首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

The study develops site-dependent characterization factors (CFs) for marine ecotoxicity of metals emitted to freshwater, taking their passage of the estuary into account. To serve life cycle assessment (LCA) studies where emission location is often unknown, site-generic marine CFs were developed for metal emissions to freshwater and coastal seawater, respectively. The new CFs were applied to calculate endpoint impact scores for the same amount of metal emission to each compartment, to compare the relative ecotoxicity damages in freshwater and marine ecosystems in LCA.

Methods

Site-dependent marine CFs for emission to freshwater were calculated for 64 comparatively independent seas (large marine ecosystems, LMEs). The site-dependent CF was calculated as the product of fate factor (FF), bioavailability factor (BF), and effect factor (EF). USEtox modified with site-dependent parameters was extended with an estuary removal process to calculate FF. BF and EF were taken from Dong et al. Environ Sci Technol 50:269–278 (2016). Site-generic marine CFs were derived from site-dependent marine CFs. Different averaging principles were tested, and the approach representing estuary discharge rate was identified as the best one. Endpoint marine and freshwater metals CFs were developed to calculate endpoint ecotoxicity impact scores.

Results and discussion

Marine ecotoxicity CFs are 1.5 orders of magnitude lower for emission to freshwater than for emission to seawater for Cr, Cu, and Pb, due to notable removal fractions both in freshwater and estuary. For the other metals, the difference is less than half an order of magnitude, mainly due to removal in freshwater. The site-dependent CFs generally vary within two orders of magnitude around the site-generic CF. Compared to USES-LCA 2.0 CFs (egalitarian perspective), the new site-generic marine CFs for emission to seawater are 1–4 orders of magnitude lower except for Pb. The new site-generic marine CFs for emission to freshwater lie within two orders of magnitude difference from USES-LCA 2.0 CFs. The comparative contribution share analysis shows a poor agreement of metal toxicity ranking between both methods.

Conclusions

Accounting for estuary removal particularly influences marine ecotoxicity CFs for emission to freshwater of metals that have a strong tendency to complex-bind to particles. It indicates the importance of including estuary in the characterization modelling when dealing with those metals. The resulting endpoint ecotoxicity impact scores are 1–3 orders of magnitude lower in seawater than in freshwater for most metals except Pb, illustrating the higher sensitivity of freshwater ecosystems to metal emissions, largely due to the higher species density there.
  相似文献   

2.
3.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.014

Background, Aims and Scope

In the life cycle of a product, emissions take place at many different locations. The location of the source and its surrounding conditions influence the fate of the emitted pollutant and the subsequent exposure it causes. This source of variation is normally neglected in Life Cycle Impact Assessment (LCIA), although it is well known that the impacts predicted by site-generic LCIA in some cases differ significantly from the actual impacts. Environmental impacts of photochemical ozone (ground-level ozone) depend on parameters with a considerable geographical variability (like emission patterns and population densities). A spatially differentiated characterisation model thus seems relevant.

Methods

and Results. The European RAINS model is applied for calculation of site-dependent characterisation factors for Non-Methane Volatile Organic Compounds (NMVOCs) and nitrogen oxides (NOx) for 41 countries or regions within Europe, and compatible characterisation factors for carbon monoxide (CO) are developed based on expert judgement. These factors are presented for three emission years (1990, 1995 and 2010), and they address human health impacts and vegetation impacts in two separate impacts categories, derived from AOT40 and AOT60 values respectively. Compatible site-generic characterisation factors for NMVOC, NOx, CO and methane (CH4) are calculated as emission-weighted European averages to be applied on emissions for which the location is unknown. The site-generic and site-dependent characterisation factors are part of the EDIP2003 LCIA methodology. The factors are applied in a specific case study, and it is demonstrated how the inclusion of spatial differentiation may alter the results of the photochemical ozone characterisation of life cycle impact assessment.

