首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hypothesis previously advanced that interchain disulfide bridges link the two identical subunits of bovine seminal ribonuclease BS-1 has been confirmed. The sedimentation rate and the electrophoretic mobility of the protein are not affected by denaturing agents unless thiol reagents are present in the denaturation mixtures. Reduction under controlled conditions results in the immediate cleavage of only 2 disulfide bonds out of 10 percent in the dimeric protein. Under these conditions, and the results do not change when partial reduction is followed by S-alkylation, 30% of the protein dissociates, while the remaining is found to consist of a dimeric species easily dissociable by denaturing agents without addition of thiol reagents. This indicates that the dimeric structure of seminal ribonuclease is maintained not only by disulfide bridges, but also by noncovalent forces. The protein derivative prepared by selective reduction and alkylation has been identified as monomeric bis-S-carboxymethylcysteine-31,32-ribonuclease BS-1. This is on the basis of the characterization of the 14C-labeled S-carboxymethylated peptides isolated from a thermolytic hydrolysate of the derivative prepared with iodo-2-[14C]acetic acid. Monomeric, selectively alkylated ribonuclease BS-1 is stable and catalytically active. The importance of such a derivative is discussed both in the light of the recent studies on the biological actions of seminal ribonuclease and as the fourth component of an experimental system of ribonucleases consisting of two homologous dimers (bovine seminal ribonuclease BS-1 and dimerized bovine pancreatic ribonuclease A) and two homologous monomers (ribonuclease A and the monomeric derivative of ribonuclease BS-1.  相似文献   

2.
G J Arlaud  J Gagnon 《Biochemistry》1983,22(8):1758-1764
The amino acid sequence of human C1-r b chain hs been determined, from sequence analysis performed on fragments obtained by CNBr cleavage, dilute acid hydrolysis, tryptic cleavage of the succinylated protein, and subcleavages by staphylococcal protease. The polypeptide chain contains 242 amino acids (Mr 27 096), and the sequence shows strong homology with other mammalian serine proteases. The histidine, aspartic acid, and serine residues of the active site (His-57, Asp-102, and Ser-195 in bovine chymotrypsinogen) are located at positions 39, 94, and 191, respectively. The chain which lacks the "histidine-loop" disulfide bridge, contains five half-cystine residues, of which four (positions 157-176 and 187-217) are homologous to residues involved in disulfide bonds generally conserved in serine proteases, whereas the half-cystine residue at position 114 is likely to be involved in the single disulfide bridge connecting the catalytic b chain to the n-terminal a chain. Two carbohydrate moieties are attached to the polypeptide chain, both via asparagine residues at positions 51 and 118.  相似文献   

3.
The antifreeze polypeptide (AFP) from the sea raven, Hemitripterus americanus, is a member of the cystine-rich class of blood antifreeze proteins which enable survival of certain fishes at sub-zero temperatures. Sea raven AFP contains 129 residues with 10 half-cystine residues. We have analyzed these half-cystine residues and established that all 10 of the half-cystine residues appeared to be involved in disulfide bond formation and that disulfide bonds linked Cys7 to Cys18, Cys35 to Cys125, and Cys89 to Cys117. These assignments were established by extensive proteolytic digestions of native AFP using pepsin and thermolysin and purification of the peptides by Sephadex G-15 gel filtration chromatography, anion exchange chromatography, and C18 reverse-phase high performance liquid chromatography. Cystine-containing peptides were detected by a colorimetric assay using nitrothiosulfobenzoate. Disulfide-containing peptides were reduced and alkylated, purified, and analyzed by amino acid analysis. The unreduced disulfide-linked peptides were sequenced directly by automated Edman degradations to confirm the disulfide assignments. Possible arrangements of the two remaining disulfide bonds include linkages Cys69/111 to Cys100/101. The sea raven AFP shares structural similarity with pancreatic stone protein and several lectin-binding proteins, especially with respect to half-cystines, glycines, and bulky aromatic residues. Two of the disulfide linkages we determined for sea raven AFP: Cys7-Cys18 and Cys35-Cys125, are conserved in these proteins. These similarities in covalent structure suggest that the sea raven AFP, pancreatic stone protein, and several lectin-binding proteins comprise a family of proteins which may possess a common fold.  相似文献   

