首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The U3 snoRNA coding sequences from the genomic DNAs of Kluyveromyces delphensis and four variants of the Kluyveromyces marxianus species were cloned by PCR amplification. Nucleotide sequence analysis of the amplification products revealed a unique U3 snoRNA gene sequence in all the strains studied, except for K. marxianus var. fragilis. The K. marxianus U3 genes were intronless, whereas an intron similar to those of the Saccharomyces cerevisiae U3 genes was found in K. delphensis. Hence, U3 genes with and without intron are found in yeasts of the Saccharomycetoideae subfamily. The secondary structure of the K. delphensis pre-U3 snoRNA and of the K. marxianus mature snoRNAs were studied experimentally. They revealed a strong conservation in yeasts of (1) the architecture of U3 snoRNA introns, (2) the 5'-terminal domain of the mature snoRNA, and (3) the protein-anchoring regions of the U3 snoRNA 3' domain. In contrast, stem-loop structures 2, 3, and 4 of the 3' domain showed great variations in size, sequence, and structure. Using a genetic test, we show that, in spite of these variations, the Kluyveromyces U3 snoRNAs are functional in S. cerevisiae. We also show that S. cerevisiae U3A snoRNAs lacking the stem-loop structure 2 or 4 are functional. Hence, U3 snoRNA function can accommodate great variations of the RNA 3'-terminal domain.  相似文献   

6.
7.
正Reproduction in mammals is primarily through fertilization of the oocytes and sperms generated by the females and males, respectively. Fusion of two haploid genomes leads to formation of the diploid zygotes, which sequentially gives rise to the pre-implantation and post-implantation embryos  相似文献   

8.
Vertebrate U14 snoRNAs are encoded within hsc70 pre-mRNA introns and U14 biosynthesis occurs via an intron-processing pathway. We have shown previously that essential processing signals are located in the termini of the mature U14 molecule and replacement of included boxes C or D with oligo C disrupts snoRNA synthesis. The experiments detailed here now define the specific nucleotide sequences and structures of the U14 termini that are essential for intronic snoRNA processing. Mutagenesis studies demonstrated that a 5', 3'-terminal stem of at least three contiguous base pairs is required. A specific helix sequence is not necessary and this stem may be extended to as many as 15 base pairs without affecting U14 processing. The spatial positioning of boxes C and D with respect to the terminal stem is also important. Detailed analysis of boxes C and D revealed that both consensus sequences possess essential nucleotides. Some, but not all, of these critical nucleotides correspond to those required for the stable accumulation of nonintronic yeast U14 snoRNA. The presence of box C and D consensus sequences flanking a terminal stem in many snoRNA species indicates the importance of this "terminal core motif" for snoRNA processing.  相似文献   

9.
U8 small nucleolar RNA (snoRNA) is essential for metazoan ribosomal RNA (rRNA) processing in nucleoli. The sequences and structural features in Xenopus U8 snoRNA that are required for its nucleolar localization were analyzed. Fluorescein-labeled U8 snoRNA was injected into Xenopus oocyte nuclei, and fluorescence microscopy of nucleolar preparations revealed that wild-type Xenopus U8 snoRNA localized to nucleoli, regardless of the presence or nature of the 5' cap on the injected U8 snoRNA. Nucleolar localization was observed when loops or stems in the 5' portion of U8 that are critical for U8 snoRNA function in rRNA processing were mutated. Therefore, sites of interaction in U8 snoRNA that potentially tether it to pre-rRNA are not essential for nucleolar localization of U8. Boxes C and D are known to be nucleolar localization elements (NoLEs) for U8 snoRNA and other snoRNAs of the Box C/D family. However, the spatial relationship of Box C to Box D was not crucial for U8 nucleolar localization, as demonstrated here by deletion of sequences in the two stems that separate them. These U8 mutants can localize to nucleoli and function in rRNA processing as well. The single-stranded Cup region in U8, adjacent to evolutionarily conserved Box C, functions as a NoLE in addition to Boxes C and D. Cup is unique to U8 snoRNA and may help bind putative protein(s) needed for nucleolar localization. Alternatively, Cup may help to retain U8 snoRNA within the nucleolus.  相似文献   

