首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady-state kinetics study and some enzymatic characterization of a selenium-containing scFv catalytic antibody (Se-scFv2F3) were carried out. A novel reaction formula of this abzyme-catalyzed reaction was proposed and a rate equation was obtained according to the formula. The constants in the equation were compared with Dalziel's parameters and the exact meanings of these constants were analyzed. The obtained kinetics parameters from the kinetics study of Se-scFv2F3 were analyzed and compared with those of native glutathione peroxidase.  相似文献   

2.
GPX is a mammalian antioxidant selenoenzyme which protects biomembranes and other cellular components from oxidative damage by catalyzing the reduction of a variety of hydroperoxides (ROOH), using Glutathione (GSH) as the reducing substrate. The single-chain Fv fragment of the monoclonal antibody 2F3 (scFv2F3) can be converted into the selenium-containing Se-scFv2F3 by chemical modification of the serine. The new selenium-containing catalytic antibody Se-scFv2F3 acts as a glutathione peroxidase (GPX) mimic with high catalytic efficiency.In order to investigate which residue of scFv2F3 is converted into selenocysteine and to describe the proper reaction site of GSH to Se-scFv2F3, a three-dimensional structure of scFv2F3 is built by means of homology modeling. The 3D model is assessed by molecular dynamics (MD) simulation to determine its stability and by comparison with those of known protein structures. After the serine in the scFv2F3 is modified to selenocysteine, a catalytic antibody (abzyme) is obtained. From geometrical considerations, the solvent-accessible surface of the protein is examined. The computer-aided docking and energy minimization (EM) calculations of the abzyme–GSH complex are then carried out to explore the possible active site of the glutathione peroxidase mimic Se-scFv2F3. The structural information from the theoretically modeled complex can help us to further understand the catalytic mechanism of GPX.  相似文献   

3.
Selenium-containing glutathione transferase (seleno-GST) was generated by biologically incorporating selenocysteine into the active site of glutathione transferase (GST) from a blowfly Lucilia cuprina (Diptera: Calliphoridae). Seleno-GST mimicked the antioxidant enzyme glutathione peroxidase (GPx) and catalyzed the reduction of structurally different hydroperoxides by glutathione. Kinetic investigations reveal a ping-pong kinetic mechanism in analogy with that of the natural GPx cycle as opposed to the sequential one of the wild type GST. This difference of the mechanisms might result from the intrinsic chemical properties of the incorporated residue selenocysteine, and the selenium-dependent mechanism is suggested to contribute to enhancement of the enzymatic efficiency.  相似文献   

4.
Kinetics of glutathione peroxidase   总被引:1,自引:0,他引:1  
  相似文献   

5.
Huo R  Wei J  Xu J  Lv S  Zheng Q  Yan F  Su J  Fan J  Li J  Duan Y  Yu Y  Jin F  Sun W  Shi Y  Cong D  Li W  Yan G  Luo G 《Journal of molecular recognition : JMR》2008,21(5):324-329
In order to generate catalytic antibodies with glutathione peroxidase (GPX) activity, we prepared GSH-S-2,4-dinitrophenyl t-butyl ester (GSH-S-DNPBu) as target antigen. Three clones (A11, B3, and D5) that bound specifically to the antigen were selected from the phage display antibody library (human synthetic VH + VL single-chain Fv fragment (scFv) library). Analysis of PCR products using gel electrophoresis and sequencing showed that only clone B3 beared intact scFv-encoding gene, which was cloned into the expression vector pPELB and expressed as soluble form (scFv-B3) in Escherichia coli Rosetta. The scFv-B3 was purified by Ni(2+)-immobilized metal affinity chromatography (IMAC). The yield of purified proteins was about 2.0-3.0 mg of proteins from 1 L culture. After the active site serines of scFv-B3 were converted into selenocysteines (Secs) with the chemical modification method, we obtained the human catalytic antibody (Se-scFv-B3) with GPX activity of 1288 U/micromol. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Liu L  Mao SZ  Liu XM  Huang X  Xu JY  Liu JQ  Luo GM  Shen JC 《Biomacromolecules》2008,9(1):363-368
For imitating the active site of antioxidant selenoenzyme glutathione peroxidase (GPx), an artificial enzyme selenosubtilisin was employed as a scaffold for reconstructing substrate glutathione (GSH) specific binding sites by a bioimprinting strategy. GSH was first covalently linked to selenosubtilisin to form a covalent complex GSH-selenosubtilisin through a Se-S bond, then the GSH molecule was used as a template to cast a complementary binding site for substrate GSH recognition. The bioimprinting procedure consists of unfolding the conformation of selenosubtilisin and fixing the new conformation of the complex GSH-selenosubtilisin. Thus a new specificity for naturally occurring GPx substrate GSH was obtained. This bioimprinting procedure facilitates the catalytic selenium moiety of the imprinted selenosubtilisin to match the reactive thiol group of GSH in the GSH binding site, which contributes to acceleration of the intramolecular catalysis. These imprinted selenium-containing proteins exhibited remarkable rate enhancement for the reduction of H2O2 by GSH. The average GPx activity was found to be 462 U/micromol, and it was approximately 100 times that for unimprinted selenosubtilisin. Compared with ebselen, a well-known GPx mimic, an activity enhancement of 500-fold was observed. Detailed steady-state kinetic studies demonstrated that the novel selenoenzyme followed a ping-pong mechanism similar to the naturally occurring GPx.  相似文献   