Discussion

and Conclusions. Compared to traditional midpoint characterisation modelling, this novel approach is spatially resolved and comprises a larger part of the cause-effect chain including exposure assessment and exceeding of threshold values. This positions it closer to endpoint modelling and makes the results easier to interpret. In addition, the developed model allows inclusion of the contributions from NOx, which are ne- glected when applying the traditional approaches based on Photochemical Ozone Creation Potentials (POCPs). The variation in site-dependent characterisation factors is far larger than the variation in POCP factors. It thus seems more important to represent the spatially determined variation in exposure than the difference in POCP among the substances.
  相似文献   

4.

Purpose

A framework for the inclusion of land use impact assessment and a set of land use impact indicators has been recently proposed for life cycle assessment (LCA) and no case studies are available for forest biomass. The proposed methodology is tested for Scandinavian managed forestry; a comparative case study is made for energy from wood, agro-biomass and peat; and sensitivity to forest management options is analysed.

Methods

The functional unit of this comparative case study is 1 GJ of energy in solid fuels. The land use impact assessment framework of the United Nations Environment Programme and the Society of Environmental Toxicology and Chemistry (UNEP-SETAC) is followed and its application for wood biomass is critically analysed. Applied midpoint indicators include ecological footprint and human appropriation of net primary production, global warming potential indicator for biomass (GWPbio-100) and impact indicators proposed by UNEP-SETAC on ecosystem services and biodiversity. Options for forest biomass land inventory modelling are discussed. The system boundary covers only the biomass acquisition phase. Management scenarios are formulated for forest and barley biomass, and a sensitivity analysis focuses on impacts of land transformations for agro-biomass.

Results and discussion

Meaningful differences were found in between solid biofuels from distinct land use classes. The impact indicator results were sensitive to land occupation and transformation and differed significantly from inventory results. Current impact assessment method is not sensitive to land management scenarios because the published characterisation factors are still too coarse and indicate differences only between land use types. All indicators on ecosystem services and biodiversity were sensitive to the assumptions related with land transformation. The land occupation (m2a) approach in inventory was found challenging for Scandinavian wood, due to long rotation periods and variable intensities of harvests. Some suggestions of UNEP-SETAC were challenged for the sake of practicality and relevance for decision support.

Conclusions

Land use impact assessment framework for LCA and life cycle impact assessment (LCIA) indicators could be applied in a comparison of solid bioenergy sources. Although forest bioenergy has higher land occupation than agro-bioenergy, LCIA indicator results are of similar magnitude or even lower for forest bioenergy. Previous literature indicates that environmental impacts of land use are significant, but it remains questionable if these are captured with satisfactory reliability with the applied LCA methodology, especially for forest biomass. Short and long time perspectives of land use impacts should be studied in LCA with characterisation factors for all relevant timeframes, not only 500 years, with a forward-looking perspective. Characterisation factors need to be modelled further for different (forest) land management intensities and for peat excavation.  相似文献   

5.

Purpose

A cascading utilization of resources is encouraged especially by legislative bodies. However, only few consecutive assessments of the environmental impacts of cascading are available. This study provides answers to the following questions for using recovered wood as a secondary resource: (1) Does cascading decrease impacts on the environment compared to the use of primary wood resources? (2) What aspects of the cascading system are decisive for the life cycle assessment (LCA) results?

Methods

We conducted full LCAs for cascading utilization options of waste wood and compared the results to functionally equivalent products from primary wood, thereby focusing on the direct effects cascading has on the environmental impacts of the systems. In order to compare waste wood cascading to the use of primary wood with LCA, a functional equivalence of the systems has to be achieved. We applied a system expansion approach, considering different options for providing the additionally needed energy for the cascading system.

Results and discussion

We found that the cascading systems create fewer environmental impacts than the primary wood systems, if system expansion is based on wood energy. The most noticeable advantages were detected for the impact categories of land transformation and occupation and the demand of primary energy from renewable sources. The results of the sensitivity analyses indicate that the advantage of the cascading system is robust against the majority of considered factors. Efficiency and the method of incineration at the end of life do influence the results.

Conclusions

To maximize the benefits and minimize the associated environmental impacts, cascading proves to be a preferable option of utilizing untreated waste wood.  相似文献   

6.

Purpose

Until recently, life cycle assessments (LCAs) have only addressed the direct greenhouse gas emissions along a process chain, but ignored the CO2 emissions of land-use. However, for agricultural products, these emissions can be substantial. Here, we present a new methodology for including the implications of land occupation for CO2 emissions to realistically reflect the consequences of consumers?? decisions.

