共查询到20条相似文献,搜索用时 15 毫秒
1.
Demetriou MC Stylianou P Andreou M Yiannikouri O Tsaprailis G Cress AE Skourides P 《Biochemical and biophysical research communications》2008,366(3):779-785
The α6 integrin is essential for early nervous system development in Xenopus laevis. We have previously reported a uPA cleaved form of integrin α6 (α6p), in invasive human prostate cancer tissue, whose presence correlates with increased migration and invasive capacity. We now report that α6 is cleaved during the normal development of Xenopus in a spatially and temporally controlled manner. In addition, unlike normal mammalian tissues, which lack α6p, the major form of the α6 integrin present in adult Xenopus is α6p. The protease responsible for the cleavage in mammals, uPA, is not involved in the cleavage of Xenopus α6. Finally, overexpression of a mammalian α6 mutant which cannot be cleaved leads to developmental abnormalities suggesting a potential role for the cleavage in development. 相似文献
2.
Migliarini B Beatrice M Marucci G Gabriella M Ghelfi F Francesca G Carnevali O Oliana C 《FEBS letters》2006,580(8):1941-1945
This study investigates for the first time the dynamics of endocannabinoid system appearance during low vertebrate Xenopus laevis development. We observed that the CB1 gene started to be expressed during the organogenesis period (+/- 1 dpf, st. 28) and expression persisted throughout the three further stages analyzed. Attention was focused on the localization of the CB1 messenger that was found both at the central level (in romboencephalon and in olfactory placods) and at the peripheral level (in the gastrointestinal tract) at +/- 3 dpf (st. 41), +/- 4 dpf (st. 46) and +/- 12 dpf (st. 49). We also considered the synthesis of CB1 protein that occurred from st. 41 onwards and, from this stage, we tested the receptor functionality in response to anandamide using cytosensor microphysiometry. CB1 functionality increased with development at both central and peripheral level. These data provide sufficient evidence to encourage further analysis on endocannabinoid physiological roles during embryonic and larval X. laevis growth. 相似文献
3.
Chalmers AD Goldstone K Smith JC Gilchrist M Amaya E Papalopulu N 《Mechanisms of development》2005,122(3):355-363
Microarrays have great potential for the study of developmental biology. As a model system Xenopus is well suited for making the most of this potential. However, Xenopus laevis has undergone a genome wide duplication meaning that most genes are represented by two paralogues. This causes a number of problems. Most importantly the presence of duplicated genes mean that a X. laevis microarray will have less or even half the coverage of a similar sized microarray from the closely related but diploid frog Xenopus tropicalis. However, to date, X. laevis is the most commonly used amphibian system for experimental embryology. Therefore, we have tested if a microarray based on sequences from X. tropicalis will work across species using RNA from X. laevis. We produced a pilot oligonucleotide microarray based on sequences from X. tropicalis. The microarray was used to identify genes whose expression levels changed during early X. tropicalis development. The same assay was then carried out using RNA from X. laevis. The cross species experiments gave similar results to those using X. tropicalis RNA. This was true at the whole microarray level and for individual genes, with most genes giving similar results using RNA from X. laevis and X. tropicalis. Furthermore, the overlap in genes identified between a X. laevis and a X. tropicalis set of experiments was only 12% less than the overlap between two sets of X. tropicalis experiments. Therefore researchers can work with X. laevis and still make use of the advantages offered by X. tropicalis microarrays. 相似文献
4.
5.
Identification and characterization of Xenopus NDRG1 总被引:4,自引:0,他引:4
Kyuno J Fukui A Michiue T Asashima M 《Biochemical and biophysical research communications》2003,309(1):52-57
6.
