首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigeon genome long sequences containing clusters of moderately repeating elements have been cloned. Molecular analysis has shown a dispersed distribution of the repeats in both pigeon and chicken genomes. Within a single cluster, a scrambled distribution of elements belonging to different families of repeats has been shown. Similar repeated sequences have been revealed within clusters. The analysed clusters of repeats are characterized by a limited structural variability in the genomes. In situ hybridization revealed the localization of sequences complementary to the cloned clusters in pigeon and chicken macrochromosomes. Preferential localization has been demonstrated in telomeric and centromeric chromosome regions as well as in the region of R-bands.  相似文献   

2.
3.
4.
5.
6.
7.
Repeat sequences are transcribed in the germinal vesicles of amphibian oocytes. In the hnRNA population both complements of the repeats are found and can be readily detected because they form intermolecular duplex structures. The structure and formation of duplex regions have been studied in the hnRNA of Xenopus laevis, Triturus cristatus, Amphiuma means and Necturus maculosus, a series of amphibians of increasing genome size (C-value). In T. cristatus, the duplex structures are mostly 600-1200 bp in length, whereas in X. laevis they are shorter and in N. maculosus they tend to be longer. Although the proportion of RNA sequence capable of rapidly forming duplex structures is different in different organisms, this property bears no relationship to C-value. However the sequence complexity of complementary repeats, as estimated from the rate of duplex formation, does show an increasing trend with C-value. The complementary repeats found in oocyte hnRNA are transcribed from families of DNA sequence that are each represented in the genome by thousands of copies. The extent of cross-species hybridization is low, indicating that the repeat sequences transcribed in different amphibian genera are not the same. In situ hybridization experiments indicate that the repeat sequences are spread throughout the genome. The evolution and possible function of complementary repeats are considered.  相似文献   

8.
5-Hydroxytryptamine immunoreactive neurons were found in retinae from chicken, pigeon, frog and goldfish. They were localized among the amacrine cells with a distribution of cell bodies and nerve fibres that varied with the species. In chicken and pigeon, bipolar-like cell bodies were also found in the middle of the inner nuclear layer, sending processes inwards to the inner plexiform layer and outwards to the horizontal cells. The signalling direction of these cells is doubtful. No 5-hydroxytryptamine immunoreactivity was found in retinae from cow, pig, cat, rabbit, guinea-pig, rat or mouse.Quantitative analyses were performed with HPLC on extracts from chicken, pigeon, frog and goldfish retinae. High concentrations were found in goldfish and frog whereas less, about 100 ng/g, was observed in chicken and pigeon.The results suggest that 5-hydroxytryptamine is the transmitter of a set of amacrine cells in cold-blooded vertebrates and perhaps also in birds. The transmitter of the indoleamine accumulating neurons of mammals remains to be further elucidated.  相似文献   

9.
10.
Fourteen recombinant clones from Zea mays were studied with regard to their composition of unique and repetitive sequences. Southern hybridization experiments were used to classify restriction fragments of the clones into a unique, middle or highly repetitive class of reiteration frequency. All three classes were often found on the same genomic clone. Crosshybridization studies between clones showed that a given repeat might be present on several clones, and thus four families of highly repetitive elements were established. Heteroduplex analysis was used to show the arrangement and size of repeats common between several clones. A short interspersion pattern of unique, middle and highly repetitive DNA was found. The dispersed repetitive elements were 300-1300 bp in length. Analysis of the pattern produced by a given repeat in genomic Southern experiments suggests that some small dispersed repeats may also exist as part of a larger repeating unit elsewhere in the genome.  相似文献   

11.
Monitoring the migrations of cells during embryonic development requires a system in which cells can be identified in situ during locomotion. One promising system involves the generation of chimeras by transplanting mouse cells into chick embryos in ovo to exploit the wealth of mouse genetic variants. The success of this technique relies on the ability to detect individual mouse cells in a chick environment with high specificity. The murine B2 family of short interspersed elements is present in the mouse genome at copy numbers in excess of 10(5), whereas this sequence is absent in the chick genome based on hybridization techniques. This differential of five orders of magnitude produces signals in mouse cells that are easily identified, even in an environment that is predominantly chick. Thus, the B2 repeat probe is highly effective for the purpose of identifying mouse cells in mouse-chick chimeras.  相似文献   