Method

In principle, one can distinguish five different approaches of addressing the CO2 consequences of land occupation: (1) assuming constant land cover, (2) land-use change related to additional production of the product under consideration, (3) historic land-use change, assuming historical relations between existing area and area expansion (4) land-use change related to less production of the product under consideration (??missed potential carbon sink?? of land occupation), and (5) an approach of integrating land conversion emissions and delayed uptake due to land occupation. Approach (4) is presented in this paper, using LCA data on land occupation, and carbon dynamics from the IMAGE model. Typically, if less production occurs, agricultural land will be abandoned, leading to a carbon sink when vegetation is regrowing. This carbon sink, which does not occur if the product would still be consumed, is thus attributed to the product as ??missed potential carbon sink??, to reflect the CO2 implications of land occupations.

Results

We analyze the missed potential carbon sink by relating land occupation data from LCA studies to the potential carbon sink as calculated by an Integrated Global Assessment Model and its process-based, spatially explicit carbon cycle model. Thereby, we account for regional differences, heterogeneity in land-use, and different time horizons. Example calculations for several livestock products show that the CO2 consequences of land occupation can be in the same order of magnitude as the other process related greenhouse gas emissions of the LCA, and depend largely on the production system. The highest CO2 implications of land occupation are calculated for beef and lamb, with beef production in Brazil having a missed potential carbon sink more than twice as high as the other GHG emissions.

Conclusions

Given the significant contribution of land occupation to the total GHG balance of agricultural products, they need to be included in life cycle assessments in a realistic way. The new methodology presented here reflects the consequences of producing or not producing a certain commodity, and thereby it is suited to inform consumers fully about the consequences of their choices.  相似文献   

7.

Purpose

Spatial analyses in life cycle assessments are hardly ever conducted. The combination of geoinformation systems and life cycle assessments (LCA) databases is a way to realise such complex calculations. By the example of energetic utilisation of biomass via conditioned biogas a geoinformation systems-based calculation tool is presented which combines geodata on biomass potentials, infrastructure, land use, cost and technology databases with analysis tools for the planning of biogas plants to identify the most efficient plant locations, to calculate balances of emissions, biomass streams and costs.

Methods

The calculations include the impact categories greenhouse gases, acidification, and eutrophication and were tested for the Lower Rhine region and the Altmark region in Germany. The results of the greenhouse gas (GHG) balances are presented. By using only nationwide available datasets, the calculation tool can be used in other regions as well.

Results and discussion

Balances of individual sites, regional balances and their temporal development can be calculated in geoinformation systems (GIS) using LCA methods. The composition of the substrates varies according to site and catchment area and lead to large variations in plant configurations and the resulting GHG balances and cost structures.

Conclusions

GIS tools do not only allow the assessment of individual plants, but also the determination of the GHG reduction potential, the biogas potential as well as the necessary investment costs for entire regions. Thus, the exploitation of regional biogas potentials in a way that is sustainable and climate-friendly becomes simple.  相似文献   

8.

Purpose

Rarely considered in environmental assessment methods, potential land use impacts on a series of ecosystem services must be accounted for in widely used decision-making tools such as life cycle assessment (LCA). The main goal of this study is to provide an operational life cycle impact assessment characterization method that addresses land use impacts at a global scale by developing spatially differentiated characterization factors (CFs) and assessing the extent of their spatial variability using different regionalization levels.

Methods

The proposed method follows the recommendations of previous work and falls within the framework and principles for land use impact assessment established by the United Nations Environment Programme/Society of Environmental Toxicology and Chemistry Life Cycle Initiative. Based on the spatial approach suggested by Saad et al. (Int J Life Cycle Assess 16: 198–211, 2011), the intended impact pathways that are modeled pertain to impacts on ecosystem services damage potential and focus on three major ecosystem services: (1) erosion regulation potential, (2) freshwater regulation potential, and (3) water purification potential. Spatially-differentiated CFs were calculated for each biogeographic region of all three regionalization scale (Holdridge life regions, Holdridge life zones, and terrestrial biomes) along with a nonspatial world average level. In addition, seven land use types were assessed considering both land occupation and land transformation interventions.

