首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 μg/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 μg/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 μg/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.  相似文献   

2.
The levels of inorganic phosphorus in blood samples from two cow populations were related to reproductive performance. Group I comprised 305 dairy cows from 17 herds with normal fertility. The herds were visited every 2–4 weeks. Blood samples were collected from animals between 4 weeks prior to expected calving and subsequent confirmed pregnancy. The individual mean plasma phosphorus level in samples collected from 0–90 days after calving in cows which conceived following insemination (n = 262) was related to reproductive performance. Group II comprised cows from 47 herds with reproductive problems. The herds were visited once during the indoor season for blood sampling. Mean herd serum phosphorus levels were related to herd reproductive performance registered during a period from 6 months before to 9 months after the time of blood sampling. Overall mean herd phosphorus levels were 1.51 ± 0.08 mmol/1 plasma (±SD) (Group I) and 1.77 ± 0.16 mmol/1 serum (±SD) (Group II). In Group I (indivu-dual cows), the coefficient of correlation between phosphorus levels and elapsed time from calving to pregnancy was low (r = 0.10, p<0.1). In Group II (herds) significant correlations were observed between the fertility status index (FS), the average number of days from calving to last insemination and phosphorus levels (rs = 0.32, P <0.05 and rs p <0.05, respectively). The mean herd phosphorus levels were within normal limits in both groups. Although increased phosphorus levels were associated with lower fertility in both groups, the amount of the total fertility variation which could be explained by phosphorus levels was small.  相似文献   

3.
Soil water cotent and salinity levels are seldom uniform inthe field, particularly with the use of micro-irrigation systemsthat may water only a portion of the root zone. For studyingnon-uniform salinity, a split-root experiment was designed toevaluate growth and water relations when half of the root systemof sour orange (Citrus aurantium) seedlings was stressed withsodium chloride (NaCl) or polyethylene glycol (PEG). This studyalso determined if non-stressed portions of the root systemcompensated for the decrease in water uptake by the stressedportions. One or both halves of the root system were treated for fourmonths with nutrient solution adjusted with NaCl or PEG to osmoticpotentials of –0.10, –0.20, or –0.35 MPa.Shoot dry weight was reduced by only 9% when half of the rootsystem was irrigated with saline solution at –0.10 MPa,but with both halves of the root system at –0.10 MPa,shoot and root dry weights were reduced as much as 45%. Similarly,leaf water and osmotic potentials were also more disturbed underuniform salinity than under non-uniform salinity conditions. Plant growth, leaf water potential, osmotic potential, stomatalconductance, and evapotranspiration decreased with increasingNaCl and PEG concentrations in the nutrient solution. Turgorpotential and leaf thickness increased in response to NaCl treatments.Microscopic examination showed that the increase in leaf thicknesswas due to the development of larger cells in the spongy mesophyll. Shoot growth did not correlate with the average osmotic potentialof the two root halves. Seedlings with one stressed half-rootsystem had shoot dry weight and leaf water potential valuescloser to those of the non-stressed control than to those withthe completely stressed root system. Key words: Non-uniform salinity, water relations, citrus  相似文献   

4.
Koide, R. 1985. The effect of VA mycorrhizal infection and phosphorusstatus on sunflower hydraulic and stomatal properties.—J. exp. Bot. 36: 1087–1098. Mycorrhizal (M) and non-mycorrhizal (NM) sunflower plants weregrown in a soil of low phosphorus availability (with and withoutphosphorus amendment) and in a soil of moderate phosphorus availability(without phosphorus amendment). Using the Ohm's law analogyand measured leaf water potentials, stem water potentials, andtranspiration rates, hydraulic resistances were calculated forthe whole plant, leaf, and below leaf components. Mycorrhizalinfection (as high as 89%) was shown to have no effect on theintrinsic hydraulic properties of the soil/plant system overa wide range of transpiration rates in either soil when M andNM plants of equivalent root length were compared. When grownin the soil of moderate phosphorus availability, calculatedhydraulic resistances under given environmental conditions werethe same for M and NM plants, as were stomatal resistances andtranspiration rates. When grown in the soil of low phosphorusavailability, calculated values of hydraulic resistance werelower for M plants than for NM plants under given sets of environmentalconditions. These differences in calculated hydraulic resistancewere not due to a difference in the intrinsic hydraulic propertiesof M and NM plants. The differences were evident because stomatalresistances were lower and transpiration rates higher for Mplants and because hydraulic resistance varied inversely withtranspiration rate. When plants of significantly greater rootlength were compared to plants of lesser root length, the calculatedhydraulic resistances under given environmental conditions weremuch lower for the plants of greater root length. This differencewas largely due to a difference in the intrinsic hydraulic propertiesbetween large and small plants, and not because of differencesin transpiration rate. The elevated transpiration rates exhibitedby M plants were attributed to an enhanced phosphorus status.Short term phosphorus amendments made to phosphorus-deficientNM plants improved transpiration; transpiration rates were similarfor M and NM plants before NM plants became phosphorus-deficient,and phosphorus-amended M and NM plants had similar transpirationrates. The data are discussed in relation to other reports ofmycorrhizal influence on hydraulic and stomatal resistances.Possible mechanisms for the influence of infection on stomatalresistance are also briefly discussed. Key words: Hydraulic resistance, stomatal resistance, mycorrhizas  相似文献   

