首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over a decade ago it was hypothesized that the rapid cold hardening process allows an organism's overall cold tolerance to track changes in environmental temperature, as would occur in nature during diurnal thermal cycles. Although a number of studies have since focused on characterizing the rapid cold hardening process and on elucidating the physiological mechanisms upon which it is based, the ecological relevance of this phenomenon has received little attention. We present evidence that in Drosophila melanogaster rapid cold hardening can be induced during cooling at rates which occur naturally, and that the protection afforded in such a manner benefits the organism at ecologically relevant temperatures. Drosophila melanogaster cooled at natural rates (0.05 and 0.1 degrees C min(-1)) exhibited significantly higher survival after one hour of exposure to -7 and -8 degrees C than did those directly transferred to these temperatures or those cooled at 0.5, or 1.0 degrees C min(-1). Protection accrued throughout the cooling process (e.g., flies cooled to 0 degrees C were more cold tolerant than those cooled to 11 degrees C). Whereas D. melanogaster cooled at 1.0 degrees C min(-1) had a critical thermal minimum (i.e., the temperature at which torpor occurred) of 6.5+/-0.6 degrees C, those cooled at an ecologically relevant rate of 0.1 degrees C min(-1) had a significantly lower value of 3.9+/-0.9 degrees C.  相似文献   

2.
Effect of warming rate on mouse embryos frozen and thawed in glycerol   总被引:2,自引:0,他引:2  
Mouse embryos (8-cell) fully equilibrated in 1.5 M-glycerol were cooled slowly (0.5 degrees C/min) to temperatures between - 7.5 and - 80 degrees C before rapid cooling and storage in liquid nitrogen (-196 degrees C). Some embryos survived rapid warming (approximately 500 degrees C/min) irrespective of the temperature at which slow cooling was terminated. However, the highest levels of survival of rapidly warmed embryos were observed when slow cooling was terminated between -25 and -80 degrees C (74-86%). In contrast, high survival (75-86%) was obtained after slow warming (approximately 2 degrees C/min) only when slow cooling was continued to -55 degrees C or below before transfer into liquid N2. Injury to embryos cooled slowly to -30 degrees C and then rapidly to -196 degrees C occurred only when slow warming (approximately 2 degrees C/min) was continued to -60 degrees C or above. Parallel cryomicroscopical observations indicated that embryos became dehydrated during slow cooling to -30 degrees C and did not freeze intracellularly during subsequent rapid cooling (approximately 250 degrees C/min) to -150 degrees C. During slow warming (2 degrees C/min), however, intracellular ice appeared at a temperature between -70 and -65 degrees C and melted when warming was continued to -30 degrees C. Intracellular freezing was not observed during rapid warming (250 degrees C/min) or during slow warming when slow cooling had been continued to -65 degrees C. These results indicate that glycerol provides superior or equal protection when compared to dimethyl sulphoxide against the deleterious effects of freezing and thawing.  相似文献   

3.
Factors affecting the cryosurvival of mouse two-cell embryos   总被引:1,自引:0,他引:1  
A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Liu XH  Zhang T  Rawson DM 《Theriogenology》2001,55(8):1719-1731
High chilling sensitivity is one of the main obstacles to successful cryopreservation of zebrafish embryos. So far the nature of the chilling injury in fish embryos has not been clear. The aim of this study is to investigate the effect of cooling rate and partial removal of yolk on chilling injury in zebrafish embryos. Zebrafish embryos at 64-cell, 50%-epiboly, 6-somite and prim-6 stages were cooled to either 0 degrees C or -5 degrees C at three different cooling rates: slow (0.3 degrees C/min or 1 degree C/min), moderate (30 degrees C/min), and rapid (approximately 300 degrees C/min). After chilling, embryos were warmed in a 26 degrees C water bath, followed by 3-day culturing in EM at 26 +/- 1 degrees C for survival assessment. When embryos were cooled to 0 degrees C for up to 30 min, 64-cell embryos had higher survival after rapid cooling than when they were cooled at a slower rate. When 64-cell embryos were held at -5 degrees C for 1 min, their survival decreased greatly after both slow and rapid cooling. The effect of cooling rate on the survival of 50%-epiboly and 6-somite embryos was not significant after 1 h exposure at 0 degrees C and 1 min exposure at -5 degrees C. However, rapid cooling resulted in significantly lower embryo survival than a cooling rate of 30 degrees C/min or 1 degree C/min after 1 h exposure to 0 degrees C for prim-6 stage or 1 h exposure to -5 degrees C for all stages. Chilling injury in 64-cell embryos appears to be a consequence of exposure time at low temperatures rather than a consequence of rapid cooling. Results also indicate that chilling injury in later stage embryos (50%-epiboly, 6-somite and prim-6) is a consequence of the combination of rapid cooling and exposure time at low temperatures. Dechorionated prim-6 embryos were punctured and about half of yolk was removed. After 24 h culture at 26 +/- 1 degrees C after removal of yolk, the yolk-reduced embryos showed higher embryo survival than did control embryos after rapid cooling to -5 degrees C for 10 to 60 min. Results suggest that cold shock injury after rapid cooling can be mitigated after partial removal of yolk at the prim-6 stage. These findings help us to understand the nature of chilling sensitivity of fish embryos and to develop protocols for their cryopreservation.  相似文献   