4.
Selective reduction of seminal ribonuclease by glutathione   总被引:1,自引:0,他引:1  
Incubation of seminal ribonuclease with glutathione leads to the formation of a monomeric species which exhibits twice the specific activity of the native dimer. The monomer was found to possess two mixed disulfides of glutathione at residues 31 and 32, the residues ordinarily involved in the intermolecular disulfide bonds linking the subunits of the native dimer. Formation of the monomer results in only minor changes in the far ultraviolet circular dichroism spectra. The rate of the glutathione-facilitated dissociation reaction is fairly slow, requiring 60 min for completion. Attempts to dimerize the monomer all failed, implying that the dissociation reaction is irreversible. The glutathione reduced monomer was compared with the monomer formed during the regeneration of reduced, denatured bovine seminal ribonuclease in the presence of glutathione. By all criteria examined, the two monomeric forms are identical. It is concluded that the mixed disulfide monomer is the favored form of the enzyme in the presence of glutathione.  相似文献   

5.
Interchain disulfide bridges in ribonuclease BS-1   总被引:3,自引:0,他引:3  
RNAase BS-1, a dimeric ribonuclease isolated from bovine seminal plasma, is made up of two identical subunits whose amino acid sequence is homologous to the sequence of bovine pancreatic RNAase A. The dimeric structure, resistant to denaturating agents, is sensitive to thiol reagents even in the absence of denaturants. The isolation and characterization of a cystine peptide containing two adjacent 12cystine residues is reported. As the peptide molecular weight is halved after reductive cleavage with dithiothreitol, a structure based on two interchain disulfide bonds between the two adjacent 12cystine of each subunit is proposed. The singularity of such a structure for a small enzymatic protein is discussed.  相似文献   

6.
The complete amino-acid sequence of BS-RNAse, a dimeric ribonuclease isolated from bovine seminal plasma, was determined. The reduced and S-carboxymethylated subunit chain of the enzyme was cleaved by trypsin and chymotrypsin. The resulting peptides, purified by cation-exchange chromatography were sequenced by dansyl-Edman, subtractive Edman degradation and carboxypeptidase A and B digestion. Chymotryptic peptides were used for the alignment. Automated Edman degradation of the native protein, through the N-terminal 41 amino-acid residues, completed the sequence information. The subunit chain of BS-RNAse, composed of 124 amino-acid residues, with a molecular mass of 13,610 Da, is highly homologous (81%) to pancreatic ribonuclease A. A good degree of homology (31%) was also found with human angiogenin. No N-linked carbohydrate-attachment sites, such as Asn-X-Ser/Thr, were found in the protein.  相似文献   

7.
Bovine seminal ribonuclease, a homodimeric enzyme joined covalently by two interchain disulphide bonds, is an equilibrium mixture of two conformational isomers, MxM and M=M. The major form, MxM, whose crystal structure has been previously determined at 1.9 A resolution, presents the swapping of the N-terminal segments (residues 1-15) and composite active sites formed by residues of different chains. The three-dimensional domain swapping does not occur in the M=M form. The different fold of each N-terminal tail is directed by the hinge loop (residue 16-22) connecting the swapping domain to the body of the protein. Reduction and alkylation of interchain disulphide bridges produce a monomeric derivative and a noncovalent swapped dimer, which are both active. The free and nucleotide-bound forms of the monomer have been crystallized at an alkaline pH and refined at 1.45 and 1.65 A resolution, respectively. In both cases, the N-terminal fragment is folded on the main body of the protein to produce an intact active site and a chain architecture very similar to that of bovine pancreatic ribonuclease. In this new fold of the seminal chain, the hinge loop is disordered. Despite the difference between the tertiary structure of the monomer and that of the chains in the MxM form, the active sites of the two enzymes are virtually indistinguishable. Furthermore, the structure of the liganded enzyme represents the first example of a ribonuclease complex studied at an alkaline pH and provides new information on the binding of a nucleotide when the catalytic histidines are deprotonated.  相似文献   

