首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arginine 160 in human sulfite oxidase (SO) is conserved in all SO species sequenced to date. Previous steady-state kinetic studies of the R160Q human SO mutant showed a remarkable decrease in k(cat)/K(m)(sulfite) of nearly 1000-fold, which suggests that Arg 160 in human SO makes an important contribution to the binding of sulfite near the molybdenum cofactor [Garrett, R. M., Johnson, J. L., Graf, T. N., Feigenbaum, A., Rajagopalan, K. V. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 6394-6398]. In the crystal structure of chicken SO, Arg 138, the equivalent of Arg 160 in human SO, is involved in the formation of a positively charged sulfite binding site [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garnett, R. M., Rajagopalan, K. V., Enemark, J. H., Rees, D. C. (1997) Cell 91, 973-983]. To further assess the role of Arg 160 in human SO, intramolecular electron transfer (IET) rates between the reduced heme [Fe(II)] and oxidized molybdenum [Mo(VI)] centers in the wild type, R160Q, and R160K human SO forms were investigated by laser flash photolysis. In the R160Q mutant, the IET rate constant at pH 6.0 was decreased by nearly 3 orders of magnitude relative to wild type, which indicates that the positive charge of Arg 160 is essential for efficient IET in human SO. Furthermore, the IET rate constant for the R160K mutant is about one-fourth that of the wild type enzyme, which strongly indicates that it is the loss of charge of Arg 160, and not its precise location, that is responsible for the much larger decrease in IET rates in the R160Q mutant. Steady-state kinetic measurements indicate that IET is rate-limiting in the catalytic cycle of the R160Q mutant. Thus, the large decrease in the IET rate constant rationalizes the fatal impact of this mutation in patients with this genetic disorder.  相似文献   

2.
Eukaryotic sulfite oxidase is a dimeric protein that contains the molybdenum cofactor and catalyzes the metabolically essential conversion of sulfite to sulfate as the terminal step in the metabolism of cysteine and methionine. Nitrate reductase is an evolutionarily related molybdoprotein in lower organisms that is essential for growth on nitrate. In this study, we describe human and chicken sulfite oxidase variants in which the active site has been modified to alter substrate specificity and activity from sulfite oxidation to nitrate reduction. On the basis of sequence alignments and the known crystal structure of chicken sulfite oxidase, two residues are conserved in nitrate reductases that align with residues in the active site of sulfite oxidase. On the basis of the crystal structure of yeast nitrate reductase, both positions were mutated in human sulfite oxidase and chicken sulfite oxidase. The resulting double-mutant variants demonstrated a marked decrease in sulfite oxidase activity but gained nitrate reductase activity. An additional methionine residue in the active site was proposed to be important in nitrate catalysis, and therefore, the triple variant was also produced. The nitrate reducing ability of the human sulfite oxidase triple mutant was nearly 3-fold greater than that of the double mutant. To obtain detailed structural data for the active site of these variants, we introduced the analogous mutations into chicken sulfite oxidase to perform crystallographic analysis. The crystal structures of the Mo domains of the double and triple mutants were determined to 2.4 and 2.1 ? resolution, respectively.  相似文献   

3.
The biochemical effects of several newly induced low xanthine dehydrogenase (lxd) mutations in Drosophila melanogaster were investigated. When homozygous, all lxd alleles simultaneously interrupt each of the molybdoenzyme activities to approximately the same levels: xanthine dehydrogenase, 25%; aldehyde oxidase, 12%; pyridoxal oxidase, 0%; and sulfite oxidase, 2% as compared to the wild type. In order to evaluate potentially small complementation or dosage effects, mutant stains were made coisogenic for 3R. These enzymes require a molybdenum cofactor, and lxd cofactor levels are also reduced to less than 10% of the wild type. These low levels of molybdoenzyme activities and cofactor activity are maintained throughout development from late larval to adult stages. The lxd alleles exhibit a dosage-dependent effect on molybdoenzyme activities, indicating that these mutants are leaky for wild-type function. In addition, cofactor activity is dependent upon the number of lxd + genes present. The lxd mutation results in the production of more thermolabile XDH and AO enzyme activities, but this thermolability is not transferred with the cofactor to a reconstituted Neurospora molybdoenzyme. The lxd gene is localized to salivary region 68 A4-9, 0.1 map unit distal to the superoxide dismutase (Sod) gene.  相似文献   