5.
The purpose of this study was to clarify the relationship of cooling rates (CR) and warming rates (WR) during vitrification with postwarming viability of in vitro-matured bovine oocytes. In Experiment 1, oocytes were vitrified in a solution containing 7.2 M ethylene glycol and 1.0 M sucrose by use of open-pulled glass capillaries with five different outer diameters and were warmed by placement of the capillaries into 0.25 M sucrose solution. The capillaries of 2000-, 1400-, 1000-, 630-, and 440-mm diameters provided CR of 2000, 3000, 5000, 8000, and 12,000 degrees C/min and WR of 5000, 8000, 17,000, 33,000, and 62,000 degrees C/min, respectively. In oocytes vitrified in capillaries of 1400-mm diameter (CR, 3000 degrees C/min; WR, 8000 degrees C/min), the morphological survival rate (86% of vitrified), penetration rate (79% of inseminated), and normal fertilization rate (69% of penetrated) were higher or tended to be higher than those in the other vitrification groups. In Experiment 2, oocytes cooled at 2000, 3000, or 12,000 degrees C/min were warmed at 8000 degrees C/min, and oocytes cooled at 3000 degrees C/min were warmed at 5000, 8000, or 33,000 degrees C/min. Among these CR-WR combinations, cooling of oocytes at 3000 degrees C/min regardless of the WR resulted in higher postwarming survival. These results indicate that survival of in vitro-matured bovine oocytes after vitrification and subsequent warming is improved by a slightly rapid cooling rate in open-pulled glass capillaries compared to that obtained in conventional straws.  相似文献   

6.
Hochi S  Semple E  Leibo SP 《Theriogenology》1996,46(5):837-847
The effect of cooling and warming rates during cryopreservation on subsequent embryo survival was studied in 607 bovine morulae and 595 blastocysts produced by in vitro maturation, fertilization and culture (IVM/IVF/IVC). Morulae and blastocysts were prepared by co-culturing presumptive zygotes with bovine oviductal epithelial cells (BOEC) in serum-free TCM199 medium for 6 and 7 d, respectively. The embryos in 1.5 M ethylene glycol in plastic straws were seeded at -7 degrees C, cooled to -35 degrees C at each of 5 rates (0.3 degrees, 0.6 degrees , 0.9 degrees, 1.2 degrees, or 1.5 degrees C/min) and then immediately plunged into liquid nitrogen. The frozen embryos were warmed either rapidly in a 35 degrees C water bath (warming rate > 1,000 degrees C/min) or slowly in 25 degrees to 28 degrees C air (< 250 degrees C/mm). With rapid warming, 42.1% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts. The proportions of rapidly wanned morulae that hatched decreased with increasing cooling rates (30.4, 19.0, 15.8 and 8.9% at 0.6 degrees , 0.9 degrees, 1.2 degrees and 1.5 degrees C/min, respectively). With slow warming 25.9% of the morulae that had been cooled at 0.3 degrees C/min developed into hatching blastocysts, while <10% of the morulae that had been cooled faster developed. The hatching rate of blastocysts cooled at 0.3 degrees C/min and warmed rapidly (96.3%) was higher than those cooled at 06 degrees and 0.9 degrees C/min (82.7 and 84.6%, respectively), and was also significantly higher than those warmed slowly after cooling at 0.3 degrees, 0.6 degrees or 0.9 degrees C/min (69.1, 56.6 and 51.8%, respectively). Cooling blastocysts at 1.2 degrees or 1.5 degrees C/min resulted in lowered hatching rates either with rapid (71.2 or 66 0%) or slow warming (38.2 or 38.9%). These results indicate that the survival of in vitro-produced bovine morulae and blastocysts is improved by very slow cooling during 2-step freezing, nevertheless, slow warming appears to cause injuries to morulae and blastocysts even after very slow cooling.  相似文献   

