首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Phylogenetic and phylogeographic investigations have been previously performed to study the evolution of the olive tree complex (Olea europaea). A particularly high genomic diversity has been found in north-west Africa. However, to date no exhaustive study has been addressed to infer putative polyploidization events and their evolutionary significance in the diversification of the olive tree and its relatives. METHODS: Representatives of the six olive subspecies were investigated using (a) flow cytometry to estimate genome content, and (b) six highly variable nuclear microsatellites to assess the presence of multiple alleles at co-dominant loci. In addition, nine individuals from a controlled cross between two individuals of O. europaea subsp. maroccana were characterized with microsatellites to check for chromosome inheritance. KEY RESULTS: Based on flow cytometry and genetic analyses, strong evidence for polyploidy was obtained in subspp. cerasiformis (tetraploid) and maroccana (hexaploid), whereas the other subspecies appeared to be diploids. Agreement between flow cytometry and genetic analyses gives an alternative approach to chromosome counting to determine ploidy level of trees. Lastly, abnormalities in chromosomes inheritance leading to aneuploid formation were revealed using microsatellite analyses in the offspring from the controlled cross in subsp. maroccana. CONCLUSIONS: This study constitutes the first report for multiple polyploidy in olive tree relatives. Formation of tetraploids and hexaploids may have played a major role in the diversification of the olive complex in north-west Africa. The fact that polyploidy is found in narrow endemic subspecies from Madeira (subsp. cerasiformis) and the Agadir Mountains (subsp. maroccana) suggests that polyploidization has been favoured to overcome inbreeding depression. Lastly, based on previous phylogenetic analyses, we hypothesize that subsp. cerasiformis resulted from hybridization between ancestors of subspp. guanchica and europaea.  相似文献   

2.
As a result of the early domestication and extensive cultivation of the olive tree throughout the Mediterranean Basin, the wild-looking forms of olive (oleasters) presently observed constitute a complex, potentially ranging from wild to feral forms. Allozyme variation was analysed at 10 loci in 31 large and 44 small oleaster populations distributed in various habitats of the Mediterranean Basin and in two populations of the wild subspecies Olea europaea subsp (ssp) guanchica, endemic to the Canary islands and closely related to oleasters. At eight polymorphic loci, 25 alleles were identified. Genetic evidence that nondomesticated oleasters still survive locally was provided by the occurrence of four and one alleles shared exclusively by the eight western and two eastern oleaster populations, respectively, which were collected in forests potentially containing genuinely wild forms according to environmental, historical and demographic criteria. As reported previously from cytoplasmic and RAPDs analysis, substantial genetic differentiation was observed between the eastern oleaster populations genetically close to most olive clones cultivated in the Mediterranean Basin, and the western populations that are related to the wild Canarian populations. In addition, the occurrence of significantly lower heterozygosity in cultivated olive than in oleasters, whatever their origin, suggests that intensive selection involving inbreeding has taken place under cultivation to obtain particular characteristics in the olive cultivars.  相似文献   

3.
Phylogenetic relationships in the Olea europaea complex and the phylogeography of 24 populations of the Macaronesian olive (O. europaea ssp. cerasiformis) were assessed by using three molecular markers: nuclear ribosomal internal transcribed spacer 1 (ITS-1) sequences, randomly amplified polymorphic DNAs (RAPD), and intersimple sequence repeats (ISSR). Parsimony analysis of the ITS-1 sequences and Neighbour-joining (NJ) analyses of RAPD and ISSR banding variation revealed four major lineages in the O. europaea complex: (1) ssp. cuspidata; (2) ssp. cerasiformis from Madeira; (3) ssp. laperrinei; and (4) ssp. cerasiformis from the Canary Islands plus ssp. europaea. These results provide unequivocal support for two independent dispersal events of Olea to the Madeira and Canary Islands. Molecular and morphological evidence led to recognition of two separate olive taxa in Macaronesia, to date included in ssp. cerasiformis. NJ analyses of the combined RAPD and ISSR data suggest that the colonization of the Canaries by O. europaea may have followed an east to west stepping-stone model. An interisland dispersal sequence can be recognized, starting from the continent to Fuerteventura, Gran Canaria, Tenerife, La Gomera, and finally La Palma. High dispersal activity of the lipid-rich Olea fruits by birds in the Mediterranean region is congruent with multiple dispersal of olives to Macaronesia and successive colonization of the archipelagos. The observation of strong genetic isolation between populations of different islands of the Canary Islands suggests, however, that subsequent interisland dispersal and establishment has been very rare or may not have occurred at all.  相似文献   