5.
We grew plants of nine soybean varieties, six of which were genetically modified to express transgenic cp4-epsps, in the presence of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi. Mycorrhizal colonization and nodule abundance and mass differed among soybean varieties; however, in no case was variation significantly associated with the genetic modification.  相似文献   

6.
甜橙与酸橙体细胞杂种核质组成鉴定(英文)   总被引:2,自引:0,他引:2  
采用流式细胞术(flow cytometry, FCM)、简单重复序列(simple sequence repeat, SSR)和酶切扩增多型性序列(cleaved amplified polymorphic sequence, CAPS)等技术分析酸橙(Citrus aurantium L. )叶肉原生质体和甜橙(C. sinenis Osbeck cv. Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种。FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体。用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本。在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种。通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样。结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本。讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用。  相似文献   

7.
采用流式细胞术(flow cytometry,FCM)、简单重复序列(simple sequence repeat,SSR)和酶切扩增多型性序列(cleaved amplifiedpolymorphic sequence,CAPS)等技术分析酸橙(Citrus aurantium L.)叶肉原生质体和甜橙(C.sinenis Osbeck cv.Shamouti)胚性愈伤组织原生质体电融合再生的体细胞杂种.FCM研究结果表明,所有的体细胞杂种植株荧光强度是二倍体对照的2倍,说明所分析的植株为四倍体.用SSR和CAPS分析了体细胞杂种的核质遗传组成,在试验的4对SSR引物中,有2对能区分开融合亲本.在2对引物中,体细胞杂种植株包含双亲的全部特异带,表明它们为异核杂种.通用引物扩增结合限制性内切酶酶切能鉴别融合亲本,在具有多型性的引物/酶组合中,所有体细胞杂种的线粒体和叶绿体DNA带型与胚性亲本(甜橙)完全一样.结果表明体细胞杂种核基因组来自双亲,而胞质基因组来自悬浮系亲本.讨论了所用技术的特点、柑橘四倍体体细胞杂种核质遗传规律及本组合体细胞杂种的应用.  相似文献   

8.
9.
Pratylenchus vulnus suppressed the growth of sour orange seedlings in greenhouse experiments. Growth retardation (in height, in trunk diameter, and in dry top and root weights) was observed in inoculated plants growing in two soil types. Population density, 13 months after inoculation, averaged more than 1,000 specimens/gm of fresh root. Anatomical studies showed that P. vulnus prefers to attack the cortex and causes cavities among the cortical cells.  相似文献   

10.
Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots.  相似文献   

11.
在已知参数条件下,通过电场诱导酸橙(Citrus aurantium L.)叶肉原生质体和沙漠蒂甜橙(C.sinensis Osbeck cv.Shamouti)的胚性愈伤组织原生质体融合,融合产物经培养再生出40棵植株.染色体检查表明所得到的植株具有36条染色体,为四倍体植株.再生植株具有翼叶,叶片厚,表现出多倍体的特征.采用2个10-碱基随机引物鉴别再生植株的杂种特性.在2个引物的扩增带型中,再生植株的随机扩增带图里出现了融合亲本的特征带.对再生植株染色体计数和RAPD分析的结果表明它们是酸橙和甜橙种间异源四倍体体细胞杂种植株.这些体细胞杂种植株的获得为选择具有酸橙优良性状、同时抗CTV的新型砧木提供了好的试材.  相似文献   