7.
AIM: To investigate the influence of low cooling rates on endothelial function and morphology of corneas frozen with propane-1,2-diol (PROH). METHODS: Rabbit corneas, mounted on support rings, were exposed to 1.4mol/l (10% v/v) PROH, seeded to initiate freezing, and cooled at 0.2 or 1 degrees C/min to -80 degrees C. Corneas were frozen immersed in liquid or suspended in air. After being held overnight in liquid nitrogen, corneas were warmed at 1 or 20 degrees C/min. After stepwise removal of the cryoprotectant, the ability of the endothelium actively to control corneal hydration was monitored during normothermic perfusion. Morphology was assessed after staining with trypan blue and alizarin red S, and by specular microscopy during perfusion. RESULTS: Functional survival was achieved only after slow cooling (0.2 degrees C/min) with the cornea immersed in the cryoprotectant medium, and rapid warming (20 degrees C/min). These conditions also gave the best morphology after freezing and thawing. CONCLUSION: Cooling rates lower than those typically applied to cornea improved functional survival of the endothelium. This result is in accord with previous observations showing the benefit of low cooling rates for cell monolayers [CryoLetters 17 (1996) 213-218].  相似文献   

8.
Ice formation in the freeze-tolerant wood frog (Rana sylvatica) induces the production and distribution of the cryoprotectant, glucose. Concomitantly, organs undergo a beneficial dehydration which likely inhibits mechanical injury during freezing. Together, these physiological responses promote freezing survival when frogs are frozen under slow cooling regimes. Rapid cooling, however, is lethal. We tested the hypothesis that the injurious effects of rapid cooling stem from an inadequate distribution of glucose to tissues and an insufficient removal of water from tissues during freezing. Accordingly, we compared glucose and water contents of five organs (liver, heart, skeletal muscle, eye, brain) from wood frogs cooled slowly or rapidly during freezing to -2.5 degrees C. Glucose concentrations in organs from slowly cooled frogs were significantly elevated over unfrozen controls, but no significant increases occurred in rapidly cooled frogs. Organs from slowly cooled frogs contained significantly less water than did those from controls, whereas water contents from rapidly cooled frogs generally were unchanged. Rapid cooling therefore inhibited the production and distribution of cryoprotectant and organ dehydration during freezing. This inhibition may result from an accelerated, premature failure of the cardiovascular system.  相似文献   

9.
Extracellular freezing injury at high subzero temperatures in human polymorphonuclear cells (PMNs) was studied with a cryomicroscope, electron microscope, and functional assays (phagocytosis, microbicidal activity, and chemotaxis). There are at least four major factors in freezing injury: osmotic stress, chilling, cold shock, and dilution shock. Extracellularly frozen PMNs lose functions when cooled to -2 degrees C without a cryoprotectant. Cells lose volume on freezing to the same degree as in hypertonic exposure. PMNs have a minimum volume to which they can shrink without injury. Greater dehydration produces irreversible injury to cellular functions, and cells eventually collapse under high osmotic stress. Chilling sensitivity is seen in slowly chilled, supercooled PMNs below -5 degrees C; at -7 degrees C, functions are lost in 1 h. This injury can be prevented by the addition of Me2SO but not glycerol. Me2SO does not, however, prevent cold shock (injury due to rapid cooling), which is seen during cooling at 10 degrees C/min to -14 degrees C, but not during slow cooling at 0.5 degrees C/min. One of the problems of using glycerol as a cryoprotectant stems from the high sensitivity of PMNs to dilution shock during the dilution or removal of glycerol.  相似文献   

10.
This study investigated the effects of rapid drying (in an airstream) and rapid freezing (in sub-cooled liquid nitrogen) onthe survival and ultrastructural preservation of pea embryonicaxes that had been imbibed for 4 h (desiccation tolerant) and24 h (desiccation sensitive). Maximum survival of all axes inthe absence of freezing was attained. Similarly, 100% survivalwas obtained if freezing was preceded by rapid drying. Axesimbibed for 24 h and not dried were more sensitive to freezingthan undried, 4 h imbibed axes. Ultrastructural examinationshowed no organellar or cytomatrical deformations in axes fromany of the treatments. Some cells of the 24 h imbibed axes showedlocalized plasmalemma abnormalities after railed dehydration.Subsequent to freezing, irregular nuclei were observed and plasmalemmavesiculation occurred. If these axes were not dried prior tofreezing, plasmalemma vesiculation became prominent, clumpingof the cytoskeleton occurred and some wall abnormalities becameapparent. Rapid drying probably increases intercellular soluteconcentrations, and sub-cooled liquid nitrogen will increasethe rate of heat exchange between tissue and cryogen. A combinationof rapid drying and rapid freezing may obviate, or reduce, therequirement for cryoprotectants on freezing of desiccation sensitivetissue.Copyright 1995, 1999 Academic Press Pisum sativum L., pea, embryonic axis, ultrastructure, transmission electron microscopy, cryopreservation, rapid freezing  相似文献   