10.
U3 snoRNA may recycle through different compartments of the nucleolus   总被引:6,自引:0,他引:6  
A model is proposed in which U3 small nucleolar RNA (snoRNA) is recruited from an inactive, stored form in the dense fibrillar component (DFC) of the nucleolus to an active form that is associated with the initial ribosomal RNA (rRNA) precursor. The initial steps of rRNA processing occur in the DFC, and then it is proposed that the U3 snoRNA moves with intermediates in rRNA processing from the DFC to the granular component (GC) of the nucleolus. The nucleolar protein fibrillarin is located primarily in the DFC, and it is suggested that the complex of fibrillarin and U3 snoRNA dissociates when U3 snoRNA transits to the GC. Finally, when U3 snoRNA is released from the processed rRNA, the tether holding the rRNA in the nucleolus is broken and rRNA can then be exported from the nucleolus to the cytoplasm. U3 snoRNA is hypothesized to recycle back from the GC to the DFC where it is stored until future association with another initial rRNA precursor. Data supporting this model are summarized. U3 snoRNA is also stored in the coiled body of interphase cells and in the nucleolar remnants and prenucleolar bodies of mitotic cells, and there may be some similarity in the binding sites for stored U3 snoRNA in the DFC and in these structures. Received: 16 September 1996 / Accepted: 11 November 1996  相似文献   

11.
Mature U3 snoRNA in yeast is generated from the 3′-extended precursors by endonucleolytic cleavage followed by exonucleolytic trimming. These precursors terminate in poly(U) tracts and are normally stabilised by binding of the yeast La homologue, Lhp1p. We report that normal 3′ processing of U3 requires the nuclear Lsm proteins. On depletion of any of the five essential proteins, Lsm2–5p or Lsm8p, the normal 3′-extended precursors to the U3 snoRNA were lost. Truncated fragments of both mature and pre-U3 accumulated in the Lsm-depleted strains, consistent with substantial RNA degradation. Pre-U3 species were co-precipitated with TAP-tagged Lsm3p, but the association with spliced pre-U3 was lost in strains lacking Lhp1p. The association of Lhp1p with pre-U3 was also reduced on depletion of Lsm3p or Lsm5p, indicating that binding of Lhp1p and the Lsm proteins is interdependent. In contrast, a tagged Sm-protein detectably co-precipitated spliced pre-U3 species only in strains lacking Lhp1p. We propose that the Lsm2–8p complex functions as a chaperone in conjunction with Lhp1p to stabilise pre-U3 RNA species during 3′ processing. The Sm complex may function as a back-up to stabilise 3′ ends that are not protected by Lhp1p.  相似文献   

12.
U1 small nuclear ribonucleoproteins (snRNPs) are required for in vitro splicing of pre-mRNA. Sequences within U1 RNA hybridize to, and thus recognize, 5' splice junctions. We have investigated the mechanism of association of U1 snRNPs with the spliceosome. U1-specific antibodies detected U1 association with precursor RNA early during assembly. Removal of the 5' terminal sequences of U1 RNA by oligo-directed cleavage or removal of U1 snRNPs by immunoprecipitation prior to the addition of precursor RNA depressed the association of all snRNPs with precursor RNA as detected by immunoprecipitation of splicing complexes by either Sm or U1-specific antibodies. Assembly of the spliceosome as monitored by gel electrophoresis was also depressed after cleavage of U1 RNA. The dependency of Sm precipitability of precursor RNA upon the presence of U1 snRNPs suggests that U1 snRNPs participate in the early recognition of substrate RNAs by U2 to U6 snRNPs. Although removal of the 5'-terminal sequences of U1 depressed U1 snRNP association with precursor RNA, it did not eliminate it, suggesting semistable association of U1 snRNPs with the assembling spliceosome in the absence of U1 RNA hybridization. This association was not dependent upon 5' splice junction sequences but was dependent upon 3' intronic sequences, indicating that U1 snRNPs interact with factors recognizing 3' intronic sequences. Mutual dependence of 5' and 3' recognition factors suggests significant snRNP-snRNP communication during early assembly.  相似文献   