Results and discussion

A comprehensive analysis of the results indicates that, when compared to all resolution schemes, the world generic averaged CF can deviate for various ecosystem types. In the case of groundwater recharge potential impacts, this range varied up to factors of 7, 4.7, and 3 when using the Holdridge life zones, the Holdridge regions, and the terrestrial biomes regionalization levels, respectively. This validates the importance of introducing a regionalized assessment and highlights how a finer scale increases the level of detail and consequently the discriminating power across several biogeographic regions, which could not have been captured using a coarser scale. In practice, the implementation of such regionalized CFs suggests that an LCA practitioner must identify the ecosystem in which land occupation or transformation activities occur in addition to the traditional inventory data required—namely, the land use activity and the inventory flow.

Conclusions

The variability of CFs across all three regionalization levels provides an indication of the uncertainty linked to nonspatial CFs. Among other assumptions and value choices made throughout the study, the use of ecological borders over political boundaries was deemed more relevant to the interpretation of environmental issues related to specific functional ecosystem behaviors.  相似文献   

9.

Purpose

Halting the loss of biodiversity while providing food security for a growing and prospering world population is a challenge. One possible solution to this dilemma is organic agriculture, which is expected to enhance biodiversity on the farmland. However, organic products often require larger areas. This study demonstrates how we can quantify and compare the direct land use impacts on biodiversity of organic and conventional food products such as milk.

Material and methods

This study assessed direct land use impacts of 1 l of milk leaving the farm gate. Inventory data on land occupation were extracted from a life cycle assessment study of 15 farms in southern Sweden. Direct land use change data were derived from the FAO statistical database. Spatially differentiated characterization factors of occupation (CFOcc) and transformation (CFTrans) were calculated based on the relative difference of plant species richness on agricultural land compared to a (semi) natural regional reference. Data on plant species richness and regeneration times of ecosystems (for calculating transformation impacts) were derived from a literature review. To account for differences in biodiversity value between regions, a weighting system based on absolute species richness, vulnerability and irreplaceability was applied.

Results and discussion

Organic milk had a lower direct land use impact than conventional milk, although it required about double the area. Occupation impacts dominated the results and were much smaller for organic than conventional milk, as CFOcc of organic land uses were considerably smaller. For transformation impacts, differences between the two farming practices were even more pronounced. The highest impacts were caused by soymeal in concentrate feeds (conventional milk) due to large-scale deforestation in its country of cultivation (i.e. Brazil and Argentina). However, lack of reliable data posed a challenge in the assessment of transformation impacts. Overall, results were highly sensitive to differences in land occupation area between farms, the CFOcc and assumptions concerning transformed area. Sensitivity and robustness of results were tested and are discussed.

Conclusions

Although organic milk required about twice as much land as conventional, it still had lower direct land use impacts on biodiversity. This highlights the importance of assessing land use impacts not only based on area but also considering the actual impacts on biodiversity. The presented approach allows to quantify and compare hot- and coldspots in the agricultural stage of milk production and could potentially also be applied to other agricultural products. However, more research is needed to allow quantification of indirect land use impacts.  相似文献   

10.

Purpose

The inclusion of land-use activities in life cycle assessment (LCA) has been subject to much debate in the LCA community. Despite the recent methodological developments in this area, the impacts of land occupation and transformation on its long-term ability to produce biomass (referred to here as biotic production potential [BPP]) — an important endpoint for the Area of Protection (AoP) Natural Resources — have been largely excluded from LCAs partly due to the lack of life cycle impact assessment methods.

Materials and methods

Several possible methods/indicators for BPP associated with biomass, carbon balance, soil erosion, salinisation, energy, soil biota and soil organic matter (SOM) were evaluated. The latter indicator was considered the most appropriate for LCA, and characterisation factors for eight land use types at the climate region level were developed.

Results and discussion

Most of the indicators assessed address land-use impacts satisfactorily for land uses that include biotic production of some kind (agriculture or silviculture). However, some fail to address potentially important land use impacts from other life cycle stages, such as those arising from transport. It is shown that the change in soil organic carbon (SOC) can be used as an indicator for impacts on BPP, because SOC relates to a range of soil properties responsible for soil resilience and fertility.