12.
Xylem transport of nitrogen and phosphorus was examined in maturemycorrhizal plants of 41 species in 15 genera of Epacridaceaein native habitat in south-west Australia. Glutamine was theprincipal nitrogenous solute of xylem of all but four species.In the latter species, arginine or asparagine predominated.Nitrate and ammonium comprised minor fractions of xylem (tracheal)sap N, except in two species in which nitrate contributed overhalf of the N. Ratios of total-N:phosphate-P in xylem sap variedwidely (mean 67±18, range 0.2–495) between speciesand habitats. Plants ofCroninia kingiana (syn.Leucopogon kingeanus)from the one habitat showed higher levels of N and P in xylemearly than late in the mycorrhizal season, but there was noconsistent evidence of higher N and P levels from upper thandeeper parts of their root systems. Study of juvenile populationsof four species of epacrids indicated that substantial fractionsof the yearly increment of N, P and dry matter was accumulatedduring the three summer months when infected mycorrhizal hairroots were absent. Glasshouse culture of mycorrhizal plantsof Epacridaceae in habitat soil enriched with decomposed andleached double (13C,15N)-labelled dry matter of wheat showedsubstantial labelling of shoots with15N but not with13C. Plantsfed similarly treated15N-labelled root residues of maize acquired15Nbut failed to generate 13C values different from those of controlplants. Possible avenues of mycorrhizal and non-mycorrhizalnutrition of Epacridaceae are discussed. amino acids; mycorrhizal nutrition; xylem transport; south-west Australia; Epacridaceae; nitrogen; phosphorus  相似文献   

13.
Phosphorus and nitrogen are essential nutrient elements that are needed by plants in large amounts. The arbuscular mycorrhizal symbiosis between plants and soil fungi improves phosphorus and nitrogen acquisition under limiting conditions. On the other hand, these nutrients influence root colonization by mycorrhizal fungi and symbiotic functioning. This represents a feedback mechanism that allows plants to control the fungal symbiont depending on nutrient requirements and supply. Elevated phosphorus supply has previously been shown to exert strong inhibition of arbuscular mycorrhizal development. Here, we address to what extent inhibition by phosphorus is influenced by other nutritional pathways in the interaction between Petunia hybrida and R. irregularis. We show that phosphorus and nitrogen are the major nutritional determinants of the interaction. Interestingly, the symbiosis-promoting effect of nitrogen starvation dominantly overruled the suppressive effect of high phosphorus nutrition onto arbuscular mycorrhiza, suggesting that plants promote the symbiosis as long as they are limited by one of the two major nutrients. Our results also show that in a given pair of symbiotic partners (Petunia hybrida and R. irregularis), the entire range from mutually symbiotic to parasitic can be observed depending on the nutritional conditions. Taken together, these results reveal complex nutritional feedback mechanisms in the control of root colonization by arbuscular mycorrhizal fungi.  相似文献   

14.
Ecosystems - Carbon (C) fluxes among different components of plant growth are important to forest ecosystem C cycling and are strongly influenced by species composition and resource availability....  相似文献   

15.
16.
We examined the effects of atmospheric carbon dioxide (CO2) enrichment on belowground carbon (C) pools and arbuscular mycorrhizal (AM) fungi in a chaparral community in southern California. Chambers enclosing intact mesocosms dominated by Adenostoma fasciculatum were exposed for 3.5 years to CO2 levels ranging from 250 to 750 ppm. Pools of total C in bulk soil and in water-stable aggregates (WSA) increased 1.5- and threefold, respectively, between the 250- and 650-ppm treatments. In addition, the abundance of live AM hyphae and spores rose markedly over the same range of CO2, and the community composition shifted toward dominance by the AM genera Scutellospora and Acaulospora. Net ecosystem exchange of C with the atmosphere declined with CO2 treatment. It appears that under CO2 enrichment, extra C was added to the soil via AM fungi. Moreover, AM fungi were predominant in WSA and may shunt C into these aggregates versus bulk soil. Alternatively, C may be retained longer within WSA than within bulk soil. We note that differences between the soil fractions may act as a potential feedback on C cycling between the soil and atmosphere.  相似文献   

17.
The purpose of this study was to determine how a plant's responseto colonization by mycorrhizal fungi relates to its abilityto acquire and utilize phosphorus for growth and reproduction.Two tomato genotypes previously found to be either responsive(‘LA1709’) or unresponsive (‘large cherry’)to mycorrhizal colonization during early vegetative growth wereexamined in detail. Plants were grown at four levels of addedphosphate or with mycorrhizal inoculum. Vegetative and reproductivegrowth, phosphorus uptake and root length density were measuredduring the course of plant development. Mycorrhizal symbiosissignificantly increased above-ground dry mass, root length,phosphorus content and yield under low phosphorus conditionsin ‘LA1709’, while it had less effect on these characteristicsin ‘large cherry’. When uninfected, however, ‘LA1709’grew and reproduced poorly unless high amounts of phosphoruswere added to the soil, while ‘large cherry’ grewwell under very low phosphorus conditions. This was because‘large cherry’ had significantly higher root lengthdensities than ‘LA1709’, enabling plants from thisgenotype to explore more soil volume and acquire greater amountsof phosphorus when grown without mycorrhizal fungi in low phosphorussoil. ‘Large cherry’ also had higher phosphorususe efficiency and allocated a greater proportion of phosphorusto reproduction when uninfected than ‘LA1709’. Itappears traits that affect a plant's ability to acquire andutilize phosphorus efficiently for growth and reproduction canalso affect its response to mycorrhizal colonization in tomato.Copyright1998 Annals of Botany Company. Tomato,Lycopersicon esculentum,mycorrhiza,Glomus etunicatum,phosphorus, reproduction, lifespan.  相似文献   