12.
13.
14.
15.
16.
The objective of this paper is to summarize the work in my group on FISH (fluorescent in situ hybridization) mapping of Ns-specific repetitive DNA sequences fromLeymus and discuss the results in the context of classification based on the genome system currently used among Triticeae researchers. The key question here is whether the genome composition of a tetraploid Leymus species should be NsXm or NsNs (Ns1Ns2). Different types of Leymus-specific dispersed retroelement-like repeats have been isolated and characterized. Because the sequences occur in significantly high copy number in Leymus, based on strong hybridization signal in Southern blots, they are considered essentially specific to Leymus. They are also abundant in Psathyrostachys, the progenitor of Ns genome in Leymus. These dispersed repeats are found to distribute over the whole of all Leymus chromosomes, without any differentiation between chromosomes that have been suggested to be of different genomic origins, meaning that all genomes in Leymus are the same. GISH (genomic in situ hybridization) experiments on Leymus chromosomes using Psathyrostachys genomic DNA as probes further support the NsNs (Ns1Ns2) genome constitution for Leymus. The Xm genome of an unknown origin might have been there in the beginning of the allopolyploidization process, but the Ns genome-specific elements must have spread predominantly and rapidly across genomes, thus homogenizing the nuclear genomes of Leymus. I present here for the first time evidence that Ns-specific dispersed repeats can spread in a very short time, from Leymus over to wheat in Triticum × Leymus hybrids growing in artificial conditions.  相似文献   

17.
18.
4.5SH RNA is a 94-nt small RNA with unknown function. This RNA is known to be present in the mouse, rat, and hamster cells; however, it is not found in human, rabbit, and chicken. In the mouse genome, the 4.5SH RNA gene is a part of a long (4.2 kb) tandem repeat ( approximately 800 copies) unit. Here, we found that 4.5SH RNA genes are present only in rodents of six families that comprise the Myodonta clade: Muridae, Cricetidae, Spalacidae, Rhizomyidae, Zapodidae, and Dipodidae. The analysis of complementary DNA derived from the rodents of these families showed general evolutionary conservation of 4.5SH RNA and some intraspecific heterogeneity of these RNA molecules. 4.5SH RNA genes in the Norway rat, mole rat, hamster and jerboa genomes are included in the repeated sequences. In the jerboa genome these repeats are 4.0-kb long and arranged tandemly, similar to the corresponding arrangements in the mouse and rat genomic DNA. Sequencing of the rat and jerboa DNA repeats containing 4.5SH RNA genes showed fast evolution of the gene-flanking sequences. The repeat sequences of the distantly related rodents (mouse and rat vs. jerboa) have no apparent similarity except for the 4.5SH RNA gene itself. Conservation of the 4.5SH RNA gene nucleotide sequence indicates that this RNA is likely to be under selection pressure and, thus, may have a function. The repeats from the different rodents have similar lengths and contain many simple short repeats. The data obtained suggest that long insertions, deletions, and simple sequence amplifications significantly contribute in the evolution of the repeats containing 4.5SH RNA genes. The 4.5SH RNA gene seems to have originated 50-85 MYA in a Myodonta ancestor from a copy of the B1 short interspersed element. The amplification of the gene with the flanking sequences could result from the supposed cellular requirement of the intensive synthesis of 4.5SH RNA. Further Myodonta evolution led to dramatic changes of the repeat sequences in every lineage with the conservation of the 4.5SH RNA genes only. This gene, like some other relatively recently originated genes, could be a useful model for studying generation and evolution of non-protein-coding genes.  相似文献   

19.
20.
The genomes of birds are much smaller than mammalian genomes, and transposable elements (TEs) make up only 10% of the chicken genome, compared with the 45% of the human genome. To study the mechanisms that constrain the copy numbers of TEs, and as a consequence the genome size of birds, we analyzed the distributions of LINEs (CR1's) and SINEs (MIRs) on the chicken autosomes and Z chromosome. We show that (1) CR1 repeats are longest on the Z chromosome and their length is negatively correlated with the local GC content; (2) the decay of CR1 elements is highly biased, and the 5'-ends of the insertions are lost much faster than their 3'-ends; (3) the GC distribution of CR1 repeats shows a bimodal pattern with repeats enriched in both AT-rich and GC-rich regions of the genome, but the CR1 families show large differences in their GC distribution; and (4) the few MIRs in the chicken are most abundant in regions with intermediate GC content. Our results indicate that the primary mechanism that removes repeats from the chicken genome is ectopic exchange and that the low abundance of repeats in avian genomes is likely to be the consequence of their high recombination rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号