Conclusions

The characterisation factors developed suggest that the proposed approach to characterize land use impacts on BBP, despite its limitations, is both possible and robust. The availability of land-use-specific and biogeographically differentiated data on SOC makes BPP impact assessments operational. The characterisation factors provided allow for the assessment of land-use impacts on BPP, regardless of where they occur thus enabling more complete LCAs of products and services. Existing databases on every country’s terrestrial carbon stocks and land use enable the operability of this method. Furthermore, BPP impacts will be better assessed by this approach as increasingly spatially specific data are available for all geographical regions of the world at a large scale. The characterisation factors developed are applied to the case studies (Part D of this special issue), which show the practical issues related to their implementation.  相似文献   

11.

Purpose

Current estimations of the climate impact from indirect land use change (ILUC) caused by biofuels are heavily influenced by assumptions regarding the biofuel production period. The purpose of this paper is to propose a new method (baseline time accounting) that takes global land use dynamics into account that is consistent with the global warming potential, that is applicable to any phenomenon causing land use change, and that is independent of production period assumptions.

Methods

We consider ILUC in two forms. The first is called “accelerated expansion” and concerns ILUC in regions with an expanding agricultural area. The second is called “delayed reversion” and concerns ILUC in regions with a decreasing agricultural area. We use recent trends in international land use and projections of future land use change to assess how ILUC from biofuels will alter the development in global agricultural land use dynamics compared to the existing trend (i.e., the baseline development). We then use the definition of the global warming potential to determine the CO2 equivalence of the change in land use dynamics.

Results and discussion

We apply baseline time accounting to two existing ILUC studies in the literature. With current trends in global agricultural land use, the method significantly reduces the estimated climate impact in the previous ILUC studies (by more than half). Sensitivity analyses show that results are somewhat sensitive to assumptions regarding carbon sequestration and assumptions regarding postreversion ecosystems.

Conclusions

The global dynamic development in land use has important implications for the time accounting step when estimating the climate impact of ILUC caused by biofuel production or other issues affecting land use. Ignoring this may lead to erroneous conclusions about the actual climate impact of ILUC. Several land use projections indicate that the global agricultural area will keep expanding up to and beyond 2050. We therefore recommend to apply the baseline time accounting concept as an integrated part of future ILUC studies and to update the results on a regular basis.  相似文献   

12.
13.

Background and aims

The objectives of this study were to quantify the morphological and mechanical properties of the root-plate within two sunflower hybrids of contrasting susceptibility to root lodging; and to evaluate the effects of crop population density on these properties at two different development stages.

Methods

Two hybrids (CF29: tolerant, Zenit: sensitive) were grown at three densities: 5.6, 10 and 16 plants m?2. At R2 (early reproductive) and R6 (end anthesis) development stages, plants were artificially lodged and stem biomass, total root biomass in the whole root-plate and in the 0–5 and >5 cm layers of the plate, root number (three diametrical categories: 0–1, 1.1–2, >2 mm), total root length, and root axial breakage force were assessed.

Results

CF29 root mass was twice that of Zenit with differences mainly in the top 5 cm of soil. This higher root-plate biomass of CF29 was associated with a greater root number and root length compared to Zenit within all root diameter categories. Roots of CF29 exhibited higher axial tension failure thresholds than those of Zenit, and these thresholds increased more sharply with root diameter in CF29 than in Zenit.

Conclusions

The better anchorage and tolerance to lodging of CF29 with respect to Zenit arose from additive actions of traits at both whole root-plate and individual root levels. These included total root-plate root length, root number, root biomass and root axial breakage force.  相似文献   

14.

Purpose

As a consequence of the multi-functionality of land, the impact assessment of land use in Life Cycle Impact Assessment requires the modelling of several impact pathways covering biodiversity and ecosystem services. To provide consistency amongst these separate impact pathways, general principles for their modelling are provided in this paper. These are refinements to the principles that have already been proposed in publications by the UNEP-SETAC Life Cycle Initiative. In particular, this paper addresses the calculation of land use interventions and land use impacts, the issue of impact reversibility, the spatial and temporal distribution of such impacts and the assessment of absolute or relative ecosystem quality changes. Based on this, we propose a guideline to build methods for land use impact assessment in Life Cycle Assessment (LCA).