4.
The metabolic status of a patient previously characterized as deficient in sulfite oxidase was reexamined applying new methodology which has been developed to distinguish between a defect specific to the sulfite oxidase protein and sulfite oxidase deficiency which arises as a result of molybdenum cofactor deficiency. Urothione, the metabolic degradation product of the molybdenum cofactor, was undetectable in urine samples from the patient. Analysis of molybdenum cofactor levels in fibroblasts by monitoring reconstitution of apo nitrate reductase in extracts of the Neurospora crassa mutant nit-1 revealed that cells from the patient were severely depleted. Quantitation of urinary oxypurines showed that hypoxanthine and xanthine were highly elevated while uric acid remained in the normal range. These results were interpreted to indicate a severe but incomplete deficiency of the molybdenum cofactor. The presence of very low levels of active cofactor, supporting the synthesis of low levels of active sulfite oxidase and xanthine dehydrogenase, could explain the metabolic patterns of sulfur and purine products and the relatively mild clinical symptoms in this individual.  相似文献   

5.
The molybdenum cofactor (Moco) containing sulfite oxidase (SO) from Arabidopsis thaliana has recently been identified and biochemically characterized. The enzyme is found in peroxisomes and believed to detoxify excess sulfite that is produced during sulfur assimilation, or due to air pollution. Plant SO (PSO) is homodimeric and homologous to animal SO, but contains only a single Moco domain without an additional redox center. Here, we present the first crystal structure of a plant Moco enzyme, the apo-state of Arabidopsis SO at 2.6 A resolution. The overall fold and coordination of the Moco are similar to chicken SO (CSO). Comparisons of conserved surface residues and the charge distribution in PSO and CSO reveal major differences near the entrance to both active sites reflecting different electron acceptors. Arg374 has been identified as an important substrate binding residue due to its conformational change when compared to the sulfate bound structure of CSO.  相似文献   

6.
Mutations in the human cellular retinaldehyde binding protein (CRALBP) gene cause retinal pathology. To understand the molecular basis of impaired CRALBP function, we have characterized human recombinant CRALBP containing the disease causing mutations R233W or M225K. Protein structures were verified by amino acid analysis and mass spectrometry, retinoid binding properties were evaluated by UV-visible and fluorescence spectroscopy and substrate carrier functions were assayed for recombinant 11-cis-retinol dehydrogenase (rRDH5). The M225K mutant was less soluble than the R233W mutant and lacked retinoid binding capability and substrate carrier function. In contrast, the R233W mutant exhibited solubility comparable to wild type rCRALBP and bound stoichiometric amounts of 11-cis- and 9-cis-retinal with at least 2-fold higher affinity than wild type rCRALBP. Holo-R233W significantly decreased the apparent affinity of rRDH5 for 11-cis-retinoid relative to wild type rCRALBP. Analyses by heteronuclear single quantum correlation NMR demonstrated that the R233W protein exhibits a different conformation than wild type rCRALBP, including a different retinoid-binding pocket conformation. The R233W mutant also undergoes less extensive structural changes upon photoisomerization of bound ligand, suggesting a more constrained structure than that of the wild type protein. Overall, the results show that the M225K mutation abolishes and the R233W mutation tightens retinoid binding and both impair CRALBP function in the visual cycle as an 11-cis-retinol acceptor and as a substrate carrier.  相似文献   

