首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been a new interest in using aldehyde dehydrogenase (ALDH) activity as one marker for stem cells since the Aldefluor flow cytometry-based assay has become available. Diethylaminobenzaldehyde (DEAB), used in the Aldeflour assay, has been considered a specific inhibitor for ALDH1A1 isoform. In this study, we explore the effects of human ALDH isoenzymes, ALDH1A2 and ALDH2, on drug resistance and proliferation, and the specificity of DEAB as an inhibitor. We also screened for the expression of 19 ALDH isoenzymes in K562 cells using TaqMan Low Density Array (TLDA). We used lentiviral vectors containing the full cDNA length of either ALDH2 or ALDH1A2 to over express the enzymes in K562 leukemia and H1299 lung cancer cell lines. Successful expression was measured by activity assay, Western blot, RT-PCR, and Aldefluor assay. Both cell lines, with either ALDH1A2 or ALDH2, exhibited higher cell proliferation rates, higher clonal efficiency, and increased drug resistance to 4-hydroperoxycyclophosphamide and doxorubicin. In order to study the specificity of known ALDH activity inhibitors, DEAB and disulfiram, we incubated each cell line with either inhibitor and measured the remaining ALDH enzymatic activity. Both inhibitors reduced ALDH activity of both isoenzymes by 65-90%. Furthermore, our TLDA results revealed that ALDH1, ALDH7, ALDH3 and ALDH8 are expressed in K562 cells. We conclude that DEAB is not a specific inhibitor for ALDH1A1 and that Aldefluor assay is not specific for ALDH1A1 activity. In addition, other ALDH isoenzymes seem to play a major role in the biology and drug resistance of various malignant cells.  相似文献   

2.
The stratified squamous epithelia differ regionally in their patterns of morphogenesis and differentiation. Although some reports suggested that the adult epithelial phenotype is an intrinsic property of the epithelium, there is increasing evidence that subepithelial connective tissue can modify the phenotypic expression of the epithelium. The aim of this study was to elucidate whether the differentiation of cutaneous and oral epithelia is influenced by underlying mesenchymal tissues. Three normal skin samples and three normal buccal mucosa samples were used for the experiments. Skin equivalents were constructed in four ways, depending on the combinations of keratinocytes (cutaneous or mucosal keratinocytes) and fibroblasts (dermal or mucosal fibroblasts), and the effects of subepithelial fibroblasts on the differentiation of oral and cutaneous keratinocytes were studied with histological examinations and immunohistochemical analyses with anti-cytokeratin (keratins 10 and 13) antibodies. For each experiment, three paired skin equivalents were constructed by using single parent keratinocyte and fibroblast sources for each group; consequently, nine (3 x 3) organotypic cultures per group were constructed and studied. The oral and cutaneous epithelial cells maintained their intrinsic keratin expression. The keratin expression patterns in oral and cutaneous epithelia of skin equivalents were generally similar to their original patterns but were partly modified exogenously by the topologically different fibroblasts. The mucosal keratinocytes were more differentiated and expressed keratin 10 when cocultured with dermal fibroblasts, and the expression patterns of keratin 13 in cutaneous keratinocytes cocultured with mucosal fibroblasts were different from those in keratinocytes cocultured with cutaneous fibroblasts. The results suggested that the epithelial phenotype and keratin expression could be extrinsically modified by mesenchymal fibroblasts. In epithelial differentiation, however, the intrinsic control by epithelial cells may still be stronger than extrinsic regulation by mesenchymal fibroblasts.  相似文献   