Results

Recommendations are given for the development of new characterization models and for which a series of key elements should explicitly be stated, such as the modelled land use impact pathways, the land use/cover typology covered, the level of biogeographical differentiation used for the characterization factors, the reference land use situation used and if relative or absolute quality changes are used to calculate land use impacts. Moreover, for an application of the characterisation factors (CFs) in an LCA study, data collection should be transparent with respect to the data input required from the land use inventory and the regeneration times. Indications on how generic CFs can be used for the background system as well as how spatial-based CFs can be calculated for the foreground system in a specific LCA study and how land use change is to be allocated should be detailed. Finally, it becomes necessary to justify the modelling period for which land use impacts of land transformation and occupation are calculated and how uncertainty is accounted for.

Discussion

The presented guideline is based on a number of assumptions: Discrete land use types are sufficient for an assessment of land use impacts; ecosystem quality remains constant over time of occupation; time and area of occupation are substitutable; transformation time is negligible; regeneration is linear and independent from land use history and landscape configuration; biodiversity and multiple ecosystem services are independent; the ecological impact is linearly increasing with the intervention; and there is no interaction between land use and other drivers such as climate change. These assumptions might influence the results of land use Life Cycle Impact Assessment and need to be critically reflected.

Conclusions and recommendations

In this and the other papers of the special issue, we presented the principles and recommendations for the calculation of land use impacts on biodiversity and ecosystem services on a global scale. In the framework of LCA, they are mainly used for the assessment of land use impacts in the background system. The main areas for further development are the link to regional ecological models running in the foreground system, relative weighting of the ecosystem services midpoints and indirect land use.  相似文献   

15.

Purpose

In the European Union project New Energy Externalities Development for Sustainability (NEEDS), power generation technologies were ranked by means of two sustainability assessment approaches. The total costs approach, adding private and external costs, and a multi-criteria decision analysis (MCDA) were used, integrating social, economic and environmental criteria. Both approaches relied on environmental indicators based on life cycle assessment. This study aims to analyse the extent to which the development of life cycle sustainability assessment (LCSA) can draw on these ranking methods.

Methods

The approaches to rank technologies in the NEEDS project are reviewed in terms of similarities and differences in concept, quantification and scope. Identified issues are discussed and set into perspective for the development of a potential future LCSA framework.

Results and discussion

The NEEDS MCDA and total costs considerably overlap regarding issues covered, except for several social aspects. Beyond total costs being limited to private and external costs, most notable conceptual differences concern the coverage of pecuniary (i.e. price change-induced) external effects, and potential double-counting for instance of resource depletion or specific cost components. External costs take account of the specific utility changes of those affected, requiring a rather high level of spatial and temporal detail. This allows addressing intra- and inter-generational aspects. Differences between both ranking methods and current LCSA methods concern the way weighting is performed, the social aspects covered and the classification of indicators according to the three sustainability dimensions. The methods differ in the way waste, accidents or intended impacts are taken into account. An issue regarding the definition of truly comparable products has also been identified (e.g. power plants).

Conclusions

For the development of LCSA, the study suggests that taking a consequential approach allows assessing pecuniary effects and repercussions of adaptation measures, relevant for a sustainability context, and that developing a life cycle impact assessment for life cycle costing would provide valuable information. The study concludes with raising a few questions and providing some suggestions regarding the development of a consistent framework for LCSA: whether the analyses in LCSA shall be distinguished into the three dimensions of sustainable development at the inventory or the impact level also with the aim to avoid double-counting, whether or not LCSA will address exceptional events, whether or not benefits shall be accounted for and how to deal with methodological and value choices (e.g. through sensitivity analyses).  相似文献   

16.

Aims

In this study we quantified the annual soil CO2 efflux (annual SCE) of a short rotation coppice plantation in its establishment phase. We aimed to examine the effect of former (agricultural) land use type, inter-row spacing and genotype.