7.
We synthesized nanoparticulate glutathione peroxidase (GPx) mimics in which selenocystine (SeCyst) was conjugated to a hydrophilic linear polysaccharide, pullulan (Pul). The SeCyst ester-conjugated Pul derivatives (SeCyst-Pul) in phosphate buffer (pH 7) were treated with a sonicator to spontaneously form particulate materials. Dynamic light scattering measurements revealed that the SeCyst-Pul conjugates could form particulate materials with diameters between 100 and 300 nm. Distinctive endothermic peaks were observed for the SeCyst-Pul aggregate solutions based on a differential scanning calorimetric analysis. The tryptophan (Trp) fluorescence intensity of SeCyst benzyl ester-tryptophanyl-Pul (SeCyst-Bz-Trp-Pul) mostly decreased in comparison to those of the Trp-Pul (its precursor) and free Trp, which indicates that the Trp residues come close to each other during the aggregation of the conjugates. Formation of SeCyst-Pul aggregates could be induced by the hydrophobic interactions between the SeCyst esters and the amino acid residues on Pul. The GPx-like activity of SeCyst-Bz-Trp-Pul aggregates for the reduction of H2O2 was enhanced nearly 20-fold higher than that of free SeCyst. The double-reciprocal plots of the SeCyst-Bz-Trp-Pul aggregate-catalyzed reduction yielded parallel lines by varying the substrate concentrations, indicating a "ping-pong" mechanism that is similar to those of the natural GPxs. The enhanced GPx activity of the SeCyst-Bz-Trp-Pul aggregate was also supported by higher kinetic parameters, k(cat)/K(m) (GSH) and k(cat)/K(m) H2O2. Overall, the enhanced activity of the SeCyst-Bz-Trp-Pul aggregate would be attributed to a hydrophobic environment that was formed at the vicinity of the SeCyst.  相似文献   

8.
Insertion of selenocysteine (Sec) into protein scaffolds provides an opportunity for designing enzymes with improved and unusual catalytic properties. The use of a common thioredoxin fold with a high affinity for glutathione in glutaredoxin (Grx) and glutathione peroxidase (GPx) suggests a possibility of engineering Grx into GPx and vice versa. Here, we engineered a Grx domain of mouse thioredoxin/glutathione reductase (TGR) into a selenium-containing enzyme by substituting the active site cysteine (Cys) with selenocysteine (Sec) in a Cys auxotrophic system. The resulting selenoenzyme displayed an unusually high GPx catalytic activity rivaling that of several native GPxs. The engineered seleno-Grx was characterized by mass spectrometry and kinetic analyses. It showed a typical ping-pong kinetic mechanism, and its catalytic properties were similar to those of naturally occurring GPxs. For example, its second rate constant (k(cat)/K(mH2O2)) was as high as 1.55x10(7) M(-1) min(-1). It appears that glutathione-dependent Grx, GPx and glutathione transferase (GST) evolved from a common thioredoxin-like ancestor to accommodate related glutathione-dependent functions and can be interconverted by targeted Sec insertion.  相似文献   

