首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results.

Methods

To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations.

Results and discussion

Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly.

Conclusions

The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.  相似文献   

2.
Life cycle assessment of aquaculture systems—a review of methodologies   总被引:1,自引:0,他引:1  

Purpose  

As capture fishery production has reached its limits and global demand for aquatic products is still increasing, aquaculture has become the world’s fastest growing animal production sector. In attempts to evaluate the environmental consequences of this rapid expansion, life cycle assessment (LCA) has become a frequently used method. The present review of current peer-reviewed literature focusing on LCA of aquaculture systems is intended to clarify the methodological choices made, identify possible data gaps, and provide recommendations for future development within this field of research. The results of this review will also serve as a start-up activity of the EU FP7 SEAT (Sustaining Ethical Aquaculture Trade) project, which aims to perform several LCA studies on aquaculture systems in Asia over the next few years.  相似文献   

3.
The International Journal of Life Cycle Assessment - Currently, there are no life cycle impact data available on the construction of road infrastructure in Brazil. This study aimed to determine...  相似文献   

4.
The International Journal of Life Cycle Assessment - The increase of shellfish production has raised environmental concerns, i.e., enrichment and redistribution of nutrients and energy consumption....  相似文献   

5.
6.
7.
8.
9.
Purpose

Two life cycle assessment (LCA) studies comparing a new low-particulate-matter-emission disc brake and a reference disc brake were presented. The purpose was to identify the difference in potential environmental impacts due to a material change in the new disc brake parts. Additionally, the validity was investigated for the simplification method of omitting identical parts in comparative LCA. This was done by comparing the results between the simplified and the full LCA model.

Methods

The two disc brakes, new disc brake and reference disc brake, were assessed according to the LCA ISO standards. The ReCiPe 2016 Midpoint (hierarchist) impact assessment method was chosen. Simplifying a comparative LCA is possible, all identical parts can be omitted, and only the ones that differ need to be assessed. In this paper, this simplification was called comparative LCA with an omission of identical parts.

Results and discussion

The comparative impacts were analysed over seventeen impact categories. The new disc brake alternative used more resources during the manufacture of one disc compared to the reference disc brake alternative. The shorter life length of the reference disc demanded a higher number of spare part discs to fulfil the same functional unit, but this impact was reduced due to material recycling. The new disc brake impacts were connected primarily to the coating and secondly to the pad manufacture and materials. The validity of the simplification method was investigated by comparing the results of the two LCA models. The impact differences were identical independent of the LCA model, and the same significant impact categories could be identified. Hence, the purpose of the study could be fulfilled, and the simplification was valid.

Conclusions

Both LCA models, simplified and full, revealed that the new disc brake had limited environmental advantages. The omission of identical parts made it more challenging to determine if an impact was significant or insignificant. The simplification seemed to be reasonable.

  相似文献   

10.
Within a life cycle assessment (LCA), normalization is an essential part for interpretation. In Europe, only the European Union normalization factors (EU NFs), with 2000 as the reference year, are available for LCA practitioners, although they work on a regional level. The hypothesis of this research was based on the assumption that some regional NFs deviate from the EU NFs due to unique regional profiles, or because of previously omitted or generalized human impact. In this particular case study set in Slovenia has been tested. By working on the ReCiPe 1.08 life cycle impact assessment methodology, 18 impact categories were investigated, and an additional 3 were added: electromagnetic radiation, light pollution and electric use. To meet practitioners’ needs, the most up-to-date inventory data was used with the reference years of 2007–2012. Out of 440 environmental interventions that were investigated, 139 had no characterization factors (CFs), 97 were estimated using machine learning and 42 had to be omitted. The final result confirmed our hypothesis. Twenty NFs were compared with the EU NFs, and the results have shown that on average, the NFs differ by a factor of 9.76 (median = 1.65). The reasons for the high deviation are due to natural land transformation, and ionising radiation, toxicological and ecotoxicological impact categories; where there are major data gaps in the CFs. The primary concern of the research was data availability for toxicological and ecotoxicological parameters for toxicity-related emissions, and the fact that original CFs covered only 50.25% of plant protection products used in Slovenia. Toxicological and ecotoxicological uncertainties were illustrated by comparing four different results. Future studies should be focused on the use of machine learning to provide the next generation of CFs and to go beyond the CFs’ damage-oriented assessment. Remediation should be the new endpoint category and its units should be Joules.  相似文献   

11.
12.