Methods

Annual SCE was quantified during the second growth year of the establishment rotation in a large scale poplar plantation in Flanders. Automated chambers were distributed over the two former land use types, the two different inter-row spacings and under two poplar genotypes. Additional measurements of C, N, P, K, Mg, Ca and Na concentrations of the soil, pH, bulk density, fine root biomass, microbial biomass C, soil mineralization rate, distance to trees and tree diameters were performed at the end of the second growth year.

Results

Total carbon loss from soil CO2 efflux was valued at 589 g m?2 yr?1. Annual SCE was higher in former pasture as compared to cropland, higher in the narrow than in the wider inter-row spacings, but no effect of genotype was found.

Conclusions

Spatial differences in site characteristics are of great importance for understanding the effect of ecosystem management and land use change on soil respiration processes and need to be taken into account in modeling efforts of the carbon balance.  相似文献   

17.
Land use impacts on biodiversity in LCA: a global approach   总被引:1,自引:0,他引:1  

Purpose

Land use is a main driver of global biodiversity loss and its environmental relevance is widely recognized in research on life cycle assessment (LCA). The inherent spatial heterogeneity of biodiversity and its non-uniform response to land use requires a regionalized assessment, whereas many LCA applications with globally distributed value chains require a global scale. This paper presents a first approach to quantify land use impacts on biodiversity across different world regions and highlights uncertainties and research needs.

Methods

The study is based on the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) land use assessment framework and focuses on occupation impacts, quantified as a biodiversity damage potential (BDP). Species richness of different land use types was compared to a (semi-)natural regional reference situation to calculate relative changes in species richness. Data on multiple species groups were derived from a global quantitative literature review and national biodiversity monitoring data from Switzerland. Differences across land use types, biogeographic regions (i.e., biomes), species groups and data source were statistically analyzed. For a data subset from the biome (sub-)tropical moist broadleaf forest, different species-based biodiversity indicators were calculated and the results compared.

Results and discussion

An overall negative land use impact was found for all analyzed land use types, but results varied considerably. Different land use impacts across biogeographic regions and taxonomic groups explained some of the variability. The choice of indicator also strongly influenced the results. Relative species richness was less sensitive to land use than indicators that considered similarity of species of the reference and the land use situation. Possible sources of uncertainty, such as choice of indicators and taxonomic groups, land use classification and regionalization are critically discussed and further improvements are suggested. Data on land use impacts were very unevenly distributed across the globe and considerable knowledge gaps on cause–effect chains remain.

Conclusions

The presented approach allows for a first rough quantification of land use impact on biodiversity in LCA on a global scale. As biodiversity is inherently heterogeneous and data availability is limited, uncertainty of the results is considerable. The presented characterization factors for BDP can approximate land use impacts on biodiversity in LCA studies that are not intended to directly support decision-making on land management practices. For such studies, more detailed and site-dependent assessments are required. To assess overall land use impacts, transformation impacts should additionally be quantified. Therefore, more accurate and regionalized data on regeneration times of ecosystems are needed.  相似文献   

18.

Purpose

Shifting the resource base for chemical and energy production from fossil feed stocks to renewable raw materials is seen by many as one of the key strategies towards sustainable development. The objective of this study is to assess the environmental burdens of producing polyitaconic acid (PIA), a water-soluble polymer derived from itaconic acid identified by the US Department of Energy as one of the top 12 value added chemicals from northeast (NE) US softwood biomass. Results are compared to corn-derived PIA and fossil-based poly acrylic acid (PAA) on the basis of 1 kg of polymer at the factory gate.

Methods

This study uses attributional life cycle assessment to quantify global warming potential (GWP), fossil energy demand (CED), acidification, eutrophication, water use, and land occupation of the polymer production routes. This includes feedstock growth and harvest, sugar extraction, fermentation, itaconic acid recovery, and subsequent polymerization. Foreground data for softwood-derived PIA comes from lab- and pilot plant runs undertaken by Itaconix LLC.