9.
Peroxynitrite is an oxidant generated under inflammatory conditions, acting in defense against invading microorganisms. There is a need for protection of the organism from damage inflicted by peroxynitrite. Selenium-containing compounds, notably ebselen, have a high second-order reaction rate constant (approx. 2 x 10(6) M(-1) s(-1)), which makes them candidates for efficient protection. This applies also for selenium in proteins, occurring as selenocysteine or selenomethionine residues. Glutathione peroxidases, thioredoxin reductase, and selenoprotein P have been shown to play a potential role in protection against peroxynitrite. Tellurium-containing compounds also react with peroxynitrite.  相似文献   

10.
Singlet oxygen ((1)O(2)) is a reactive oxygen species generated during photo-oxidation, inflammation, and via peroxidase-catalyzed reactions (e.g., myeloperoxidase and eosinophil peroxidase). (1)O(2) oxidizes the free amino acids Trp, Tyr, His, Cys, and Met, and those species present on peptides/proteins, with this resulting in modulation of protein structure and function. Impairment of the activity of antioxidant enzymes may be of relevance to the oxidative stress observed in a number of pathologies involving either light exposure or inflammation. In this study, the effects of (1)O(2) on glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) activity, including the mechanisms of their inactivation, were investigated. Exposure of GPx or TrxR, either as purified proteins or in cell lysates, to Rose Bengal and visible light (an established source of (1)O(2)) resulted in significant, photolysis time-dependent reductions in enzyme activity (10-40%, P<0.05). More extensive inhibition (ca. 2-fold) was detected when the reactions were carried out in D(2)O, consistent with the intermediacy of (1)O(2). No additional inhibition was detected after the cessation of photolysis, eliminating a role for photo-products. Methionine, which reacts rapidly with (1)O(2) (k~10(7)M(-1) s(-1))(,) significantly reduced photo-inactivation at large molar excesses, presumably by acting as an alternative target. Reductants (NaBH(4), DTT, GSH, or NADPH) added after the cessation of (1)O(2) formation were unable to reverse enzyme inactivation, consistent with irreversible enzyme oxidation. Formation of nonreducible protein aggregates and/or fragments was detected for both photo-oxidized GPx and TrxR by SDS-PAGE. An oxidant concentration-dependent increase in protein carbonyls was detected with TrxR but not GPx. These studies thus demonstrate that the antioxidant enzymes GPx and TrxR can be irreversibly inactivated by (1)O(2).  相似文献   

11.
Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T4) into selenocysteines, can catalyze the deiodination of T(4) to 3,5,3'-triiodothyronine (T(3)) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with Km values for T(4) and DTT of approximately 0.8 microM and 1.8 mM, respectively, and V(m) value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a Ki value of approximately 120 microM at 2.0 microM of T(4) concentration, revealing that PTU was a competitive inhibitor for DTT.  相似文献   

12.
In order to generate catalytic antibodies with glutathione peroxidase (GPx) activity, we prepared GSH-S-DNP butyl ester and GSH-S-DNP benzyl ester as the haptens. Two ScFvs that bound specifically to the haptens were selected from the human phage-displayed antibody library. The two ScFv genes were highly homologous, consisting of 786 bps and belonging to the same VH family-DP25. In the premise of maintaining the amino acid sequence, mutated plasmids were constructed by use of the mutated primers in PCR, and they were over-expressed in E. coli. After the active site serine was converted into selenocysteine with the chemical modifying method, we obtained two human catalytic antibodies with GPx activity of 72.2U/micromol and 28.8U/micromol, respectively. With the aid of computer mimicking, it can be assumed that the antibodies can form dimers and the mutated selenocysteine residue is located in the binding site. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody with the higher activity was studied.  相似文献   