4.
Abstract: The purpose of this study was to assess nucleotide variation at a non-coding chloroplast DNA region in Olea species, to evaluate their phylogenetic relationships within the Olea genus and, more particularly, to clarify the relationships between cultivated olive (O. europaea) and the other taxa of section Olea. The analysis was made on an intergenic region between the trnT (UGU) and trnL (UAA) 5' exon, within a large single copy region of the chloroplast genome. Site-specific primers were used to amplify the region by PCR. This sequence analysis was applied to the same array of Olea species as assayed by Lumaret et al. (2000[16]) using cpDNA RFLPs, thus making it possible to compare phylogenetic relationships analysed at two complementary levels of cpDNA variation. On the 666 bp aligned sequence, 8 different haplotypes were defined, with 9 single nucleotide mutations, a different length of a poly-T region and an indel for O. paniculata. Haplotypes were shared by the species pairs O. europaea-O.laperrinei, O. maroccana-O. cerasiformis, O. capensis-O. lancea and O. africana-O.indica. Phylogenetic analyses of these data distinguished four groups: the species Olea capensis and O. lancea, which both belong to subgenus Ligustroides, the Olea forms from southeast Africa, those from Asia and the taxa of northwest Africa and the Mediterranean Basin, which include olive crop. The results are consistent with those previously found using cpDNA RFLPs, with some minor differences observed within each group. They constitute further evidence to clarify the phylogeny of Olea.  相似文献   

5.
Geographical isolation and polyploidization are central concepts in plant evolution. The hierarchical organization of archipelagos in this study provides a framework for testing the evolutionary consequences for polyploid taxa and populations occurring in isolation. Using amplified fragment length polymorphism and simple sequence repeat markers, we determined the genetic diversity and differentiation patterns at three levels of geographical isolation in Olea europaea : mainland-archipelagos, islands within an archipelago, and populations within an island. At the subspecies scale, the hexaploid ssp. maroccana (southwest Morocco) exhibited higher genetic diversity than the insular counterparts. In contrast, the tetraploid ssp. cerasiformis (Madeira) displayed values similar to those obtained for the diploid ssp. guanchica (Canary Islands). Geographical isolation was associated with a high genetic differentiation at this scale. In the Canarian archipelago, the stepping-stone model of differentiation suggested in a previous study was partially supported. Within the western lineage, an east-to-west differentiation pattern was confirmed. Conversely, the easternmost populations were more related to the mainland ssp. europaea than to the western guanchica lineage. Genetic diversity across the Canarian archipelago was significantly correlated with the date of the last volcanic activity in the area/island where each population occurs. At the island scale, this pattern was not confirmed in older islands (Tenerife and Madeira), where populations were genetically homogeneous. In contrast, founder effects resulted in low genetic diversity and marked genetic differentiation among populations of the youngest island, La Palma.  相似文献   

6.
Two families of repeated DNA sequences were cloned from Olea europaea ssp sativa cv. "Picual". The first repetitive DNA is organized in a tandem repeat of monomers of 178 bp. Sequencing of several clones showed that it is relatively A-T rich (54.49%) and possesses short direct and inverted subrepeats as well as some palindromic sequences. Comparison between the monomers revealed heterogeneity of the sequence primary structure. This repetitive DNA is present in several cultivars of olive cultivates. Comparison of sequences with other repetitive DNAs described in Olea europaea has been carried out. No significant similarity was found. All the obtained results suggest that this repetitive DNA described here is a new family of repetitive DNA. The second repetitive DNA is organized in a tandem repeat of monomers of 78 bp. This second family of repetitive DNA showed significant similarity with other repetitive DNAs previously described in Olea europaea. Their existence in new cultivars of olive is shown.  相似文献   