18.
The influence of Aspergillus tubingensis to vegetation establishment on bauxite residue and its effects on the native arbuscular mycorrhizal fungal (AMF) colonization were studied. An alkali tolerant bermudagrass (Cynodon dactylon) adapted to local conditions was grown in bauxite residue with different amendments with and without A. tubingensis. Amendments of bauxite residue positively affected the growth of bermudagrass, especially when amended with gypsum and sludge. Gypsum- and sludge-amended treatments inoculated with A. tubingensis had maximum above-ground biomass, nutrient uptake, and reduced accumulation of metals. The native AMF colonization also increased because of A. tubingensis inoculation. The results of the present study suggest that A. tubingensis has the potential to improve the establishment of vegetation and neutralization of bauxite residue, especially when amended with gypsum and sludge.  相似文献   

19.

Arbuscular mycorrhizal (AM) fungi can form symbiosis with 90% of the vascular plants and play important roles in ecosystem. To realize the AM fungal colonization at different succession stages in saline-alkali land and screen AM fungi species with great functions, roots and soil samples were collected from the three succession stages of Songnen saline-alkali grassland. The soil properties and AM fungal colonization were measured, and the fungus distributed extensively in three stages was annotated by sequencing for AML1/AML2 target, subsequently, maize was selected as the host to verify its colonization. The results showed that the soil properties improved with the succession of saline-alkali grassland. The plants’ communities of the three stages could be colonized by AM fungi, and the colonization rate of Leymus chinensis (the third stage) ranged from 66.67% to 100%, Puccinellia tenuiflora (the second stage) ranged from 50% to 80%, while the Suaeda glauca (the first stage) was only 35%–60%. Glomeraceae sp1 was identified as the dominant AM fungi species which occurred frequently in the succession of saline-alkali land with the isolation frequency, relative abundance, and importance value of 100%, 18.1%, and 59.1%, respectively. The colonization rate of Glomeraceae sp1 in maize ranged from 80% to 87% and similar mycorrhizal characteristics were detected in the roots of P. tenuiflora, S. glauca, and L. chinensis, indicating that Glomeraceae sp1 colonized the samples in the field. The correlation matrix indicated that colonization rate, colonization intensity, and vesicle abundance were closely related to soil conditions most, and they were related significantly to all the soil properties except cellulase activity. Besides, redundancy analysis (RDA) showed that soil properties drove the changes of AM fungal colonization and sporulation. These results will provide theoretical support for realizing the relationship between AM fungal colonization and soil conditions, and also for the exploration of AM fungi species with great functions.

  相似文献   

20.
Soybean (Glycine max [L.] Merr.) plants grown in pot cultures were inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe and Rhizobium japonicum strain 61A118 at planting (G1R1) or at 20 days (G20R20), or with one of the endophytes after the other has colonized the host root (G1R20, G20R1). Nodulated (PR1) and VAM (G1N) dipartite associations, or nonsymbiotic plants (PN) using nutrient solutions with N, P, or N + P concentrations providing endophyte-equivalent nutrient inputs were used as controls. The delayed tripartite associations received the appropriate N, P, or N + P amendment while one or both endophytes were absent during the first 20 days of growth. Prior inoculation with one endophyte significantly inhibited development of the other. Root hexose sugar concentrations were negatively correlated with VAM colonization (r = −0.89), nodule activity (r = −0.91), and root P content (r = −0.93). Nodule (r = 0.97) and root (r = 0.96) P content correlated positively with VAM colonization. Nodule weight or VAM-fungal biomass were significantly greater in associations grown with only one endophyte. Dry weights of the PN, G1N, PR1, and G20R20 plants were significantly greater than those of tripartite plants inoculated at planting with either or both endophytes. Interendophyte inhibition is attributed to competition for root carbohydrates, and this effect apparently also affects overall plant productivity. The objective of the study was to determine if the timing of endophyte introduction and establishment affected the development of the other symbiotic partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号