3.
4.
5.
The regeneration of wounded stratified epithelium is accomplished via the migration of keratinocytes from the margins of the wound. However, the process of keratinocyte migration on the wound surface and the role of epithelial stem cells during re-epithelialization remain to be elucidated. Therefore, we administered BrdU to embryonic mice and generated epithelial defects on the buccal mucosa of these mice at two weeks after birth, using CO2 laser irradiation, with which we removed the entire thickness of the epithelium. In the unwounded epithelium, cytokeratin 14, p63, and BrdU were localized within the basal layer of the epithelium, but the majority of cells within the regenerated epithelium were immunopositive for these proteins. PCNA-negative and BrdU-positive basal keratinocytes, which evidence a slow cell cycle, were localized solely within the basal layer of the unwound epithelium facing the tips of dermal papillae. After laser irradiation, these basal keratinocytes facing the tips of the papillae evidenced positive immunoreactivity for PCNA, in addition to BrdU. These results indicate that epithelial stem cells of oral mucosa may be localized in the basal layer of the epithelium facing the tips of dermal papillae, and may migrate laterally with other basal keratinocytes in response to external stimuli. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
Aldehyde dehydrogenase 1A1 (ALDH1A1) and ALDH3A1 are corneal crystallins. They protect inner ocular tissues from ultraviolet radiation (UVR)-induced oxidative damage through catalytic and non-catalytic mechanisms. Additionally, ALDH3A1 has been postulated to play a regulatory role in the corneal epithelium based on several studies that report an inverse association between ALDH3A1 expression and corneal cell proliferation. The underlying molecular mechanisms and the physiological significance of such association remain poorly understood. In the current study, we established Tet-On human corneal epithelial cell (hTCEpi) lines, which express tetracycline-inducible wild-type (wt) or catalytically-inactive (mu) ALDH3A1. Utilizing this cellular model system, we confirmed that human ALDH3A1 decreases corneal cell proliferation; importantly, this effect appears to be partially mediated by its enzymatic activity. Mechanistically, wt-ALDH3A1, but not mu-ALDH3A1, promotes sequestering of tumor suppressor p53 in the nucleus. In the mouse cornea, however, augmented cell proliferation is noted only in Aldh1a1-/-/3a1-/- double knockout (DKO) mice, indicating in vivo the anti-proliferation effect of ALDH3A1 can be rescued by the presence of ALDH1A1. Interestingly, the hyper-proliferative epithelium of the DKO corneas display nearly complete loss of p53 expression, implying that p53 may be involved in ALDH3A1/1A1-mediated effect. In hTCEpi cells grown in high calcium concentration, mRNA levels of a panel of corneal differentiation markers were altered by ALDH3A1 expression and modulated by its enzyme activity. In conclusion, we show for the first time that: (i) ALDH3A1 decreases corneal epithelial proliferation through both non-enzymatic and enzymatic properties; (ii) ALDH1A1 contributes to the regulation of corneal cellular proliferation in vivo; and (iii) ALDH3A1 modulates corneal epithelial differentiation. Collectively, our studies indicate a functional role of ALDH3A1 in the maintenance of corneal epithelial homeostasis by simultaneously modulating proliferation and differentiation through both enzymatic and non-enzymatic mechanisms.  相似文献   

7.
To elucidate the involvement of intercellular adhesion molecule-1 (ICAM-1) in the migration of lymphocytes to the oral mucosal epithelium in a rat model of acute graft-versus-host disease (AGVHD), we investigated (1) ICAM-1 and major histocompatibility complex (MHC) class II expression by keratinocytes (KCs) and their role in the epithelial infiltration of CD8+ cells, (2) the tissue expression of interferon-γ (IFN-γ) mRNA and expression of IFN-γ receptor by KCs, and (3) the ability of KCs to direct CD8+ cells into the epithelial layers. We classified the oral mucosal lesions into three consecutive temporal phases on the basis of increased epithelial ICAM-1 expression: basal- (phase I), parabasal- (phase II), and pan-epithelial except for the cornified cell layer (phase III). Basal ICAM-1 expression by KCs preceded that of MHC class II molecules, infiltration of CD8+ cells and epithelial histological changes. Tissue expression of IFN-γ mRNA and expression of IFN-γ receptor on KCs evidenced by immunohistochemistry were detected in early lesions (phase I), indicating that locally produced IFN-γ induced ICAM-1 expression by KCs. CD8+ cells were bound to KCs in frozen sections of epithelial lesions, whereas no lymphocyte attachment was observed in normal KC. Adherence could be inhibited by pretreating CD8+ cells with lymphocyte function-associated antigen-1 (LFA-1) antibody and/or by pretreating sections with ICAM-1 antibody. Our data suggest that in the early phase of acute oral mucosal GVHD, the induction of ICAM-1 expression on KCs leads to the migration of CD8+ cells into the epithelium and that this is mediated in part by the ICAM-1/LFA-1 pathway.  相似文献   