7.
Four hundred and four individuals belonging to the species Olea europaea were characterised using mitochondrial DNA (mtDNA) RFLPs. Twelve mitotypes were distinguished. The combination of mtDNA information with cpDNA polymorphism (characterised in a previous study) led us to recognise 20 cytoplasmic lineages of which seven were found in the Mediterranean area (oleasters, cultivars and O. e. subsp. maroccana). In the olive complex, strong cytoplasm genetic differentiation was revealed ( F(st) = 0.73). Very strong linkage disequilibrium between cpDNA and mtDNA polymorphisms was observed, particularly in the Mediterranean subspecies europaea. This high congruence between genetic structure based on cpDNA or mtDNA sustains a low level of recurrent mutation in both organelle DNAs and, thus, the polymorphisms used in this study were pertinent to reconstruct olive phylogeography. In the Mediterranean area, genetic drift due to population regression during Quaternary glaciations, and founder effects associated with the postglacial seed dissemination, have probably contributed to the existence of a high genetic linkage disequilibrium between cpDNA and mtDNA polymorphisms. Thus, four Mediterranean cytoplasmic lineages, clearly distinguished both by cpDNA and mtDNA polymorphisms, most likely reflect four distinct relic populations during Quaternary glaciations. Finally, O. e. subsp. maroccana from South Morocco, which also displayed specific cytoplasmic lineages, should be considered as another relic Mediterranean population.  相似文献   

8.
Previous papers have dealt with olive chloroplastic DNA (cpDNA) variation revealed using several methods (RFLPs, PCR-RFLPs and microsatellites) and have led to different conclusions. This paper aims to reconsider these divergences. A Southern approach was applied to reveal polymorphism. We used chloroplast DNA of Phillyrea media as a probe. Based on these data, only four chlorotypes were identified in the olive complex. The number of detected lineages was lower than reported in the literature using a direct cpDNA RFLP approach, and was insufficient to distinguish the North African subspecies europaea, maroccana, guanchica and laperrinei. Furthermore, one individual considered belonging to the subspecies laperrinei was questionable. Using other cpDNA and mitochondrial DNA (mtDNA) polymorphisms - based on PCR and RFLP methods, respectively - we showed that this individual displays the cytoplasmic lineage CE1-ME1 characteristic of most Eastern mediterranean cultivars and of Olea europaea subsp. laperrinei from Hoggar. However, based on RAPDs, this individual appeared as mislabelled and probably corresponded to a Mediterranean cultivar or a feral form. In addition, we checked O. e. subsp. laperrinei herbarium samples using two cpDNA microsatellites, which revealed polymorphisms. These also supported that both populations from Niger and Algeria displayed a chlorotype related to CE1. Consequently, based on cpDNA, the relationships of O. e. subsp. laperrinei from Hoggar with a Mediterranean lineage appeared well supported, whereas the South West Moroccan and Macaronesian olives appeared in a different clade using both mtDNA and cpDNA polymorphisms. We conclude that methods based on PCR reveal more polymorphisms in the cpDNA and lead to more-reliable results that the classical RFLP method.  相似文献   