Purpose  

The purpose of this paper is to characterize the environmental impacts of equipment used in power transmission and distribution. This study is divided in two parts, each addressing different main components of the electrical grid system. This part is concerned with the impacts of transformers and substation equipment while in part 1 a similar analysis is presented for power lines and cables.  相似文献   

13.
Purpose

A review of LCA process datasets is an important element of quality assurance for databases and for other systems to provide LCA datasets. Somewhat surprisingly, a broadly accepted and applicable set of criteria for a review of LCA process datasets was lacking so far. Different LCA databases and frameworks are proposing and using different criteria for reviewing datasets. To close this gap, a set of criteria for reviewing LCA dataset has been developed within the Life Cycle Initiative.

Methods

Previous contributions to LCA dataset review have been analysed for a start, from ISO and various LCA databases. To avoid somewhat arbitrary review criteria, four basic rules are proposed which are to be fulfilled by any dataset. Further, concepts for assessing representativeness and relevance are introduced into the criteria set from established practices in statistics and materiality. To better structure the criteria and to ease their application, they are grouped into clusters. A first version of the developed review criteria was presented in two workshops with database providers and users on different levels of experience, and draft versions of the criteria were shared within the initiative. The current version of the criteria reflects feedback received from various stakeholders and has been applied and tested in a review for newly developed datasets in Brazil, Malaysia and Thailand.

Results and discussion

Overall, 14 criteria are proposed, which are organised in clusters. The clusters are goal, model, value, relevance and procedure. For several criteria, a more science-based definition and evaluation is proposed in comparison to ‘traditional’ LCA. While most of the criteria depend on the goal and scope of dataset development, a core set of criteria are seen as essential and independent from specific LCA modelling. For all the criteria, value scales are developed, typically using an ordinal scale, following the pedigree approach.

Conclusions

Review criteria for LCI datasets are now defined based on a stringent approach. They aim to be globally acceptable, considering also database interoperability and database management aspects, as well as feedback received from various stakeholders, and thus close an important gap in LCA dataset quality assurance. The criteria take many elements of already existing criteria but are the first to fully reflect the implications of the ISO data quality definition, and add new concepts for representativeness and relevance with the idea to better reflect scientific practice outside of the LCA domain. A first application in a review showed to be feasible, with a level of effort similar to applying other review criteria. Aspects not addressed yet are the review procedure and the mutual recognition of dataset reviews, and their application for a very high number of datasets.

  相似文献   

14.
15.
The International Journal of Life Cycle Assessment - The purpose of the study is to quantify the environmental performance of Smart City Solutions at urban system level and thus evaluate their...  相似文献   

16.

Introduction  

Alternative ways and means of transportation are necessary in order to reduce the environmental impacts of mobility. In the recent years, biofuels were first seen as a main option and then LCA showed also possible hazards of this development. Recently, public interest is rapidly shifting towards electromobility. Therefore it is necessary to also gain better knowledge about the environmental impacts of this technology. This includes a modelling of the pathways of the necessary increase in electricity supply and an appropriate modelling of battery manufacture.  相似文献   

17.

Purpose

Residential buildings play an important role in consumption of energy resources. About 40 % of all primary energy is used in buildings all over the world. This paper is the second part of the study on the life-cycle energy (LCEA), emissions (LCCO2A) and cost (LCCA) assessment of two residential buildings constructed in urban and rural areas.

Methods

In the first part, the methodology, formulations and procedure for such a comprehensive analysis are provided, while this paper provides an application of the methodology that considers two actual buildings located in Gaziantep, Turkey. The proposed model focused on building construction, operation and demolition phases to estimate energy use, carbon emissions and costs per square meter over a 50-year lifespan. The optimum thickness of insulation used to reduce energy consumption and emissions per square meter is determined.

Results and discussion

It is found that the operating phase is dominant in both urban and rural residential buildings and contributes 87–85 % of the primary energy requirements and 88–82 % of CO2 emissions, respectively. Life-cycle greenhouse gas emissions were 5.8 and 3.9 tons CO2 eqv. for BT1 and BT2, respectively. It is calculated that the life-cycle energy consumption and CO2 emissions of the residential buildings can be reduced by up to 22.8 and 23.4 %, respectively, by using a proper insulation material for the external walls. The life-cycle cost, consisting of mortgage, energy, maintenance, service and demolition payments are calculated to be 7.28 and 1.72 million USD for BT1 and BT2, respectively.