A fascinating feature of thyroid hormone (T3) receptors (TR) is that they constitutively bind to promoter regions of T3-response genes, providing dual functions. In the presence of T3, TR activates T3-inducible genes, while unliganded TR represses these same genes. Although this dual function model is well demonstrated at the molecular level, few studies have addressed the presence or the role of unliganded TR-induced repression in physiological settings. Here, we analyze the role of unliganded TR in Xenopus laevis development. The total dependence of amphibian metamorphosis upon T3 provides us a valuable opportunity for studying TR function in vivo. First, we designed a dominant negative form of TR-binding corepressor N-CoR (dnN-CoR) consisting of its receptor interacting domain. We confirmed its dominant negative activity by showing that dnN-CoR competes away the binding of endogenous N-CoR to unliganded TR and relieves unliganded TR-induced gene repression in frog oocytes. Next, we overexpressed dnN-CoR in tadpoles through transgenesis and analyzed its effect on gene expression and development. Quantitative RT-PCR revealed significant derepression of T3-response genes in transgenic animals. In addition, transgenic tadpoles developed faster than wild type siblings, with an acceleration of as much as 7 days out of the 30-day experiment. These data thus provide in vivo evidence for the presence and a role of unliganded TR-induced gene repression in physiological settings and strongly support our earlier model that unliganded TR represses T3-response genes in premetamorphic tadpoles to regulate the progress of development. 相似文献
7.
Rogers S Chandler JD Clarke AL Petrou S Best JD 《Biochemical and biophysical research communications》2003,308(3):422-426
We have recently identified and cloned the cDNA of a new member of the glucose transporter family that has been designated GLUT12. GLUT12 possesses the structural features critical to facilitative transport of glucose but the key to understanding the possible physiological roles of this novel protein requires analysis of functional glucose transport. In the current study, we have utilized the Xenopus laevis oocyte expression system to assay transport of the glucose analog 2-deoxy-D-glucose and characterize the glucose transport properties and hexose affinities of GLUT12. Our results demonstrate that GLUT12 facilitates transport of glucose with an apparent preferential substrate affinity for glucose over other hexoses assayed. The results are significant to understanding the potential role and importance of GLUT12 in insulin-sensitive tissues and also cells with high glucose utilization such as cancer cells. 相似文献
8.
We have identified the RNA-binding protein Hermes in a screen for vegetally localized RNAs in Xenopus oocytes. The RNA localizes to the vegetal cortex through both the message transport organizer (METRO) and late pathways. Hermes mRNA and protein are both detected at the vegetal cortex of the oocyte; however, the protein is degraded within a several hour period during oocyte maturation. Injection of antisense morpholino oligonucleotides (HE-MO) against Hermes caused a precocious reduction in Hermes protein present during maturation and resulted in a phenotype characterized by cleavage defects in vegetal blastomeres. The phenotype can be partially rescued by injecting Hermes mRNA. These results demonstrate that the localized RNA-binding protein Hermes functions during oocyte maturation to regulate the cleavage of specific vegetally derived cell lineages. Hermes most likely performs its function by regulating the translation or processing of one or more target RNAs. This is an important mechanism by which the embryo can generate unique cell lineages. The regulation of region-specific cell division is a novel function for a localized mRNA. 相似文献
9.
De Marco N Tussellino M Vitale A Campanella C 《Differentiation; research in biological diversity》2011,82(2):108-115
The translation initiation factor eif6 has been implicated as a regulator of ribosome assembly, selective mRNA translation and apoptosis. Many of these activities depend upon the phosphorylation of eif6 serine 235 by PKC. Previous data showed that eif6 binds to the 60S ribosomal subunit when unphosphorylated, inhibiting assembly with the 40S subunit. Phosphorylation of Ser235 releases eif6 from the 60S subunit and allows assembly. eif6 acts as an anti-apoptotic factor via regulation of the bcl2/bax balance and acts selectively upstream of bcl2. This activity also depends upon phosphorylation of eif6 Ser235. One of the consequences of eif6 overexpression in Xenopus embryos is aberrant eye development. Here we evaluate the eye phenotype and show that it is transient. We show that the whole eye, particularly the retina layers, of the embryos injected with eif6-encoding mRNA recover by stage 42. Embryos over-expressing eif6 have normal expression of anterior- and brain-specific markers, indicating that outside the eye field, other neural regions appear unaffected by the eif6 injection. No eye defect was detected when morpholinos were used to reduce eif6 protein synthesis. We tested how two known pathways of eif6 function with respect to alteration of eye development. We found that injection of bcl2 did not produce the eye phenotype and eif6-bax co-injection did not rescue the eye defect, suggesting that the eye phenotype is not bearing on the anti-apoptotic role played by eif6 is not linked to its role as an anti-apoptotic factor. We also determined that PKC-dependant phosphorylation of Ser235 in eif6 is not required to produce defective eye development. These results indicate that the aberrant eye phenotype, produced by eif6 overexpression, is not directly linked to the PKC-regulated effects of eif6 on translation and ribosomal subunit interaction or on eif6 anti-apoptotic properties. 相似文献
10.