9.
BACKGROUND AND AIMS: Olive cultivars and their wild relatives (oleasters) represent two botanical varieties of Olea europaea subsp. europaea (respectively europaea and sylvestris). Olive cultivars have undergone human selection and their area of diffusion overlaps that of oleasters. Populations of genuine wild olives seem restricted to isolated areas of Mediterranean forests, while most other wild-looking forms of olive may include feral forms that escaped cultivation. METHODS: The genetic structure of wild and cultivated olive tree populations was evaluated by amplified fragment length polymorphism (AFLP) markers at a microscale level in one continental and two insular Italian regions. KEY RESULTS: The observed patterns of genetic variation were able to distinguish wild from cultivated populations and continental from insular regions. Island oleasters were highly similar to each other and were clearly distinguishable from those of continental regions. Ancient cultivated material from one island clustered with the wild plants, while the old plants from the continental region clustered with the cultivated group. CONCLUSIONS: On the basis of these results, we can assume that olive trees have undergone a different selection/domestication process in the insular and mainland regions. The degree of differentiation between oleasters and cultivated trees on the islands suggests that all cultivars have been introduced into these regions from the outside, while the Umbrian cultivars have originated either by selection from local oleasters or by direct introduction from other regions.  相似文献   

10.
BACKGROUND AND AIMS: The Laperrine's olive (Olea europaea subsp. laperrinei) is an endemic tree from Saharan massifs. Its populations have substantially regressed since the Pleistocene and are presently distributed in a fragmented habitat. Long-term persistence of this taxon is uncertain and programmes of preservation have to be urgently implemented. To define a conservation strategy, the genetic diversity and breeding system of this tree have to be investigated. METHODS: One hundred and eleven ramets were prospected in the laperrinei populations from the Tamanrasset region, southern Algeria. Genetic polymorphism was revealed at nuclear and chloroplast DNA (cpDNA) microsatellite loci allowing a comparative assessment of the genetic diversity of laperrinei and Mediterranean populations based on bi-parental and maternal markers. Additionally, nuclear microsatellite markers enabled the genotypes to be identified unambiguously. KEY RESULTS: Based on nuclear microsatellite data, the total diversity was high (Ht=0.61) in laperrinei populations and similar to that observed in western Mediterranean populations. A substantial cpDNA diversity (Ht=0.19) was also observed. Genetically identical ramets originated from the same stump (which can cover >80 m2) were identified in each population. Sixteen per cent of genets exhibited more than one ramet. In addition, several cases of somatic mutations were unambiguously revealed in distinct ramets stemming from the same stump. CONCLUSIONS: These data show that highly isolated and small laperrinei populations are able to maintain a high genetic diversity. This supports the existence of relict trees persisting for a very long time (probably since the last humid transition, 3000 years ago). It is proposed that the very long persistence associated with an asexual multiplication of highly adapted trees could be a strategy of survival in extreme conditions avoiding a mutational meltdown due to reproduction in reduced populations.  相似文献   

11.
Besnard G  Henry P  Wille L  Cooke D  Chapuis E 《Heredity》2007,99(6):608-619
The olive tree (Olea europaea) has successfully invaded several regions in Australia and Pacific islands. Two olive subspecies (subspp. europaea and cuspidata) were first introduced in these areas during the nineteenth century. In the present study, we determine the origin of invasive olives and investigate the importance of historical effects on the genetic diversity of populations. Four invasive populations from Australia and Hawaii were characterized using eight nuclear DNA microsatellites, plastid DNA markers as well as ITS-1 sequences. Based on these data, their genetic similarity with native populations was investigated, and it was determined that East Australian and Hawaiian populations (subsp. cuspidata) have originated from southern Africa while South Australian populations (subsp. europaea) have mostly derived from western or central Mediterranean cultivars. Invasive populations of subsp. cuspidata showed significant loss of genetic diversity in comparison to a putative source population, and a recent bottleneck was evidenced in Hawaii. Conversely, invasive populations of subsp. europaea did not display significant loss of genetic diversity in comparison to a native Mediterranean population. Different histories of invasion were inferred for these two taxa with multiple cultivars introduced restoring gene diversity for europaea and a single successful founder event and sequential introductions to East Australia and then Hawaii for cuspidata. Furthermore, one hybrid (cuspidata x europaea) was identified in East Australia. The importance of hybridizations in the future evolution of the olive invasiveness remains to be investigated.  相似文献   