13.
Conversion of thyroxine (T4) to 3,5,3'-triiodothyronine is an essential first step in controlling thyroid hormone action. Type I deiodinase (DI) can catalyze the conversion to produce the bulk of serum 3,5,3'-triiodothyronine. Acting as a mimic of DI, a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against T4 into selenocysteines, can catalyze the deiodination of T4 with dithiothreitol (DTT) as cosubstrate. The mimic enzyme Se-4C5 exhibited a much greater deiodinase activity than model compound ebselen and another selenium-containing antibody Se-Hp4 against GSH. The coupling of selenocysteine with the combining pocket of antibody 4C5 endowed Se-4C5 with enzymatic activity. To probe the catalytic mechanism of the catalytic antibody, detailed kinetic studies were carried out in this paper. Investigations into the deiodinative reaction revealed the relationship between the initial velocity and substrate concentration. The characteristic parallel Dalziel plots demonstrated that Se-4C5-catalyzed reaction mechanism was ping-pong one, involving at least one covalent enzyme intermediate. The kinetic properties of the catalytic antibody were similar to those of DI, with Km values for T4 and DTT of approximately 0.8 microm and 1.8 mm, respectively, and a Vm value of 270 pmol per mg of protein per min. The activity could be sensitively inhibited by 6-propyl-2-thiouracil (PTU) with a K(i) value of approximately 120 microm at 2.0 microm T4 concentration. The PTU inhibition was progressively alleviated with the increasing concentration of added DTT, revealing that PTU was a competitive inhibitor for DTT.  相似文献   

14.
Because the seleno-l-cysteine (SeCys or Sec) insertion into selenoproteins occurs by a specific translational control process, it is quite difficult to express the SeCys-containing polypeptides even by the state-of-the-art genetic engineering techniques. In this paper, we describe a convenient synthetic method for the selective introduction of a SeCys derivative to polypeptides under physiological conditions. One SeCys residue in the seleno-l-cystine (SeCys-Se-Se-SeCys) methyl ester was first substituted with the Boc-protected penicillamine (Pen) methyl ester to form selenenylsulfide (SeCys-Se-S-Pen), an intermediate in the cellular glutathione peroxidase (GPx) catalytic cycle. Subsequently, the SeCys-Pen was coupled with the thiol-specific N-carboxymethylmaleimide through the α-amino group of the SeCys {[2-(N-maleimidyl)-1-oxo-ethyl-SeCys-methyl-Se-yl]-S-Pen methyl ester, MOE-SeCys-Pen}. The use of the MOE-SeCys-Pen allowed the selective introduction of the SeCys moiety to human serum albumin by alkylation of the thiol at its cysteine34, which generated the GPx-like activity responsible for the selenium atom in the MOE-SeCys-Pen. Consequently, this synthetic method will allow generating SeCys-containing artificial polypeptides with a GPx-like activity.  相似文献   

15.
Site-directed mutagenesis was used to probe the mechanism of antibody 39-A11, which catalyzes the Diels-Alder reaction of substrate 1 and 2 to give cycloadduct 3. Mutations that lead to improved packing interactions with the diene afford an order of magnitude increase in catalytic activity.  相似文献   

16.
Ren X  Liu J  Luo G  Zhang Y  Luo Y  Yan G  Shen J 《Bioconjugate chemistry》2000,11(5):682-687
A novel artificial glutathione peroxidase mimic consisting of a selenocystine-di-beta-cyclodextrin conjugate (selenium-bridged-6, 6'-amino-selenocystine-6,6'-deoxy-di-beta-cyclodextrin), in which selenocystine is bound to the primary side of beta-cyclodextrin through the two amino nitrogen groups of selenocystine, was synthesized. The glutathione peroxidase activities of the mimic-catalyzed reduction of H(2)O(2), tert-butylhydroperoxide, and cumene hydroperoxide by glutathione are 4.1, 2.11, and 5.82 units/micromol, respectively. The first activity was 82 and 4.2 times as much as that of selenocysteine and ebselen, respectively. Studies on the effect of substrate binding on the glutathione peroxidase activity suggest that it is important to consider substrate binding in designing glutathione peroxidase mimics. The detailed steady-state kinetic studies showed that the mimic-catalyzed reduction of H(2)O(2) by glutathione followed a ping-pong mechanism, which was similar to that of the native glutathione peroxidase.  相似文献   