Activin-like signaling plays an important role in early embryogenesis. Activin A, a TGF-beta family protein, induces mesodermal/endodermal tissues in animal cap assays. In a screen for genes expressed early after treatment with activin A, we isolated a novel gene, denoted as BENI (Brachyury Expression Nuclear Inhibitor). The BENI protein has a conserved domain at the N-terminus that contains a nuclear localization signal (NLS), and two other NLSs in the C-terminal domain. BENI mRNA was localized to the animal hemisphere at the gastrula stages and to ectoderm except for neural regions at stage 17; expression persisted until the tadpole stage. The overexpression of BENI caused gastrulation defects and inhibition of elongation of activin-treated animal caps with reduction of Xbra expression. Moreover, whole-mount in situ hybridization revealed reduced expression of Xbra in BENI mRNA-injected regions of gastrula embryos. Functional knockdown of BENI using an antisense morpholino oligonucleotide also resulted in an abnormal phenotype of embryos curling to the dorsal side, and excessive elongation of activin-treated animal caps without altered expression of mesodermal markers. These results suggested that BENI expression is regulated by activin-like signaling, and that this regulation is crucial for Xbra expression. 相似文献
11.
Vertebrate hoxc8 homologous genes have been shown to be involved in the formation of lower thoracic/lumbar vertebrae during early embryonic development. We report the isolation of a Xenopus hoxc8 (Xhoxc8), which shows 94% amino acid sequence identity to the mouse counterpart. Xhoxc8 is initially expressed in a broad region of blastopore lip at gastrular stage; however, at later stages, the region of expression is progressively restricted to the dorsal region caudal to the third somite and to the central trunk region of abdomen. Retinoic acid treatment that caused a severe malformation in antero-posterior axis did not induce any significant change in the spatio-temporal expression pattern of Xhoxc8 mRNA. Antisense RNA injection into 2- or 4-cell stage embryos resulted in a severe malformation in the abdominal structure leading to embryonic death. The results strongly indicate that Xhoxc8 expression is critical for the formation of abdominal structure. 相似文献
12.
Zhao XY Liang SF Yao SH Ma FX Hu ZG Yan F Yuan Z Ruan XZ Yang HS Zhou Q Wei YQ 《Biochemical and biophysical research communications》2007,361(1):74-78
Xenopus laevis has recently been determined as a novel study platform of gene function. In this study, we cloned Xenopus DRR1 (xDRR1), which is homologous to human down-regulated in renal carcinoma (DRR1) gene. Bioinformatics analysis for DRR1 indicated that xDRR1 shared 74% identity with human DRR1 and 66% with mouse DRR1, and the phlogenetic tree of DRR1 protein was summarized. The xDRR1 gene locates in nuclei determined by transfecting A549 cells with the recombinant plasmid pEGFP-N1/xDRR1. RT-PCR analysis revealed that xDRR1 gene was expressed in all stages of early embryo development and all kinds of detected tissues, and whole-mount in situ hybridization showed xDRR1 was mainly present along ectoderm and mesoderm. Furthermore, xDRR1 expression could suppress A549 cell growth by transfecting with plasmid pcDNA3.1(+)/xDRR1. xDRR1 probably plays important roles involving in cell growth regulation and Xenopus embryo development. 相似文献
13.