8.
The molecular basis of the high reactivity toward reducing agents of intersubunit disulfides at positions 31 and 32 of dimeric bovine seminal ribonuclease was investigated by studying in the monomeric enzyme the fast reaction kinetics with disulfides of the adjacent cysteine-31 and -32, exposed by selective reduction of the intersubunit disulfides. Negatively charged and neutral disulfide reagents were used for measuring the thiol reaction rates at neutral pH. The kinetics studied as a function of pH permitted us to define pK values for the thiols of interest and indicated the possibility of determining pK values of SH groups in proteins indirectly by measuring the kinetics of reactivity of the SH groups with a disulfide reagent. The results were compared with those obtained under identical conditions with synthetic thiol peptides and model compounds. The data indicate that the superreactivity of intersubunit disulfides of seminal ribonuclease is matched by the high reactivity at neutral pH of adjacent cysteine residues 31 and 32, as compared to all small thiol compounds tested. The synthetic hexapeptide segment of seminal ribonuclease Ac-Met-Cys-Cys-Arg-Lys-Met-OH, which includes the two cysteine residues of interest, was even more reactive. These data, and the other results reported in this paper, led to the conclusion that the superreactivity at neutral pH of cysteine residues at positions 31 and 32 of bovine seminal ribonuclease is primarily dependent on the nearby presence of positively charged groups, particularly the epsilon-NH2 of lysine-34, and is influenced by the adjacency of the two thiols and by the protein tertiary structure.  相似文献   

9.
Human pancreatic ribonuclease, the homolog of bovine pancreatic ribonuclease, has a significant therapeutic potential. Its study has been hindered by the difficulty of obtaining the enzyme in a pure and homogeneous form, either from human source or using heterologous expression. Engineering of different variants of human pancreatic ribonuclease has allowed us to study and overcome some problems encountered during its heterologous production in an Escherichia coli system and its purification from inclusion bodies. The 5'-end region of the mRNA that encodes the enzyme is critical for obtaining high expression levels. The results also suggest the importance of the proline 50 residue in the recovery yields of human pancreatic ribonuclease. All the variants produced are pure and homogeneous. Their homogeneity has been demonstrated by cation-exchange and reversed-phase chromatography and by mass spectrometry analysis. Moreover, enhancement of human pancreatic ribonuclease thermal stability is observed when residues R4, K6, Q9, D16, and S17 are changed to the corresponding residues of bovine seminal ribonuclease.  相似文献   

10.
Ribonuclease inhibitor from human placenta. Purification and properties   总被引:22,自引:0,他引:22  
A soluble ribonuclease inhibitor from the human placenta has been purified 4000-fold by a combination of ion exchange and affinity chromatography. The inhibitor has been isolated in 45% yield (about 2 mg/placenta) as a protein that is homogeneous by sodium dodecyl sulfate-gel electrophoresis. In common with the inhibitors of pancreatic ribonuclease from other tissues that have been studied earlier, the placental inhibitor is an acidic protein of molecular weight near 50,000; it forms a 1:1 complex with bovine pancreatic RNase A and is a noncompetitive inhibitor of the pancreatic enzyme, with a Ki of 3 X 10(-10) M. The amino acid composition of the protein has been determined. The protein contains 30 half-cystine plus cysteine residues determined as cysteic acid after performic acid oxidation. At pH 8.6 the nondenatured protein alkylated with iodoacetic acid in the presence of free thiol has 8 free sulfhydryl groups. The inhibitor is irreversibly inactivated by sulfhydryl reagents and also by removal of free thiol from solutions of the protein. Inactivation by sulfhydryl reagents causes the dissociation of the RNase - inhibitor complex into active RNase and inactive inhibitor.  相似文献   

11.
Primary structure of a ribonuclease from bullfrog (Rana catesbeiana) liver   总被引:1,自引:0,他引:1  
A pyrimidine base-specific ribonuclease was purified from bullfrog (Rana catesbeiana) liver by means of CM-cellulose column chromatography and affinity chromatography on heparin-Sepharose CL-6B, which gave single band on SDS-slab electrophoresis. The primary structure of the bullfrog liver RNase was determined. It consisted of 111 amino acid residues, including 8 half-cystine residues. From the sequence, it was concluded that three disulfide bridges in RNase A were conserved in the bullfrog RNase, that a disulfide bridge in RNase A [Cys65-Cys126 (RNase A numbering)] was deleted, and that a new disulfide bridge was created in the C-terminal part of the enzyme. In this frog RNase, the amino acid residues thought to be essential for catalysis in bovine pancreatic RNase A were conserved except for Asp121 (RNase A numbering). The sequence homology of the bullfrog liver RNase with bovine pancreatic RNase A was 30.6%. The sequence of bullfrog liver RNase was very similar to those of lectins obtained from bullfrog egg by Titani et al. [Biochemistry (1988) 26, 2189-2194] and R. japonica egg by Kamiya et al. [Seikagaku (in Japanese) (1989) 60, 733; and personal communication from Kamiya, Y., Oyama, F., Oyama, R., Sakakibara, F., Nitta, K., Kawauchi, H., and Titani, K.]. The sequence homology between the bullfrog liver RNase and the two lectins was 70.2 and 64.8%, respectively.  相似文献   