13.
14.
Synthesis of rRNA in eukaryotes involves the action of a large population of snoRNA-protein complexes (snoRNPs), which create modified nucleotides and participate in cleavage of pre-rRNA. The snoRNPs mediate these functions through direct base pairing, in many cases through long complementary sequences. This feature suggests that RNA helicases may be involved in the binding and release of snoRNPs from pre-rRNA. In this study, we determined that the DEAD box helicase Has1p, a nucleolar protein required for the production of 18S rRNA, copurifies with the snR30/U17 processing snoRNP but is also present with other snoRNPs. Blocking Has1p expression causes a substantial increase in snoRNPs associated with 60S-90S preribosomal RNP complexes, including the U3 and U14 processing snoRNPs and several modifying snoRNPs examined. Cosedimentation persisted even after deproteinization. This effect was not observed with depletion of two nonhelicase proteins, Esf1p and Dim2p, that are also required for 18S rRNA production. Point mutations in ATPase and helicase motifs of Has1p block U14 release from pre-rRNA. Surprisingly, depletion of Has1p causes a reduction in the level of free U6 snRNP. The results indicate that the Has1p helicase is required for snoRNA release from pre-rRNA and production of the U6 snRNP.  相似文献   

15.
The U3 snoRNA is required for 18S rRNA processing and small subunit ribosome formation in eukaryotes. Different from other box C/D snoRNAs, U3 contains an extra 5′ domain that pairs with pre-rRNA and a unique B/C motif essential for recruitment of the U3-specific Rrp9 protein. Here, we analyze the structure and function of Rrp9 with crystallographic, biochemical, and cellular approaches. Rrp9 is composed of a WD repeat domain and an N-terminal region. The crystal structures of the WD domain of yeast Rrp9 and its human ortholog U3-55K were determined, revealing a typical seven-bladed propeller fold. Several conserved surface patches on the WD domain were identified, and their function in RNP assembly and yeast growth were analyzed by mutagenesis. Prior association of Snu13 with the B/C motif was found to enhance the specific binding of the WD domain. We show that a conserved 7bc loop is crucial for specific recognition of U3, nucleolar localization of Rrp9, and yeast growth. In addition, we show that the N-terminal region of Rrp9 contains a bipartite nuclear localization signal that is dispensable for nucleolar localization. Our results provide insight into the functional sites of Rrp9.  相似文献   

16.
In eukaryotic ribosome biogenesis, U3 snoRNA base pairs with the pre-rRNA to promote its processing. However, U3 must be removed to allow folding of the central pseudoknot, a key feature of the small subunit. Previously, we showed that the DEAH/RHA RNA helicase Dhr1 dislodges U3 from the pre-rRNA. DHR1 can be linked to UTP14, encoding an essential protein of the preribosome, through genetic interactions with the rRNA methyltransferase Bud23. Here, we report that Utp14 regulates Dhr1. Mutations within a discrete region of Utp14 reduced interaction with Dhr1 that correlated with reduced function of Utp14. These mutants accumulated Dhr1 and U3 in a pre-40S particle, mimicking a helicase-inactive Dhr1 mutant. This similarity in the phenotypes led us to propose that Utp14 activates Dhr1. Indeed, Utp14 formed a complex with Dhr1 and stimulated its unwinding activity in vitro. Moreover, the utp14 mutants that mimicked a catalytically inactive dhr1 mutant in vivo showed reduced stimulation of unwinding activity in vitro. Dhr1 binding to the preribosome was substantially reduced only when both Utp14 and Bud23 were depleted. Thus, Utp14 is bifunctional; together with Bud23, it is needed for stable interaction of Dhr1 with the preribosome, and Utp14 activates Dhr1 to dislodge U3.  相似文献   