The expanding roles of telomeres in epigenetic gene regulation, nuclear organization, and human disease have necessitated
the establishment of model organisms in which to study telomere function under normal developmental conditions. We present
an efficient system for generating numerous vertebrate animals containing engineered telomeres using a Xenopus laevis transgenesis technique. Our results indicate Xenopus zygotes efficiently recognize telomeric repeats at chromosome break points and form telomeric complexes thus generating a
new telomere. The resulting transgenic animals progress through normal development and successfully metamorphose into froglets
despite the chromosome breakage. Overall, this presents an efficient mechanism for generating engineered telomeres in a vertebrate
system and provides an opportunity to investigate epigenetic aspects of telomere function during normal vertebrate development. 相似文献
14.
Moreau M Néant I Webb SE Miller AL Leclerc C 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1495):1371-1375
In Xenopus, experiments performed with isolated ectoderm suggest that neural determination is a 'by default' mechanism, which occurs when bone morphogenetic proteins (BMPs) are antagonized by extracellular antagonists, BMP being responsible for the determination of epidermis. However, Ca(2+) imaging of intact Xenopus embryos reveals patterns of Ca(2+) transients which are generated via the activation of dihydropyridine-sensitive Ca(2+) channels in the dorsal ectoderm but not in the ventral ectoderm. These increases in the concentration of intracellular Ca(2+)([Ca(2+)]i) appear to be necessary and sufficient to orient the ectodermal cells towards a neural fate as increasing the [Ca(2+)]i artificially results in neuralization of the ectoderm. We constructed a subtractive cDNA library between untreated and caffeine-treated ectoderms (to increase [Ca(2+)]i) and then identified early Ca(2+)-sensitive target genes expressed in the neural territories. One of these genes, an arginine methyltransferase, controls the expression of the early proneural gene, Zic3. Here, we discuss the evidence for the existence of an alternative model to the 'by default' mechanism, where Ca(2+) plays a central regulatory role in the expression of Zic3, an early proneural gene, and in epidermal determination which only occurs when the Ca(2+)-dependent signalling pathways are inactive. 相似文献
15.
In this study, we report a highly efficient transgenesis technique for Xenopus tropicalis based on a method described first for Medaka. This simple procedure entails co-injection of meganuclease I-SceI and a transgene construct flanked by two I-SceI sites into fertilized eggs. Approximately 30% of injected embryos express transgenes in a promoter-dependent manner. About 1/3 of such embryos show incorporation of the transgene at the one-cell stage and the remainder are 'half-transgenics' suggesting incorporation at the two-cell stage. Transgenes from both classes of embryos are shown to be transmitted and expressed in offspring. The procedure also works efficiently in Xenopus laevis. Because the needle injection procedure does not significantly damage embryos, a high fraction develop normally and can, as well, be injected with a second reagent, for example an mRNA or antisense morpholino oligonucleotide, thus allowing one to perform several genetic manipulations on embryos at one time. This simple and efficient technique will be a powerful tool for high-throughput transgenesis assays in founder animals, and for facilitating genetic studies in the fast-breeding diploid frog, X. tropicalis. 相似文献
16.