8.
OBJECTIVE: Epithelial wound repair assures the recovery of the epithelial barrier after wounding. During wound healing epithelial cells migrate to cover the wound surface. For healing of skin wounds the skin keratinocytes can be replaced by oral mucosa epithelial cells grown in vitro. The presented experiments were carried out in order to compare the proliferation, morphology, and migration between human keratinocytes isolated from human skin and oral mucosa. MATERIALS AND METHODS: Human epidermal and oral mucosa keratinocytes from primary culture were used in all experiments. Cell motility and shape were determined using computer-aided methods. RESULTS AND CONCLUSIONS: It was demonstrated that although both cell types exhibit the same typical epithelial morphology, oral mucosa keratinocytes locomote significantly faster than skin keratinocytes. They also differ in proliferation activity. Oral mucosa keratinocytes exhibited faster growth and different actin cytoskeleton organisation than skin keratinocytes under in vitro conditions. Autologous oral mucosa keratinocytes may be expanded in vitro and used for skin wound healing in vivo.  相似文献   

9.
P-cadherin belongs to the family of Ca2+-dependent homophilic glycosylated cell adhesion molecules. In the normal oral epithelium it shows a strong expression in the basal cell layer which gradually decreases in the suprabasal cell layers. The exact role of P-cadherin during the development and homeostasis of the oral epithelium has not been elucidated, yet. Here, we show for the first time that P-cadherin controls differentiation by regulating cytokeratin (CK) 1/10 expression in primary oral keratinocytes (POK) from normal, but interestingly not in POKs from oral squamous cell carcinoma (OSCC) tissue. SiRNA knockdown of P-cadherin in normal POKs revealed a strong upregulation of CK1/10 expression on mRNA and protein level. In contrast, E-cadherin knockdown in normal oral keratinocytes did not show any influence on CK1/10 expression. Moreover, in comparison with normal control keratinocytes normal oral keratinocytes with reduced P-cadherin expression displayed an enhanced expression and a stronger nuclear staining of C/EBP-beta, a well-known regulator of CK1/10 expression in keratinocytes. Furthermore, after P-cadherin knockdown in normal POKs the promoter activity of a C/EBP-responsive luciferase construct was significantly higher than in normal POKs with regular P-cadherin expression. Additionally, we noticed a proliferation advantage in normal oral keratinocytes in contrast to keratinocytes with diminished P-cadherin expression. However, the inverted effect was seen in tumor derived primary oral keratinocytes. In summary, we show that P-cadherin contributes to the keratinocyte differentiation in the oral epithelium by influencing the CK1 and CK10 expression via C/EBP-beta-mediated signaling in normal but not in tumor derived oral keratinocytes from OSCC patients.  相似文献   

10.
11.
Aldehyde dehydrogenase 3A1 (ALDH3A1), an ALDH superfamily member, catalyzes the oxidation of reactive aldehydes, highly toxic components of cigarette smoke (CS). Even so, the role of ALDH3A1 in CS-induced cytotoxicity and DNA damage has not been examined. Among all of the ALDH superfamily members, ALDH3A1 mRNA levels showed the greatest induction in response to CS extract (CSE) exposure of primary human bronchial epithelial cells (HBECs). ALDH3A1 protein accumulation was accompanied by increased ALDH enzymatic activity in CSE-exposed immortalized HBECs. The effects of overexpression or suppression of ALDH3A1 on CSE-induced cytotoxicity and DNA damage (γH2AX) were evaluated in cultured immortalized HBECs. Enforced expression of ALDH3A1 attenuated cytotoxicity and downregulated γH2AX. SiRNA-mediated suppression of ALDH3A1 blocked ALDH enzymatic activity and augmented cytotoxicity in CSE-exposed cells. Our results suggest that the availability of ALDH3A1 is important for cell survival against CSE in HBECs.  相似文献   

12.
13.
14.
Aldehyde dehydrogenase 3A1 (ALDH3A1) is one of the most abundant proteins found in corneal epithelial cells of mammalian species, with several postulated protective roles that include detoxification of peroxidic aldehydes, scavenging of free radicals, and direct absorption of ultraviolet (UV) radiation. In the present study, the protective role of ALDH3A1 against UV- and 4-hydroxy-2-nonenal- (4-HNE-) induced oxidative damage was studied. For this purpose, human ALDH3A1 was stably transfected in a human corneal epithelial cell line (HCE) lacking endogenous enzyme. Cells transfected with ALDH3A1 were more resistant to UV- and 4-HNE-induced cytotoxicity than mock-transfected cells. DNA fragmentation assays revealed that both treatments induced apoptosis in mock-transfected cells, but not in ALDH3A1-expressing cells. Apoptosis appeared to occur via caspase-3 activation and subsequent PARP cleavage. The Michaelis-Menten constant (K(m)) for 4-HNE was 54 microM in ALDH3A1-transfected cells; the addition of 100 microM 4-HNE increased NAD(P)H levels by 50% above that in mock-transfected cells. We also found that ALDH3A1 expression prevented 4-HNE-induced protein adduct formation. Taken together, these data suggest that ALDH3A1 is a regulatory element of the cellular defense system that protects corneal epithelium against UV- and 4-HNE-induced oxidative damage.  相似文献   