Results and discussion

Results indicate that the use of softwood-based PIA may be advantageous in terms of GWP, CED, and acidification when compared to both, the integrated corn biorefinery and fossil-based PAA production. When looking at impacts to eutrophication and water use, the use of softwood leads to lower potential impacts compared to its corn-based counterpart but to higher impacts when compared to fossil-based PAA. Land occupation, to a large extent, due to lower yields and longer growth cycles associated with softwood growth in the NE, is highest for softwood-derived PIA and lowest for fossil-based PAA. Environmental impacts are mainly the results of onsite electricity use, inputs of activated carbon and sodium hydroxide, as well as water use during sugar extraction and fermentation. Assumptions with regards to allocation, activated carbon inputs, and electricity mixes to processes of the foreground system are tested in a sensitivity analysis.

Conclusions

Wood-derived PIA production may be an interesting alternative to current fossil-based pathways and could contribute to a future biobased economy. However, currently, land occupation, water use, and eutrophication are high when compared to traditional PAA production. The use of short rotation crops or waste feedstocks and optimization with regards to water requirements and reuse should be investigated to further lower system-wide impacts.  相似文献   

19.

Purpose

In life cycle assessment (LCA), eutrophication is commonly assessed using site-generic characterisation factors, despite being a site-dependent environmental impact. The purpose of this study was to improve the environmental relevance of marine eutrophication impact assessment in LCA, particularly regarding the impact assessment of waterborne nutrient emissions from Swedish agriculture.

Methods

Characterisation factors were derived using site-dependent data on nutrient transport for all agricultural soils in Sweden, divided into 968 catchment areas, and considering the Baltic Sea, the receiving marine compartment, as both nitrogen- and phosphorus-limited. These new characterisation factors were then applied to waterborne nutrient emissions from typical grass ley and spring barley cultivation in all catchments.

Results and discussion

The site-dependent marine eutrophication characterisation factors obtained for nutrient leaching from soils varied between 0.056 and 0.986 kg Neq/kg N and between 0 and 7.23 kg Neq/kg P among sites in Sweden. On applying the new characterisation factors to spring barley and grass ley cultivation at different sites in Sweden, the total marine eutrophication impact from waterborne nutrient emissions for these crops varied by up to two orders of magnitude between sites. This variation shows that site plays an important role in determining the actual impact of an emission, which means that site-dependent impact assessment could provide valuable information to life cycle assessments and increase the relevance of LCA as a tool for assessment of product-related eutrophication impacts.

Conclusions

Characterisation factors for marine eutrophication impact assessment at high spatial resolution, considering both the site-dependent fate of eutrophying compounds and specific nutrient limitations in the recipient waterbody, were developed for waterborne nutrient emissions from agriculture in Sweden. Application of the characterisation factors revealed variations in calculated impacts between sites in Sweden, highlighting the importance of spatial differentiation of characterisation modelling within the scale of the impact.
  相似文献   

20.

Purpose

Change of vegetation cover and increased land use intensity, particularly for agricultural use, can affect species richness. Within life cycle impact assessment, methods to assess impacts of land use on a global scale are still in need of development. In this work, we present a spatially explicit data-driven approach to characterize the effect of agricultural land occupation on different species groups.

Methods

We derived characterization factors for the direct impact of agricultural land occupation on relative species richness. Our method identifies potential differences in impacts for cultivation of different crop types, on different species groups, and in different world regions. Using empirical species richness data gathered via an extensive literature search, characterization factors were calculated for four crop groups (oil palm, low crops, Pooideae, and Panicoideae), four species groups (arthropods, birds, mammals, and vascular plants), and six biomes.

Results and discussion

Analysis of the collected data showed that vascular plant richness is more sensitive than the species richness of arthropods to agricultural land occupation. Regarding the differences between world regions, the impact of agricultural land use was lower in boreal forests/taiga than in temperate and tropical regions. The impact of oil palm plantations was found to be larger than that of Pooideae croplands, although we cannot rule out that this difference is influenced by the spatial difference between the oil palm- and Pooideae-growing regions as well. Analysis of a subset of data showed that the impact of conventional farming was larger than the impact of low-input farming.

Conclusions

The impact of land occupation on relative species richness depends on the taxonomic groups considered, the climatic region, and farm management. The influence of crop type, however, was found to be of less importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号