12.
Since ancient times the olive tree (Olea europaea), an evergreen drought- and moderately salt-tolerant species, has been cultivated for its oil and fruit in the Mediterranean basin. Olive is unique among the commercial important oil crops for many reasons. Today, it ranks sixth in the world's production of vegetable oils. Due to its nutritional quality, olive oil has a high commercial value compared with most other plant oils. Olive oil has a well-balanced composition of fatty acids, with small amounts of palmitate, and it is highly enriched in the moneonic acid oleate. This makes it both fairly stable against auto-oxidation and suitable for human health. Nevertheless, it is the presence of minor components, in particular phenolics, contributing for oil's high oxidative stability, color and flavor, that makes olive oil unique among other oils. Moreover, as a result of their demonstrated roles in the prevention of cancer and cardiovascular diseases, olive phenolics have gained much attention during the past years. Also unique to virgin olive oil is its characteristic aroma. This results from the formation of volatile compounds, namely, aldehydes and alcohols of six carbon atoms, which is triggered when olives are crushed during the process of oil extraction. The biochemistry of the olive tree is also singular. O. europaea is one of the few species able to synthesize both polyols (mannitol) and oligosaccharides (raffinose and stachyose) as the final products of the photosynthetic CO(2) fixation in the leaf. These carbohydrates, together with sucrose, can be exported from leaves to fruits to fulfill cellular metabolic requirements and act as precursors to oil synthesis. Additionally, developing olives contain active chloroplasts capable of fixing CO(2) and thus contributing to the carbon economy of the fruit. The overall quality of table olives and olive oil is influenced by the fruit ripening stage. Olive fruit ripening is a combination of physiological and biochemical changes influenced by several environmental and cultural conditions, even if most events are under strict genetic control.  相似文献   

13.
Guided by a feeding stimulant activity test on the olive weevil (Dyscerus perforatus), two compounds that showed potent feeding stimulant activity were isolated from the olive tree (Olea europaea). Based on their spectral data and a literature survey, they were identified as (-)-olivil (1) and (+ )-1-acetoxypinoresinol (2). The activities of these minor lignans were significantly higher for the female than for the male weevil.  相似文献   

14.
Animals may disperse cultivated trees outside the agricultural land, favoring the naturalization or, even, the invasiveness of domestic plants. However, the ecological and conservation implications of new or unexplored mutualisms between cultivated trees and wild animals are still far from clear. Here, we examine the possible role of an expanding and, locally, overabundant pigeon species (Columba palumbus) as an effective disperser of domestic olive trees (Olea europaea), a widespread cultivated tree, considered a naturalized and invasive species in many areas of the world. By analyzing crop and gizzard content we found that olive fruits were an important food item for pigeons in late winter and spring. A proportion of 40.3% pigeons consumed olive seeds, with an average consumption of 7.8 seeds per pigeon and day. Additionally, most seed sizes (up to 0.7 g) passed undamaged through the gut and were dispersed from cultivated olive orchards to areas covered by protected Mediterranean vegetation, recording minimal dispersal distances of 1.8–7.4 km. Greenhouse experiments showed that seeds dispersed by pigeons significantly favored the germination and establishment in comparison to non-ingested seeds. The ability of pigeons to effectively disperse domestic olive seeds may facilitate the introduction of cultivated olive trees into natural systems, including highly-protected wild olive woodlands. We recommend harvesting ornamental olive trees to reduce both pigeon overpopulation and the spread of artificially selected trees into the natural environment.  相似文献   

15.
Beta-sitosteryl-D-glucoside and oleuropein isolated from the olive tree (Olea europaea) and their hydrolysed derivatives were tested by a feeding stimulative activity bioassay using the olive weevil (Dyscerus perforatus). Although the steroidal glucoside showed potent feeding stimulative activity, the activity of the aglycone (beta-sitosterol) was significantly lower than that of the glucoside. On the other hand, the difference in the activity between oleuropein, a secoiridoid glucoside, and the hydrolysed derivatives was not significant.  相似文献   