17.
A selenium-containing peroxidase from the germinating barley grown on a selenium-containing artificial medium was isolated and purified by means of cold acetone precipitation, Sephadex-G150 filtration, followed by DEAE-Sepharose chromatography and sodium dodecyl sulfate — polyacrylamid gel electrophoresis. The form of selenium existing in the peptide assayed with paper chromatography was selenomethionine. The amino acid composition of this enzyme was similar to those peroxidases from other sources except amino acids Glu, Val Phe, Lys, and Arg. Electron-spin resonance (ESR) spectra recorded at −136°C showed that both the selenium-containing peroxidase from germinating barley and horseradish peroxidase had same the ESR signals as iron protoporphyine. Those results suggested that the germinating barley selenium-containing peroxidase is one of the peroxidase isoenzymes.  相似文献   

18.
Glutathione peroxidase and glutathione reductase activities were measured in whole rat brains at selected ages from birth to adulthood. On a wet weight basis glutathione peroxidase activity increased 70% during development and glutathione reductase activity increased 160%. On a protein basis glutathione peroxidase declined slightly in activity during the first two weeks of life and then maintained the 14-day activity into adulthood while glutathione reductase showed a 30% increase in activity. While less than the developmental changes in many enzymes involved in aerobic glycolysis or catecholamine metabolism, these increases do suggest a role in CNS metabolism.  相似文献   

19.
《Free radical research》2013,47(4):487-502
Abstract

Glutathione peroxidase (GPx) is a well-known seleno-enzyme that protects cells from oxidative stress (e.g., lipid peroxidation and oxidation of other cellular proteins and macromolecules), by catalyzing the reduction of harmful peroxides (e.g., hydrogen peroxide: H2O2) with reduced glutathione (GSH). However, the catalytic mechanism of GPx kinetics is not well characterized in terms of a mathematical model. We developed here a mechanistic mathematical model of GPx kinetics by considering a unified catalytic scheme and estimated the unknown model parameters based on different experimental data from the literature on the kinetics of the enzyme. The model predictions are consistent with the consensus that GPx operates via a ping-pong mechanism. The unified catalytic scheme proposed here for GPx kinetics clarifies various anomalies, such as what are the individual steps in the catalytic scheme by estimating their associated rate constant values and a plausible rationale for the contradicting experimental results. The developed model presents a unique opportunity to understand the effects of pH and product GSSG on the GPx activity under both physiological and pathophysiological conditions. Although model parameters related to the product GSSG were not identifiable due to lack of product-inhibition data, the preliminary model simulations with the assumed range of parameters show that the inhibition by the product GSSG is negligible, consistent with what is known in the literature. In addition, the model is able to simulate the bi-modal behavior of the GPx activity with respect to pH with the pH-range for maximal GPx activity decreasing significantly as the GSH levels decrease and H2O2 levels increase (characteristics of oxidative stress). The model provides a key component for an integrated model of H2O2 balance under normal and oxidative stress conditions.  相似文献   

20.
We have purified two isoenzymes of glutathione S-transferase from bovine retina to apparent homogeneity through a combination of gel-filtration chromatography, affinity chromatography and isoelectric focusing. The more anionic (pI = 6.34) and less anionic (pI = 6.87) isoenzymes were comparable with respect to kinetic and structural parameters. The Km for both substrates, reduced glutathione and 1-chloro-2,4-dinitrobenzene, bilirubin inhibition of glutathione conjugation to 1-chloro-2,4-dinitrobenzene, 1-chloro-2,4-dinitrobenzene inactivation of enzyme activity and molecular weight were similar. However, pH optimum and energy of activation were found to differ considerably. Retina was found to have no selenium-dependent glutathione peroxidase activity. The total glutathione peroxidase activity fractionated with the transferases in the gel-filtration range of mol.wt. 49000 and expressed activity with only organic hydroperoxides as substrate. Only the more anionic isoenzyme expressed both transferase and peroxidase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号