7.
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.  相似文献   

8.
The attenuation of the sulfite:cytochrome c activity of sulfite oxidase upon treatment with ferricyanide was demonstrated to be the result of oxidation of the pterin ring of the molybdenum cofactor in the enzyme. Oxidation of molybdopterin (MPT) was detected in several ways. Ferricyanide treatment not only abolished the ability of sulfite oxidase to serve as a source of MPT to reconstitute the aponitrate reductase in extracts of the Neurospora crassa mutant nit-1 but also eliminated the ability of sulfite oxidase to reduce dichlorobenzenoneindophenol after anaerobic denaturation. Additionally, the absorption spectrum of anaerobically denatured ferricyanide-treated molybdenum fragment of rat liver sulfite oxidase was typical of fully oxidized pterins. Ferricyanide treatment had no effect on the protein of sulfite oxidase or on the sulfhydryl-containing side chain of MPT. Quantitation of the ferricyanide reaction showed that 2 mol of ferricyanide were reduced per mol of MPT oxidized, yielding a fully oxidized pterin. These results corroborate the previously reported conclusion that the native state of reduction of MPT in sulfite oxidase is at the dihydro level (Gardlik, S., and Rajagopalan, K.V. (1990) J. Biol. Chem. 265, 13047-13054). As a result of oxidation of the pterin ring, the affinity of MPT for molybdenum is decreased, leading to eventual loss of molybdenum. Because the loss of molybdenum is slow, a population of sulfite oxidase molecules can exist in which molybdenum is complexed to oxidized MPT. These molecules retain sulfite:O2 activity, a function apparently dependent solely on the molybdenum-thiolate complex, yet have greatly decreased sulfite:cytochrome c activity, a function requiring heme as well as the molybdenum center of holoenzyme. These observations suggest that the pterin ring of MPT participates in enzyme function, possibly in electron transfer, directly in catalysis, or by controlling the oxidation/reduction potential of molybdenum.  相似文献   

9.
We were able to reconstitute molybdopterin (MPT)-free sulfite oxidase in vitro with the molybdenum cofactor (Moco) synthesized de novo from precursor Z and molybdate. MPT-free human sulfite oxidase apoprotein was obtained by heterologous expression in an Escherichia coli mutant with a defect in the early steps of MPT biosynthesis. In vitro reconstitution of the purified apoprotein was achieved using an incubation mixture containing purified precursor Z, purified MPT synthase, and sodium molybdate. In vitro synthesized MPT generated from precursor Z by MPT synthase remains bound to the synthase. Surprisingly, MPT synthase was found capable of donating bound MPT to MPT-free sulfite oxidase. MPT was not released from MPT synthase when either bovine serum albumin or Moco-containing sulfite oxidase was used in place of aposulfite oxidase. After the inclusion of sodium molybdate in the reconstitution mixture, active sulfite oxidase was obtained, revealing that in vitro MPT synthase and aposulfite oxidase are sufficient for the insertion of MPT into sulfite oxidase and the conversion of MPT into Moco in the presence of high concentrations of molybdate. The conversion of MPT into Moco by molybdate chelation apparently occurs concomitantly with the insertion of MPT into sulfite oxidase.  相似文献   

10.
Oxidation of sulfite to sulfate by sulfite oxidase is inhibited when the enzyme is treated with reagents known to modify imidazole and carboxyl groups. Modification inhibits the oxidation of sulfite by the physiological electron acceptor cytochrome c, but not by the artificial acceptor ferricyanide. This indicates interference with reaction steps that follow the oxidation of sulfite by the enzyme's molybdenum cofactor. Reaction with diethylpyrocarbonate modifies ten histidines per enzyme monomer. Loss of activity is concomitant to the modification of only a single histidine residue. Inactivation takes place at the same rate in free sulfite oxidase and in the sulfite-oxidase--cytochrome-c complex. Blocking of carboxyl groups with water-soluble carbodiimides inactivates the enzyme. But none of the enzyme's carboxyl groups seems to be essential in the sense that its modification fully abolishes activity. The pattern of inactivation by chemical modification of sulfite oxidase is quite similar to that observed previously for cytochrome c peroxidase from yeast [Bosshard, H. R., B?nziger, J., Hasler, T. and Poulos, T. L. (1984) J. Biol. Chem. 259, 5683-5690; Bechtold, R. and Bosshard, H. R. (1985) J. Biol. Chem. 260, 5191-5200]. The two enzymes have very different structures yet share cytochrome c as a common substrate of which they recognize the same electron-transfer domain around the exposed heme edge.  相似文献   