15.
Aldehyde dehydrogenases (ALDHs) oxidize aldehydes to the corresponding carboxylic acids using either NAD or NADP as a coenzyme. Aldehydes are highly reactive aliphatic or aromatic molecules that play an important role in numerous physiological, pathological, and pharmacological processes. ALDHs have been discovered in practically all organisms and there are multiple isoforms, with multiple subcellular localizations. More than 160 ALDH cDNAs or genes have been isolated and sequenced to date from various sources, including bacteria, yeast, fungi, plants, and animals. The eukaryote ALDH genes can be subdivided into several families; the human genome contains 19 known ALDH genes, as well as many pseudogenes. Noteworthy is the fact that elevated activity of various ALDHs, namely ALDH1A2, ALDH1A3, ALDH1A7, ALDH2*2, ALDH3A1, ALDH4A1, ALDH5A1, ALDH6, and ALDH9A1, has been observed in normal and cancer stem cells. Consequently, ALDHs not only may be considered markers of these cells, but also may well play a functional role in terms of self-protection, differentiation, and/or expansion of stem cell populations. The ALDH3 family includes enzymes able to oxidize medium-chain aliphatic and aromatic aldehydes, such as peroxidic and fatty aldehydes. Moreover, these enzymes also have noncatalytic functions, including antioxidant functions and some structural roles. The gene of the cytosolic form, ALDH3A1, is localized on chromosome 17 in human beings and on the 11th and 10th chromosome in the mouse and rat, respectively. ALDH3A1 belongs to the phase II group of drug-metabolizing enzymes and is highly expressed in the stomach, lung, keratinocytes, and cornea, but poorly, if at all, in normal liver. Cytosolic ALDH3 is induced by polycyclic aromatic hydrocarbons or chlorinated compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, in rat liver cells and increases during carcinogenesis. It has been observed that this increased activity is directly correlated with the degree of deviation in hepatoma and lung cancer cell lines, as is the case in chemically induced hepatoma in rats. High ALDH3A1 expression and activity have been correlated with cell proliferation, resistance against aldehydes derived from lipid peroxidation, and resistance against drug toxicity, such as oxazaphosphorines. Indeed, cells with a high ALDH3A1 content are more resistant to the cytostatic and cytotoxic effects of lipidic aldehydes than are those with a low content. A reduction in cell proliferation can be observed when the enzyme is directly inhibited by the administration of synthetic specific inhibitors, antisense oligonucleotides, or siRNA or indirectly inhibited by the induction of peroxisome proliferator-activated receptor γ (PPARγ) with polyunsaturated fatty acids or PPARγ transfection. Conversely, cell proliferation is stimulated by the activation of ALDH3A1, whether by inhibiting PPARγ with a specific antagonist, antisense oligonucleotides, siRNA, or a medical device (i.e., composite polypropylene prosthesis for hernia repair) used to induce cell proliferation. To date, the mechanisms underlying the effects of ALDHs on cell proliferation are not yet fully clear. A likely hypothesis is that the regulatory effect is mediated by the catabolism of some endogenous substrates deriving from normal cell metabolism, such as 4-hydroxynonenal, which have the capacity to either stimulate or inhibit the expression of genes involved in regulating proliferation.  相似文献   

16.
The treatment of oral mucosa defect such as autologous oral mucosa caused by resection of oral mucosa carcinoma is still not ideal in clinical practice. However, Tissue engineering gives us the possibility to solve this problem. As we all know, Human embryonic stem cells (hESCs) have the ability to give rise to various cell types. We can take advantage of the totipotency of human embryonic stem cells to acquire keratinocytes. Directing the epithelial differentiation of hESCs can provide seed cells for the construction of epithelium tissue by tissue engineering. But, how to get high purity keratinocytes by induced stem cells then Applied to tissue engineering mucosa is an important challenge. We described a novel method to directly induce hESCs to differentiate into keratinocytes. Retinoic acid, ascorbic acid, and bone morphogenetic protein induced hESCs to differentiate into cells that highly expressed cytokeratin (CK)14. Our findings suggest that the retinoic acid, ascorbic acid and bone morphogenetic proteins induced hESCs to form high purity keratinocyte cell populations. In addition, we found that the highly pure keratinocyte populations reconstructed artificial tissue resembling epithelial tissue when inoculated in vitro on a biological scaffold.  相似文献   