It has been suggested that whole-genome duplication (WGD) occurred twice during the evolutionary process of vertebrates around 450 and 500 million years ago, which contributed to an increase in the genomic and phenotypic complexities of vertebrates. However, little is still known about the evolutionary process of homoeologous chromosomes after WGD because many duplicate genes have been lost. Therefore, Xenopus laevis (2n=36) and Xenopus (Silurana) tropicalis (2n=20) are good animal models for studying the process of genomic and chromosomal reorganization after WGD because X. laevis is an allotetraploid species that resulted from WGD after the interspecific hybridization of diploid species closely related to X. tropicalis. We constructed a comparative cytogenetic map of X. laevis using 60 complimentary DNA clones that covered the entire chromosomal regions of 10 pairs of X. tropicalis chromosomes. We consequently identified all nine homoeologous chromosome groups of X. laevis. Hybridization signals on two pairs of X. laevis homoeologous chromosomes were detected for 50 of 60 (83%) genes, and the genetic linkage is highly conserved between X. tropicalis and X. laevis chromosomes except for one fusion and one inversion and also between X. laevis homoeologous chromosomes except for two inversions. These results indicate that the loss of duplicated genes and inter- and/or intrachromosomal rearrangements occurred much less frequently in this lineage, suggesting that these events were not essential for diploidization of the allotetraploid genome in X. laevis after WGD. 相似文献
17.
Galactoside-binding lectin has been isolated from whole Xenopus laevis embryos and tadpoles at four development stages: st. 24–26, 32, 41 and 47. The main lectin activity at st. 24–26 is -galactoside specific, producing a 34/35.5K doublet on SDS-PAGE. Later in development, lectin activities specific for a wide range of other sugars appear concommitant with the detection of a number of new protein bands on SDS-PAGE gels. The greatest variety of new lectin activities exists at st. 32 when lectins specific for all of the main sugar families found in nature are detected. After this stage and up to st. 47 (the beginning of metamorphosis), fewer different lectin activities are again detected. The results suggest that a complex, developmentally regulated battery of different lectins are present during early Xenopus development, perhaps with stage-specific roles to play in the control of tissue morphogenesis. 相似文献
18.
Parodi J Romero F Miledi R Martínez-Torres A 《Biochemical and biophysical research communications》2008,375(4):571-575
A study was made of the effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. 1 μg/ml of the venom made the resting plasma membrane potential more negative in cells voltage-clamped at −60 mV. The effect was potentially due to the closure of one or several conductances that were investigated further. Thus, we determined the effects of the venom on the following endogenous ionic-currents: (a) voltage-activated potassium currents, (b) voltage-activated chloride-currents, and (c) calcium-dependent chloride-currents (Tout). The results suggest that the venom exerts its action mainly on a transient outward potassium-current that is probably mediated by a Kv channel homologous to shaker. Consistent with the electrophysiological evidence we detected the expression of the mRNA coding for xKv1.1 in the oocytes. 相似文献
19.
Peter Wagner Michael Hoever Katrin Appel Walter Knöchel Mathias Montenarh 《Development genes and evolution》1995,204(3):198-202
Recently we cloned tms1 (a putative dehydrogenase) by complementation of a human tumour-derived mutant p53 induced growth arrest in fission yeast. Microinjection of purified tmsl protein into Xenopus laevis embryos abrogated normal embryo development by causing cleavage retardation or cleavage arrest of injected blastomeres in a concentration dependant manner, whereas injection of specific affinity purified tms1 antiserum showed no significant morphological defects. Microinjection of tms1 protein together with affinity purified tms1 antibody resulted in a significantly reduced number of cleavage arrested embryos. 相似文献
20.
Lu X Zhang N Vasquez K Barton M Legerski R 《Biochemical and biophysical research communications》2005,336(1):69-75
The recognition and removal of interstrand cross-links is perhaps the least understood of all repair pathways in eukaryotic cells. We have shown previously that uncoupling of cross-links occurs in mammalian cell extracts and have identified a number of factors that mediate this process. However, we have not observed complete repair of the substrate in this system. Here, we show that uncoupling of interstrand cross-links also occurs in Xenopus laevis egg extracts, and that the initial products of this reaction are identical to the products observed in mammalian cell extracts suggesting a common mechanism. However in contrast to mammalian cell extracts, we observe repair of the cross-linked substrate in the Xenopus extracts presumably by a translesion bypass mechanism that allows replication past the uncoupled monoadduct, and its likely subsequent removal by nucleotide excision repair. This repair process is shown to be highly mutagenic consistent with bypass synthesis. 相似文献