11.
By using a bioinformatics screen of the Escherichia coli genome for potential molybdenum-containing enzymes, we have identified a novel oxidoreductase conserved in the majority of Gram-negative bacteria. The identified operon encodes for a proposed heterodimer, YedYZ in Escherichia coli, consisting of a soluble catalytic subunit termed YedY, which is likely anchored to the membrane by a heme-containing trans-membrane subunit termed YedZ. YedY is uniquely characterized by the presence of one molybdenum molybdopterin not conjugated by an additional nucleotide, and it represents the only molybdoenzyme isolated from E. coli characterized by the presence of this cofactor form. We have further characterized the catalytic subunit YedY in both the molybdenum- and tungsten-substituted forms by using crystallographic analysis. YedY is very distinct in overall architecture from all known bacterial reductases but does show some similarity with the catalytic domain of the eukaryotic chicken liver sulfite oxidase. However, the strictly conserved residues involved in the metal coordination sphere and in the substrate binding pocket of YedY are strikingly different from that of chicken liver sulfite oxidase, suggesting a catalytic activity more in keeping with a reductase than that of a sulfite oxidase. Preliminary kinetic analysis of YedY with a variety of substrates supports our proposal that YedY and its many orthologues may represent a new type of membrane-associated bacterial reductase.  相似文献   

12.
In mammals and birds, sulfite oxidase (SO) is a homodimeric molybdenum enzyme consisting of an N-terminal heme domain and a C-terminal molybdenum domain (EC ). In plants, the existence of SO has not yet been demonstrated, while sulfite reductase as part of sulfur assimilation is well characterized. Here we report the cloning of a plant sulfite oxidase gene from Arabidopsis thaliana and the biochemical characterization of the encoded protein (At-SO). At-SO is a molybdenum enzyme with molybdopterin as an organic component of the molybdenum cofactor. In contrast to homologous animal enzymes, At-SO lacks the heme domain, which is evident both from the amino acid sequence and from its enzymological and spectral properties. Thus, among eukaryotes, At-SO is the only molybdenum enzyme yet described possessing no redox-active centers other than the molybdenum. UV-visible and EPR spectra as well as apparent K(m) values are presented and compared with the hepatic enzyme. Subcellular analysis of crude cell extracts showed that SO was mostly found in the peroxisomal fraction. In molybdenum cofactor mutants, the activity of SO was strongly reduced. Using antibodies directed against At-SO, we show that a cross-reacting protein of similar size occurs in a wide range of plant species, including both herbacious and woody plants.  相似文献   

13.
Escherichia coli trimethylamine N-oxide (TMAO) reductase I, the major enzyme among inducible TMAO reductases, was purified to homogeneity by an improved method including heat treatment, ammonium sulfate precipitation, and chromatographies on Bio-Gel A-1.5m, DEAE-cellulose, and Reactive blue-agarose. The molecular weight was estimated by gel filtration to be approximately 200,000. A single subunit peptide with a molecular weight of 95,000 was found by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This enzyme contained 1.96 atoms of molybdenum, 0.96 atoms of iron, 1.52 atoms of zinc, and less than 0.4 atoms of acid-labile sulfur per molecular weight of 200,000. The absorption spectrum of the enzyme showed a peak at 278 nm and a shoulder at 288 nm, but no characteristic absorption was found from 350 to 700 nm. A fluorescent derivative of molybdenum cofactor was found when the enzyme was boiled with iodine in acidic solution; its fluorescence spectra were almost the same as those of the form A derivative of molybdopterin found in sulfite oxidase. The molybdenum cofactor released from heated TMAO reductase I reconstituted nitrate reductase in the extracts of Neurospora crassa mutant strain nit-1 lacking molybdenum cofactor. Thus, TMAO reductase I contains molybdopterin, which is a common constituent of some molybdenum-containing enzymes. Some kinetic properties were also determined.  相似文献   

14.
Molybdenum cofactor deficiency is a fatal neurological disorder, which follows an autosomal-recessive trait and is characterized by combined deficiency of the enzyme, sulfite oxidase, xanthine dehydrogenase and aldehyde oxidase. Early detection of molybdenum cofactor-deficient patients is essential for their proper care and genetic counseling of families at risk. We demonstrate the use of S-sulfonated transthyretin (TTR) as a marker for molybdenum cofactor deficiency. Plasma or sera obtained from 4 patients with molybdenum cofactor deficiency and 57 controls were studied by electrospray ionization mass spectrometry (ESIMS) following selective enrichment of TTR by immunoprecipitation using protein G/A agarose. The data obtained from molybdenum cofactor deficiency samples indicated a strong increase in the peak height of S-sulfonated TTR. A more significant difference was revealed if the peak height ratio of S-sulfonated TTR and the sum of the other oxidized TTR were determined. By accurate determination of the ratio, the samples of molybdenum cofactor deficiency patients could clearly be distinguished from controls without molybdenum cofactor deficiency.  相似文献   