16.
Programmed cell death (PCD) has been found to be induced after pollination both in papillar cells and in self-incompatible pollen in the olive (Olea europaea L.). Reactive oxygen species (ROS) and nitric oxide (NO) are known to be produced in the pistil and pollen during pollination but their contribution to PCD has so far remained elusive. The possible role of ROS and NO was investigated in olive pollen-pistil interaction during free and controlled pollination and it was found that bidirectional interaction appears to exist between the pollen and the stigma, which seems to regulate ROS and NO production. Biochemical evidence strongly suggesting that both O(2)(-) and NO are essential for triggering PCD in self-incompatibility processes was also obtained. It was observed for the first time that peroxynitrite, a powerful oxidizing and nitrating agent generated during a rapid reaction between O(2)(-) and NO, is produced during pollination and that this is related to an increase in protein nitration which, in turn, is strongly associated with PCD. It may be concluded that peroxynitrite mediates PCD during pollen-pistil interaction in Olea europaea L. both in self-incompatible pollen and papillar cells.  相似文献   

17.
The low ethylene yield in a cell-free ethylene-forming system from olive tree leaves ( Olea europaea L. cv. Picual) was investigated. During the incubation, 1-aminocyclopropane-1-carboxylic acid (ACC) was extensively transformed into 3-hydroxypropyl amide (HPA). Enzyme extract, Mn2+ and oxygen are responsible for this reaction. Horseradish peroxidase (EC 1.11.1.7) can substitute for the enzyme extract in this reaction. HPA formation could be one reason for the poor in vitro conversion efficiency of ACC to ethylene.  相似文献   

18.
In Oleaceae the most outstanding biological issue is to clarify the taxonomic relationships of cultivated and wild olives. To establish the genetic relationships between the wild (Olea europaea subsp. europaea var. sylvestris (Mill.) Lehr.), the cultivated olive (Olea europaea subsp. europaea var. europaea), and other taxa of the genus Olea (Olea europaea subsp. cuspidata (Wall. ex G. Don) Cif., Olea europaea subsp. cerasiformis G. Kunkel & Sunding, Olea paniculata R. Br.) and other Oleaceae (represented by Ligustrum vulgaris) we carried out the amplification by polymerase chain reaction (PCR) and the sequencing of the third nuclear intron of the nitrate reductase gene (nia-i3). Sequence analyses showed the presence of two different functional variants of the intron (nia1 and nia2) in the Oleaceae, in addition to a shorter non-functional one. Notably, while the shortest and the nia1 variants were present in all the taxa analysed, the nia2 variant was present only in the wild and the cultivated olive. These data confirm the close phylogenetic relationship between wild and cultivated olives and suggest that this gene could be duplicated in these two taxa after its divergence from the remaining Oleaceae. The presence of a target for AflII enzyme in nia2 and its absence in nia1 variant enables easy distinction by PCR-RFLP between, on the one hand, wild and cultivated olive, and on the other the remaining subspecies of the Olea europaea L. complex (O. e. subsp. cuspidata and O. e. subsp. cerasiformis) as well as other Oleaceae (O. paniculata, L. vulgaris L.). Additionally, nia1 sequences provide useful information about phylogeny of the wild and cultivated olives inside the genus Olea.  相似文献   

19.
African olive (Olea europaea ssp. cuspidata) is a small evergreen tree which has become highly invasive at a landscape scale in the western Sydney and Hunter Valley regions of New South Wales, Australia. African olive invasion results in the formation of a dense and permanent mid‐canopy in grassy woodland vegetation. We investigated the relationship between African olive and native species establishment, abundance and diversity, using field surveys and a manipulative shading experiment. There were 78% fewer native species beneath African olive canopy in the field compared to uninvaded woodland sites. The shading experiment showed that simulated dense African olive shade levels produced the lowest dry weight for the three native species studied, with simulated canopy edge light providing optimal conditions for the native shrub Bursaria spinosa and African olive. Dense African olive shade levels produced the highest mortality rate for native species; however, African olive was able to maintain an 88% survival rate under dense canopy shade. This study confirms the adaptability of African olive and its capacity to decrease native plant diversity and substantially modify native vegetation at the community level.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号