These data were used as a basis for the analysis of infection of mink by virulent Utah I ADV. Ten days after infection, the highest levels of viral DNA were detected in spleen (373 genomes per cell), mesenteric lymph node (MLN; 750 genomes per cell), and liver (373 genomes per cell). In marked contrast to infected CRFK cells, the predominant species of ADV DNA in all tissues was single-stranded virion DNA; however, 4.8-kilobase-pair DM DNA was found in MLN and spleen. This observation suggested that MLN and spleen were sites of virus replication, but that the DNA found in liver reflected sequestration of virus produced elsewhere. A final set of experiments examined MLN taken from nine mink 10 days after Utah I ADV infection. All of the nodes contained ADV DNA (46 to 750 genomes per cell), and although single-stranded virion DNA was always the most abundant species, DM DNA was observed. All of the lymph nodes contained virus infectious for CRFK cells, but when the genome per FFU ratio was calculated, virus from the lymph nodes required almost 1,000 times more genomes to produce an FFU than did virus prepared from infected cell cultures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Infection of primary or secondary cultures of Chinese hamster embryo cells with simian virus 40 at a multiplicity of 20 to 50 induced synthesis of the virus-specific intranuclear T antigen in 80 to 90% of the cells within 48 to 72 hr. In the infected cultures, 30 to 50% more cells were recruited into deoxyribonucleic acid (DNA) synthesis than in the controls, whether or not the cultures were confluent. The newly synthesized DNA was mostly cellular, since little virus was produced (as shown by various techniques: immunofluorescence for viral antigen, virus growth curves, and isolation of viral DNA from infected cultures). Transformed cells could be detected a few weeks after infection and produced tumors when inoculated into irradiated animals. Chromosomal changes were observed soon after infection (24 hr). Initially, there was a marked increase in the proportion of polyploid cells (8 to 14%), most of which were chromosomally normal. In a few weeks, a large majority of the infected population was polyploid (30 to 50%). Thus, the polyploid cells have the ability to proliferate. Evidence is presented to suggest that polyploid cells arise by stimulation of cells in the G(1), G(2), or S phases to undergo two or more successive periods of DNA synthesis without an intervening mitosis. With a subsequent loss or redistribution of chromosomal material, this may lead eventually to a biologically transformed cell; thus, it is suggested that the initial event(s) relevant to transformation occurs at the level of control of cellular DNA synthesis.  相似文献   

13.
M Jacquet  D Caput  E Falcoff  R Falcoff  F Gros 《Biochimie》1977,59(2):189-195
Complementary DNA (cDNA) from Mengo virus RNA has been synthesized and used as a probe to measure the synthesis and accumulation of viral RNA in Mengo infected L cell cultures, treated or untreated with interferon. Under experimental conditions used (200 units interferon/ml and 50 virus plaque-forming units/cell) results show that there is some synthesis of Mengo virus RNA in cells treated with interferon. One hour after infection, treated cells contain three times less viral RNA than untreated cells; five hours after infection, this difference has increased to ten fold. As in the control, no fragmented Mengo virus RNA molecules were found in interferon treated cells. The smaller recovery of infectious particles from interferon treated cells as compared to RNA accumulation suggests that not only RNA accumulation is inhibited but also a step posterior in viral maturation.  相似文献   

14.
DNA synthesis in Epstein-Barr virus (EBV)-infected lymphocytes was inhibited by phosphonoacetic acid (PAA) as measured by [3H]thymidine incorporation. PAA, at a concentration of 200 microgram/ml, inhibited [3H]thymidine incorporation by human umbilical cord lymphocytes infected with EBV strain P94 but had little effect on DNA synthesis in mitogen-stimulated cells. Transformed cell lines did not develop from infected cord cell cultures treated with 100 microgram of PAA per ml. Cytofluorometric analysis showed marked increases in cellular nucleic acid content (RNA plus DNA) as early as 9 days after infection of cord cells in the absence of PAA and before significant enhancement of [3H]thymidine incorporation became apparent. Moreover, EBV led to increases in cellular nucleic acid even when 200 microgram of PAA per ml was added to cell cultures before infection. The apparent discrepancy between results obtained by [3H]thymidine incorporation and cytofluorometry is explained either by significant inhibition of cellular DNA polymerases by PAA or by a block at the G2 + M phase of the cell cycle. The data suggest that EBV initiates alterations in cellular nucleic acid synthesis or cell division without prior replication of viral DNA by virus-induced DNA polymerases.  相似文献   