15.
31P ENDOR spectra are described for three different molybdenum(V) species in reduced xanthine oxidase samples. The spectra were not affected by removing the FAD from the enzyme, implying that this is located at some distance from molybdenum. Furthermore, in confirmation of the work of J. L. Johnson, R. E. London, and K. V. Rajagopalan [(1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6493-6497], NMR and chemical analysis of the phosphate content of highly purified xanthine oxidase showed there are only three phosphate residues per subunit of the enzyme. It is concluded that the ENDOR features are due to hyperfine coupling of the phosphate group of the pterin cofactor to the molybdenum atom. Evaluation of the dipolar component of the coupling has permitted estimation of the molybdenum-phosphorus distances as 7-12 A. This implies that the cofactor is in an extended conformation in the enzyme molecule. Less detailed 31P ENDOR data on sulfite oxidase are consistent with a similar conformation for the cofactor in this enzyme.  相似文献   

16.
Among the mutations identified in patients with isolated sulfite oxidase deficiency, the G473D variant is of particular interest since sedimentation analysis reveals that this variant is a monomer, and the importance of the wild-type dimeric state of mammalian sulfite oxidase is not yet well understood. Analysis of recombinant G473D sulfite oxidase indicated that it is severely impaired both in the ability to bind sulfite and in catalysis, with a second-order rate constant 5 orders of magnitude lower than that of the wild type. To elucidate the specific reasons for the severe effects seen in the G473D variant, several other variants were created, including G473A, G473W, and the double mutant R212A/G473D. Despite the inability to form a stable dimer, the G473W variant had 5-fold higher activity than G473D and nearly wild-type activity at pH 7.0 when ferricyanide was the electron acceptor. In contrast, the R212A/G473D variant demonstrated some ability to oligomerize but had undetectable activity. The G473A variant retained the ability to dimerize and had steady-state activity that was comparable to that of the wild type. Furthermore, stopped-flow analysis of the reductive half-reaction of this variant yielded a rate constant nearly 3 times higher than that of the wild type. Examination of the secondary structures of the variants by CD spectroscopy indicated significant random-coil formation in G473D, G473W, and R212A/G473D. These results demonstrate that both the charge and the large size of an Asp residue in this position contribute to the severe effects seen in a patient with the G473D mutation, by causing partial misfolding and monomerization of sulfite oxidase and attenuating both substrate binding and catalytic efficiency during the reaction cycle.  相似文献   

17.
The carbon monoxide oxidases (COXs) purified from the carboxydotrophic bacteria Pseudomonas carboxydohydrogena and Pseudomonas carboxydoflava were found to be molybdenum hydroxylases, identical in cofactor composition and spectral properties to the recently characterized enzyme from Pseudomonas carboxydovorans (O. Meyer, J. Biol. Chem. 257:1333-1341, 1982). All three enzymes exhibited a cofactor composition of two flavin adenine dinucleotides, two molybdenums, eight irons and eight labile sulfides per dimeric molecule, typical for molybdenum-containing iron-sulfur flavoproteins. The millimolar extinction coefficient of the COXs at 450 nm was 72 (per two flavin adenine dinucleotides), a value similar to that of milk xanthine oxidase and chicken liver xanthine dehydrogenase at 450 nm. That molybdopterin, the novel prosthetic group of the molybdenum cofactor of a variety of molybdoenzymes (J. Johnson and K. V. Rajagopalan, Proc. Natl. Acad. Sci. U.S.A. 79:6856-6860, 1982) is also a constituent of COXs from carboxydotrophic bacteria is indicated by the formation of identical fluorescent cofactor derivatives, by complementation of the nitrate reductase activity in extracts of Neurospora crassa nit-l, and by the presence of organic phosphate additional to flavin adenine dinucleotides. Molybdopterin is tightly but noncovalently bound to the protein. COX, sulfite oxidase, xanthine oxidase, and xanthine dehydrogenase each contains 2 mol of molybdopterin per mol of enzyme. The presence of a trichloroacetic acid-releasable, so-far-unidentified, phosphorous-containing moiety in COX is suggested by the results of phosphate analysis.  相似文献   