12.
Variants of ribonuclease inhibitor that resist oxidation   总被引:1,自引:0,他引:1       下载免费PDF全文
Human ribonuclease inhibitor (hRI) is a cytosolic protein that protects cells from the adventitious invasion of pancreatic-type ribonucleases. hRI has 32 cysteine residues. The oxidation of these cysteine residues to form disulfide bonds is a rapid, cooperative process that inactivates hRI. The most proximal cysteine residues in native hRI are two pairs that are adjacent in sequence: Cys94 and Cys95, and Cys328 and Cys329. A cystine formed from such adjacent cysteine residues would likely contain a perturbing cis peptide bond within its eight-membered ring, which would disrupt the structure of hRI and could facilitate further oxidation. We find that replacing Cys328 and Cys329 with alanine residues has little effect on the affinity of hRI for bovine pancreatic ribonuclease A (RNase A), but increases its resistance to oxidation by 10- to 15-fold. Similar effects are observed for the single variants, C328A hRI and C329A hRI, suggesting that oxidation resistance arises from the inability to form a Cys328-Cys329 disulfide bond. Replacing Cys94 and Cys95 with alanine residues increases oxidation resistance to a lesser extent, and decreases the affinity of hRI for RNase A. The C328A, C329A, and C328A/C329A variants are likely to be more useful than wild-type hRI for inhibiting pancreatic-type ribonucleases in vitro and in vivo. We conclude that replacing adjacent cysteine residues can confer oxidation resistance in a protein.  相似文献   

13.
The burial of native disulfide bonds, formed within stable structure in the regeneration of multi-disulfide-containing proteins from their fully reduced states, is a key step in the folding process, as the burial greatly accelerates the oxidative folding rate of the protein by sequestering the native disulfide bonds from thiol-disulfide exchange reactions. Nevertheless, several proteins retain solvent-exposed disulfide bonds in their native structures. Here, we have examined the impact of an easily reducible native disulfide bond on the oxidative folding rate of a protein. Our studies reveal that the susceptibility of the (40-95) disulfide bond of Y92G bovine pancreatic ribonuclease A (RNase A) to reduction results in a reduced rate of oxidative regeneration, compared with wild-type RNase A. In the native state of RNase A, Tyr 92 lies atop its (40-95) disulfide bond, effectively shielding this bond from the reducing agent, thereby promoting protein oxidative regeneration. Our work sheds light on the unique contribution of a local structural element in promoting the oxidative folding of a multi-disulfide-containing protein.  相似文献   

14.
Amino acid sequence of nuclease S1 from Aspergillus oryzae   总被引:3,自引:0,他引:3  
The amino acid sequence of nuclease S1, a nuclease which cleaves both single-stranded DNA and RNA, from Aspergillus oryzae was determined. Reduced and S-carboxymethylated or S-aminoethylated nuclease S1 was digested with Achromobacter protease I, Staphylococcus aureus V8 protease, or endoproteinase Asp-N. Peptides thus obtained were purified by reverse-phase high-performance liquid chromatography and sequenced, and the complete primary structure was established. Nuclease S1 consists of a single peptide chain of 267 amino acid residues bearing N-glycosylated Asns 92 and 228. Five half-cystine residues are present at positions 25, 72, 80, 85, and 216, and the latter four residues are implicated in the formation of disulfide bonds by analogy with those in nuclease P1. Two short stretches of sequences involving His 60 and His 125 are shown to be identical with those involving active site His 119 in bovine ribonuclease A and active-site His 134 in porcine deoxyribonuclease I, respectively.  相似文献   

15.
The temperature dependences of glutathione-facilitated regeneration of ribonuclease A and seminal ribonuclease are quite different although the two proteins are homologous. This difference in the two enzymes appears to result from the presence of two additional half-cystine residues in seminal ribonuclease. When these two cysteines are alkylated with either a neutral or positively charged blocking agent, the regeneration process becomes seemingly temperature insensitive. On the other hand, negatively charged agents are less effective in restoring normal regeneration kinetics. The modifications also render the protein more stable against thermal inactivation, a process which presumably contributes to the unusual temperature dependence of regeneration. These data reveal the potential importance of peripheral groups in the regeneration and stability of proteins. A model is proposed to explain these observations.  相似文献   