17.
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement.  相似文献   

18.
Multiple states of U3 RNA in Novikoff hepatoma nucleoli   总被引:18,自引:0,他引:18  
P Epstein  R Reddy  H Busch 《Biochemistry》1984,23(23):5421-5425
U3 RNA, a capped small nuclear RNA found thus far only in the nucleolus, has been implicated in the processing and/or transport of preribosomal RNA [Busch, H., Reddy, R., Rothblum, L., & Choi, Y. C. (1982) Annu. Rev. Biochem. 51, 617-654]. Tris(hydroxymethyl)aminomethane (Tris) (10 mM, pH 7.0) extracts of Novikoff hepatoma nucleoli, which contained about 80% of total nucleolar U3 RNA, were analyzed by sucrose density gradient centrifugation. Approximately 65% of the U3 RNA was bound to greater than 60S preribosomal ribonucleoprotein (RNP) particles, and about 15% sedimented at less than 20 S. The association between the 65% of U3 RNA that was bound to the preribosomal RNP particles was stable up to 55 degrees C. About 10% of U3 RNA was base paired to preribosomal RNA after deproteinization at 22 degrees C. The base-paired fraction of U3 RNA was released from the preribosomal RNA by heating to 45 degrees C or treating with 4 M urea. These results show that of the total nucleolar U3 RNP, (a) about 55% is bound to preribosomal RNP particles primarily by protein interactions, (b) about 10% is base paired to preribosomal RNA, (c) approximately 15% sedimented slowly and consisted presumably of free U3 RNP particles, and (d) the remaining 20% of U3 RNP was not extractable using 10 mM Tris buffer. On the basis of the different association states of U3 RNP particles, a model is proposed for the binding and dissociation events which take place between U3 RNP and preribosomal RNP particles.  相似文献   

19.
U3 small nucleolar RNA (snoRNA) is essential for rRNA processing to form 18S ribosomal RNA (rRNA). Previously, it has been shown that nucleolin is needed to load U3 snoRNA on pre-rRNA. However, as documented here, this is not sufficient. We present data that base-pairing between the U3 hinges and the external transcribed spacer (ETS) is critical for functional alignment of U3 on its pre-rRNA substrate. Additionally, the interaction between the U3 hinges and the ETS is proposed to serve as an anchor to hold U3 on the pre-rRNA substrate, while box A at the 5' end of U3 snoRNA swivels from ETS contacts to 18S rRNA contacts. Compensatory base changes revealed base-pairing between the 3' hinge of U3 snoRNA and region E1 of the ETS in Xenopus pre-rRNA; this novel interaction is required for 18S rRNA production. In contrast, base-pairing between the 5' hinge of U3 snoRNA and region E2 of the ETS is auxiliary, unlike the case in yeast where it is required. Thus, higher and lower eukaryotes use different interactions for functional association of U3 with pre-rRNA. The U3 hinge sequence varies between species, but covariation in the ETS retains complementarity. This species-specific U3-pre-rRNA interaction offers a potential target for a new class of antibiotics to prevent ribosome biogenesis in eukaryotic pathogens.  相似文献   

20.
Pre-mRNA splicing is executed by the spliceosome, a complex of small nuclear RNAs (snRNAs) and numerous proteins. One such protein, 15.5K/Snu13p, is associated with the spliceosomal U4/U6.U5 tri-snRNP and box C/D small nucleolar ribonucleoprotein particles (snoRNPs), which act during preribosomal RNA (rRNA) processing. As such, it is the first splicing factor to be identified in two functionally distinct particles. 15.5K binds to an internal helix-bulge-helix (K-turn) structure in the U4 snRNA and two such structures in the U3 snoRNA. Previous work has concentrated on the structural basis of the interaction of 15.5K with the RNAs and has been carried out in vitro. Here we present a functional analysis of Snu13p in vivo, using a galactose inducible SNU13 strain to investigate the basis of three lethal mutations in Saccharomyces cerevisiae. Two are point mutations that map to the RNA-binding domain, and the third is a C-terminal deletion. These mutations result in accumulation of unspliced pre-mRNA, confirming a role for Snu13p in pre-mRNA splicing. In addition, these mutants also display rRNA processing defects that are variable in nature. Analysis of one mutant in the RNA-binding domain reveals a reduction in the levels of the U4 snRNA, U6 snRNA, and box C/D snoRNAs, but not H/ACA snoRNAs, supporting a role for Snu13p in accumulation and/or maintenance of specific RNAs. The mutations in the RNA-binding domain exhibit differential binding to the U4 snRNA and U3 snoRNA in vitro, suggesting that there are differences in the mode of interaction of Snu13p with these two RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号