15.
Synchronous cultures of HeLa cells obtained by selective detachment of mitoses were treated with high concentrations of thymidine. The inhibitor was added soon after completion of cell division and rates of cell enlargement and accumulation of DNA, RNA and protein were compared for untreated and thymidine-treated cultures at various points of the cell cycle. It was found that concentrations of thymidine which in randomly growing cultures inhibit the rate of cell division by more than 90% allowed a considerable degree of DNA synthesis and did not affect the rate of accumulation of RNA and protein, when applied to cells in the G1 phase of synchronous culture. Treated and untreated cells enlarged at the same rate throughout their life cycle. The results show that concentrations of thymidine commonly employed to produce cell synchrony do not arrest the cells at the G1-S boundary, but allow slow progress through S in respect to DNA synthesis, and near-normal progress towards G2 as regards RNA and protein accumulation and cell enlargement.  相似文献   

16.
Quantitative two-color fluorescent analysis of Simian virus (SV40) infection of permissive CV-1 cells was investigated. Analysis included by quantitation of cellular DNA, the early viral tumor (T) antigen with a monoclonal antibody, and late viral (V) antigens with a polyclonal antibody. T antigen was detected in all phases of the cell cycle at 6 and 12 h, after SV40 infection of growth arrested cells. At later time intervals, the percentage of T-antigen-positive cells increased with the induction of the cells into successive rounds of DNA synthesis and an increase in tetraploid-polyploid cells. The amount of T antigen per cell increased as the cells entered the successive stages of the cell cycle (G0/G1----G2 + M----tetraploid S and G2 + M). The V antigen from adsorbed virus was detected immediately after infection. Synthesis of V antigen began in late S and G2 + M phases of the cell cycle. This quantitative analysis allows a definitive determination of antigen per cell in a population correlated with the cell cycle and may be useful in correlating viral and cellular events with transformation.  相似文献   

17.
Synchronized cultures of the TN-368 insect cell line were infected with a nuclear polyhedrosis virus from the alfalfa looper, Autographa californica, during different phases of the cell cycle. Cultures exposed to virus during the middle and late S phase have higher percentages of infected cells than cultures inoculated with virus in the G2 phase. The amount of virus produced from each infected cell (polyhedra and plaque forming units) is not significantly different between cultures infected at all phases of the cell cycle.  相似文献   

18.
The effect of simian virus 40 large T-antigen (Tag) expression on the cell cycle of exponentially growing, established, mouse NIH 3T3 fibroblasts was examined by using a sensitive flow cytometric assay to analyze nonselected cells immediately after infection with a Tag-encoding recombinant retrovirus. Tag expression resulted in reduced percentages of G1-phase cells and increased percentages of S- and G2 + M-phase cells compared with cell populations infected with a control virus not encoding the Tag gene. Cell cycle-blocking drugs were used to examine the exit rate for each of the cell cycle phases, G1, S, and G2 + M, for Tag-expressing and Tag-nonexpressing cells growing in the same cell culture dish. As a result of Tag expression, the duration of the G1 phase was decreased (average G1-phase exit duration decreased by 18%) and the duration of the G2 + M phase was increased (average G2 + M exit duration increased by 29%). The duration of S phase was unaffected by Tag expression.  相似文献   

19.
Rabbit kidney cell cultures stimulated with either double-stranded polyinosinate-polycytidylate (poly I:poly C) or with ultraviolet-irradiated Newcastle disease virus (UV-NDV) produce two types of interferon response, designated "early" and "late," respectively. The early response is suppressed by inhibitors of RNA or protein synthesis and is therefore thought to represent de novo synthesis of interferon. Circumstantial evidence suggested that this interferon response is regulated by a translation control mechanism. Late interferon production with poly I:poly C only took place in the presence of inhibitors of RNA or protein synthesis. The late interferon is therefore likely to be derived by the activation of an interferon precursor. The stimulation of late poly I:poly C-induced interferon production by cycloheximide suggested the existence of a second, posttranslational level of control of interferon production. This posttranslation control seems to be activated by interferon. UV-NDV can probably suppress the synthesis of the posttranslation inhibitory protein, and therefore it stimulates a late interferon response in the absence of inhibitors of RNA or protein synthesis. It is postulated that both the translation and posttranslation inhibitor participate in the development of a cellular refractory state to repeated interferon stimulation. The picture of interferon which emerges from this study is one of a heterogenous class of proteins whose production is controlled by cellular repressors acting at various levels.  相似文献   

20.
The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号