16.
Rabbit light chain 3315, prepared from a homogeneous antipneumococcal antibody, was subjected to hydrolysis by pepsin without prior reduction and alkylation of the intrachain disulfide bonds. Gel filtration of the hydrolysate on Sephadex G-10, G-15, and G-25 and ion exchange chromatography on SP-Sephadex yielded several disulfide bridge peptides. These were fully reduced and alkulated and sequenced by Edman degradation. The peptides were located in the light chain sequence determined in independent studies from our laboratory. The half-cystine residues in this KB rabbit chain are located at positions 23, 80, 88, 134, 171, 194, and 214. The extra disulfide bridge extends between residues 80 and 171, thus joining the variable and constant domains. This is consistent with x-ray diffraction crystallographic studies showing that the corresponding residues in human light chains are separated by a distance compatible with disulfide bond formation.  相似文献   

17.
A new database search algorithm has been developed to identify disulfide-linked peptides in tandem MS data sets. The algorithm is included in the newly developed tandem MS database search program, MassMatrix. The algorithm exploits the probabilistic scoring model in MassMatrix to achieve identification of disulfide bonds in proteins and peptides. Proteins and peptides with disulfide bonds can be identified with high confidence without chemical reduction or other derivatization. The approach was tested on peptide and protein standards with known disulfide bonds. All disulfide bonds in the standard set were identified by MassMatrix. The algorithm was further tested on bovine pancreatic ribonuclease A (RNaseA). The 4 native disulfide bonds in RNaseA were detected by MassMatrix with multiple validated peptide matches for each disulfide bond with high statistical scores. Fifteen nonnative disulfide bonds were also observed in the protein digest under basic conditions (pH = 8.0) due to disulfide bond interchange. After minimizing the disulfide bond interchange (pH = 6.0) during digestion, only one nonnative disulfide bond was observed. The MassMatrix algorithm offers an additional approach for the discovery of disulfide bond from tandem mass spectrometry data.  相似文献   

18.
Song MC  Scheraga HA 《FEBS letters》2000,471(2-3):177-181
It has been shown previously that the oxidative folding of bovine pancreatic ribonuclease A proceeds through parallel pathways with two major native-like three-disulfide (3S) intermediates. We show here that, under some conditions, the native disulfide bonds can also be regenerated through disproportionation reactions; in other words, the protein can serve as its own redox reagent. The results also show that disulfide species of the unstructured 3S ensemble have a strong propensity to participate in intermolecular interactions. These interactions are favored at high protein concentration, temperature and pH, and lead to formation of the native structure during disulfide reshuffling in the rate-determining step.  相似文献   

19.
Why does ribonuclease irreversibly inactivate at high temperatures?   总被引:13,自引:0,他引:13  
S E Zale  A M Klibanov 《Biochemistry》1986,25(19):5432-5444
The mechanism of irreversible thermoinactivation of bovine pancreatic ribonuclease A in the pH range relevant to enzymatic catalysis has been elucidated. At 90 degrees C and pH 4, the enzyme inactivation is caused by hydrolysis of peptide bonds at aspartic acid residues (the main process) and deamidation of asparagine and/or glutamine residues. At 90 degrees C and neutral pH (pH 6 and 8), the enzyme inactivation is caused by a combination of disulfide interchange (the main process), beta-elimination of cystine residues, and deamidation of asparagine and/or glutamine residues. These four processes appear to demarcate the upper limit of thermostability of enzymes.  相似文献   

20.
A previously introduced kinetic-rate constant (k/k(0)) method, where k and k(0) are the folding (unfolding) rate constants in the mutant and the wild-type forms, respectively, of a protein, has been applied to obtain qualitative information about structure in the transition state ensemble (TSE) of bovine pancreatic ribonuclease A (RNase A), which contains four native disulfide bonds. The method compares the folding (unfolding) kinetics of RNase A, with and without a covalent crosslink and tests whether the crosslinked residues are associated in the folding (unfolding) transition state (TS) of the noncrosslinked version. To confirm that the fifth disulfide bond has not introduced a significant structural perturbation, we solved the crystal structure of the V43C-R85C mutant to 1.6 A resolution. Our findings suggest that residues Val43 and Arg85 are not associated, and that residues Ala4 and Val118 may form nonnative contacts, in the folding (unfolding) TSE of RNase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号