Conclusions

Building envelope developments, such as better wall insulation, provide noteworthy potential energy savings and contribute to the reductions from cooling and space heating. Therefore, primary strategies and technologies needed for efficient buildings include optimal insulation of external walls. The economic insulation thickness of the residential buildings in Gaziantep is determined to be 80 mm by using a life-cycle cost analysis. The results show that because of the differences in building structures and living standards, life-cycle energy intensity and CO2 emissions in urban residential buildings are 29 and 25 % higher than in rural conditions.
  相似文献   

18.
The International Journal of Life Cycle Assessment - The social life cycle assessment (S-LCA) methodology needs to advance in its methodological development, mainly regarding the impact assessment...  相似文献   

19.

Purpose

The goal of this paper is to describe the life cycle inventory (LCI) approach of pig iron produced by Mittal??s Steel Poland Blast Furnace (MSPBF) in Krakow, Poland. The present LCI is representative for the reference year 2005 by application of PN-EN ISO 14040: 2009 (PN-EN ISO 2009). The system boundaries were labeled as gate-to-gate (covering a full chain process of pig iron production). The background input and output data from the blast furnace (BF) process have been inventoried as follows: sinter, several types of pellets, ore (from Brazil or Venezuela), limestone, coke, and from 2005 coal powder, pig iron, blast furnace gas, blast furnace slug, consumption of energy and fuels, including: pulverized coal, natural gas, blast furnace gas and coke oven gas, and emission of air pollutants.

Main feature

LCI energy generation was developed mainly on the basis of following sources: site specific measured or calculated data, study carried out by Mittal Steel Poland (MSP) Environmental Impact Report, study carried out by the Faculty of Mining Surveying and Environmental Engineering of the AGH University of Science and Technology in Krakow, literature information, and expert consultations. The functional unit is represented by 1,504,088?Mg of pig iron, produced BF process. Time coverage is 2005. Operating parameters as well as air emissions associated with the BF process were presented. The production data (pig iron) was given. The emissions of SO2, NO2, CO, CO2, aliphatic hydrocarbons, dust, heavy metals (Cr, Cd, Cu, Pb, Ni, and Mn), and waste are the most important outcomes of the pig iron process.

Results

With regard to 1,504,088?Mg of pig iron produced by MSP, the consumption of coke, pulverized coal, sinters, pellets, and natural gas were 808,509, 16,921, 1,669,023, and 914,080?Mg, respectively. Other material consumption, industrial water, was 1,401,419 m3/year.

Conclusions

The LCI study is the first tentative study to express pig iron production in Poland in terms of LCA/LCI for the pig iron in steel industry. The results may help steel industry government make decisions in policy making. Presentation of the study in this paper is suitable for the other industries.

Recommendations and outlook

The LCI offers environmental information consisting on the list of environmental loads. The impact assessment phase aims the results from the inventory analysis more understandable and life cycle impact assessment will be direction for future research. Another issue to discuss is integration of LCA and risk assessment for industrial processed.  相似文献   

20.

Purpose

Variability in consumer behaviour can significantly influence the environmental performance of products and their associated impacts and this is typically not quantified in life cycle assessments. The goal of this paper is to demonstrate how consumer behaviour data can be used to understand and quantify the variability in the greenhouse gas emissions from domestic laundry washing across Europe.

Methods

Data from a pan-European consumer survey of product usage and washing habits was combined with internal company data on product format greenhouse gas (GHG) footprints and in-home measurement of energy consumption of laundry washing as well as literature data to determine the GHG footprint of laundry washing. The variability associated with four laundry detergent product formats and four wash temperature settings in washing machines were quantified on a per wash cycle basis across 23 European countries. The variability in GHG emissions associated with country electricity grid mixes was also taken into account. Monte Carlo methods were used to convert the variability in the input parameters into variability of the life cycle GHG emissions. Rank correlation analysis was used to quantify the importance of the different sources of variability.

Results and discussion

Both inter-country differences in background electricity mix as well as intra-country variation in consumer behaviour are important for determining the variability in life cycle GHG emissions of laundry detergents. The average GHG emissions related to the laundry washing process in the 23 European countries in 2014 was estimated to be 5?×?102 g CO2?eq/wash cycle, but varied by a factor of 6.5 between countries. Intra-country variability is between a factor of 3.5 and 5.0 (90% interval). For countries with a mainly fossil-based electricity system, the dominant source of variability in GHG emissions results from consumer choices in the use of washing machines. For countries with a relatively low-carbon electricity mix, variability in life cycle GHG emissions is mainly determined by laundry product-related parameters.

Conclusions

The combination of rich data sources enabled the quantification of the variability in the life cycle GHG emissions of laundry washing which is driven by a variety of consumer choices, manufacturer choices and infrastructural differences of countries. The improved understanding of the variability needs to be balanced against the cost and challenges of assessing of consumer habits.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号