17.
Retinoic acid (RA) plays an important role in the regulation of cell growth and differentiation. To investigate whether RA extends in vitro the life span of human epithelial cells, we examined the effect of all-trans RA on both the cumulative population-doubling level (PDL) and the replicative senescence of cultured oral keratinocytes. When proliferating oral keratinocytes were cultured in medium containing 1 nM of all-trans RA, the in vitro life span of the cells was increased 1.5- to 1.8-fold compared to the vehicle control and the replicative senescence of the cells was significantly inhibited. Since the replicative senescence of human epithelial cells is associated with a steady increase of p16(INK4A) and a loss of telomerase activity, we expected that RA could delay the replicative senescence of oral keratinocytes by decreasing p16(INK4A) expression and/or inhibiting the loss of telomerase activity. To test this possibility, we examined the expression of replicative senescence-associated genes and the telomerase activities of different PDL numbers of oral keratinocytes exposed to 1 nM of all-trans RA. The protein level of cellular p16(INK4A) in the RA-treated oral keratinocytes was gradually but significantly enhanced by an increased PDL number; however, the level was significantly lower than that of the vehicle control at all of the same PDL numbers. In contrast, the telomerase activity was maintained in oral keratinocytes with increasing PDL numbers induced by RA treatment. Summarizing, these results indicate that RA induces the in vitro life-span extension of oral keratinocytes, which is linked to a decreased cellular level of p16(INK4A) and the maintenance of telomerase activity.  相似文献   

18.
19.
Abstract

Changes in the expression of peanut lectin (PNA) were examined in keratinocytes of oral keratosis showing a mixture of hyperortho- and hyperparakeratinized epithelium. In the hyperorthokeratinized epithelium, which was reacted with anti-filaggrin antibody in both granular and cornified cells, PNA bound to the surface of keratinocytes from the spinous layer to the granular layer. Neither anti-filaggrin nor PNA reactions were detected in keratinocytes of the hyperparakeratinized epithelium. After neuraminidase pretreatment, however, PNA staining appeared in all cells, except cornified cells, of both hyperortho- and hyperparakeratinized epithelia. These findings suggest that PNA-binding epitopes in keratinocytes were modified by sialic acid during the hyperparakeratotic process of oral keratosis.  相似文献   

20.
This study aimed to investigate the role of underlying fibroblasts on morphogenesis of in vitro epithelium reconstituted with normal and neoplastic human oral keratinocytes at various stages of malignant transformation. Primary normal human oral keratinocytes (NOKs), early neoplastic/dysplastic human oral keratinocytes (DOK cell line), and neoplastic human oral keratinocytes (PE/CA-PJ 15 cell line) were organotypically grown on top of a collagen type I matrix with or without primary normal human oral fibroblasts. Morphogenesis of the reconstituted epithelia was assessed by histomorphometry, immunohistochemistry (Ki-67, cyclin D1, cytokeratin 13 (CK13), collagen IV, E-cadherin, p53, CD40), and the terminal deoxynucleotidyl transferase-mediated dUTP in situ nick end-labelling method. Reproducible in vitro models of multistage oral carcinogenesis were established. Presence of fibroblasts in the collagen matrix significantly increased cell proliferation in all three models (p<0.05), and induced an invasive pattern of growth in the neoplastic cell lines (p<0.05). In normal, but not in neoplastic oral keratinocytes fibroblasts induced the expression of CD40, and polarized the expression of E-cadherin and p53 to the basal cell layer. In both normal and early neoplastic keratinocytes (DOK cell line), fibroblasts induced the expression of CK13 and collagen IV. In the neoplastic oral keratinocytes (PE/CA-PJ 15 cell line), the presence of underlying fibroblasts did not change the expression of any of the protein markers assessed. This study showed that (1) major steps of oral carcinogenesis can be reproduced in vitro, and (2) the tight control exerted by fibroblasts on epithelial morphogenesis of in vitro reconstituted normal human oral mucosa is gradually lost during neoplastic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号