18.
The nitrate reductase (NADPH) (EC 1.6.6.3) from Aspergillus nidulans is influenced directly by mutations in the structural gene (niaD) for the major subunit of the enzyme and indirectly by mutation in any of several molybdenum cofactor loci (cnx). The cnxE-14 and the cnxH-3 mutants have been noted to contain the enzyme in two distinct forms following induction with nitrate. With the cnxH-3 as a prototype cnxH mutant, 10 other cnxH were found to be devoid of the assembled (dimeric) form of the enzyme. Two monoclonal antibodies specific for the native enzyme of the wild type (biA-1) recognized an epitope on the enzyme from the cnxE-14 and cnxH-3 mutants that was common to both and another that was unique to the cnxH gene specified protomer. Another monoclonal antibody recognized an epitope that occurs only in the assembled dimerio form of the enzyme from the wild type or the cnxE-14 mutant. The experiments further substantiate the cnxH phenotype as one involving unassembled protomers of the nitrate reductase in Aspergillus.  相似文献   

19.
A simple and reliable procedure of oxidation of molybdenum cofactor (MoCo) from molybdoenzymes by autoclaving samples at 120 degrees C for 20 min yielded a single predominant fluorescent species that could be quantitatively determined by reverse phase high performance liquid chromatography. This method allowed detection and quantitation of molybdopterin in cell-free extracts of the green alga Chlamydomonas reinhardtii. The MoCo oxidation product from C. reinhardtii has the same chromatographic and spectral properties as that of milk xanthine oxidase and chicken liver sulfite oxidase. The oxidized species was also detected in molybdenum cofactor mutants of Chlamydomonas reinhardtii defective at the nit-3, nit-4, nit-5/nit-6 and nit-7 loci, which strongly suggests that active molybdenum cofactor itself is not directly involved in the control of its own biosynthetic pathway.  相似文献   

20.
The periplasmic sulfite dehydrogenase of Paracoccus pantotrophus GB17 was purified to homogeneity by a four-step procedure from cells grown lithoautotrophically with thiosulfate. The molecular mass of native sulfite dehydrogenase was 190 kDa as determined by native gradient PAGE. SDS-PAGE showed sulfite dehydrogenase to comprise two subunits with molecular masses of 47 kDa and 50 kDa, suggesting an alpha2beta2 structure. The N-terminal amino acid sequence and immunochemical analysis using SoxC-specific antibodies identified the 47-kDa protein as the soxC gene product. SoxD-specific antibodies identified the 50-kDa protein as SoxD. Based on the molecular masses deduced from the nucleotide sequence for mature SoxC (43,442 Da) and SoxD (37,637 Da) sulfite dehydrogenase contained 1.30 mol molybdenum/mol alpha2beta2 sulfite dehydrogenase. The iron content was 3.17 mol/mol alpha2beta2 sulfite dehydrogenase, and 3.53 mol heme/mol alpha2beta2 sulfite dehydrogenase was determined by pyridine hemochrome analysis. These data are consistent with the two heme-binding domains (CxxCH), characteristic for c-type cytochromes, deduced from the soxD nucleotide sequence. Electrospray ionization revealed two masses for SoxC of 43,503 and 43,897 Da. The difference in molecular mass was attributed to the molybdenum cofactor of SoxC. For SoxD a mass of 38,815 Da was determined; this accounted for the polypeptide and two covalently bound hemes. Reconstitution of the catalytic activity of sulfite dehydrogenase required additional fractions; these eluted from Q Sepharose at 0.05, 0.25, and 0.30 M NaCl. The K(m) of sulfite dehydrogenase for sulfite was 7.0 microM and for cytochrome c 19 microM. Sulfite dehydrogenase activity was inhibited by sulfate and phosphate. The structural and catalytic properties make sulfite dehydrogenase from P. denitrificans GB17 distinct from sulfite oxidases of other prokaryotic or eukaryotic sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号