11.
Huang C  Dong Q  Tiersch TR 《Theriogenology》2004,62(6):971-989
The objectives of this study were to evaluate the effects of cryoprotectant, osmotic pressure, cooling rate, equilibration time, and sperm-to-extender ratio, as well as somatic relationships of body length, body weight, and testis weight to sperm density in the platyfish Xiphophorus couchianus. Sperm motility and survival duration after thawing were significantly different between cryopreservation with dimethyl sulfoxide (DMSO) and glycerol, with the highest motility at 10 min after thawing obtained with 14% glycerol. With subsequent use of 14% glycerol as cryoprotectant, the highest motility after thawing was observed with Hanks' balanced salt solution (HBSS) across a range of 240-300 mOsm/kg. Samples cooled from 5 to -80 degrees C at 25 degrees C/min yielded the highest post-thaw motility, although no significant difference was found for cooling rates across the range of 20-30 degrees C/min. In addition, the highest motility after thawing was found in samples equilibrated from 10 to 30 min with 14% glycerol and cooled at 25 degrees C/min. The post-thaw motility declined rapidly with use of 10% glycerol and cooling at 5 degrees C/min across the equilibration range of 10 min to 2h. Sperm motility with a dilution ratio of sperm to extender of 1:10 was not different at 10 min after thawing with those samples at greater dilutions, but declined significantly from Day 1 after thawing and showed lower survival duration when stored at 4 degrees C. However, the additional dilution of sperm solutions with HBSS (300 mOsm/kg) immediately after thawing significantly slowed the decline of motility and prolonged the duration of survival. Based on the above findings, the highest average sperm motility (78+/-3 %) at 10 min after thawing was obtained when sperm were suspended in HBSS at 300 mOsm/kg with 14% glycerol as cryoprotectant, diluted at a ratio of sperm to HBSS-glycerol of 1:20, equilibrated for 10 min, cooled at 25 degrees C/min from 5 to -80 degrees C before plunging into liquid nitrogen, and thawed at 40 degrees C in a water bath for 7 s. If diluted within 5 h after thawing, sperm frozen by the above protocol retained continuous motility for 15 days when stored at 4 degrees C.  相似文献   

12.
We have previously reported high survival in mouse sperm frozen at 21 degrees C/min to -70 degrees C in a solution containing 18% raffinose in 0.25 x PBS (400 mOsm) and then warmed rapidly at approximately 2000 degrees C/min, especially under lowered oxygen tensions induced by Oxyrase, a bacterial membrane preparation. The best survival rates were obtained in the absence of glycerol. The first concern of the present study was to determine the effects of the cooling rate on the survival of sperm suspended in this medium. The sperm were cooled to -70 degrees C at rates ranging from 0.3 to 530 degrees C/min. The survival curve was an inverted "U" shape, with the highest motility occurring between 27 and 130 degrees C/min. Survival decreased precipitously at higher cooling rates. Decreasing the warming rate, however, decreased survivals at all cooling rates. The motility depression with slow warming was especially evident in sperm cooled at the optimal rates. This fact is consistent with our current view that the frozen medium surrounding sperm cells is in a metastable state, perhaps partly vitrified as a result of the high concentrations of sugar. The decimation of sperm cooled more rapidly than optimum (>130 degrees C/min), even with rapid warming, is consistent with the induction of considerable quantities of intracellular ice at these rates. When glycerol was added to the above medium, motilities were also dependent on the cooling rate, but they tended to be substantially lower than those obtained in the absence of glycerol. The minimum temperature in the above experiments was -70 degrees C. When sperm were frozen to -70 degrees C at optimum rates, lowering the temperature to -196 degrees C had no adverse effect.  相似文献   

13.
Mouse morulae were exposed in one step to a vitrification solution (EFS, a modified PBS containing 40% ethylene glycol, 18% Ficoll, and 0.3-M sucrose) at various temperatures, then cooled rapidly in liquid nitrogen, and then warmed rapidly. All of the embryos exposed to the EFS solution for 0.5 min at 25 degrees C before vitrification developed in culture. However, survival rates were lower if the duration of exposure was prolonged to 2, 5, or 10 min. At lower ambient temperatures (20, 10, and 5 degrees C), high survival rates were associated with longer exposure to the EFS solution. The toxicity of the EFS solution was also lower at lower temperatures. The toxic injury of morulae was manifested as decompaction of the blastomeres. Among the three additives in the EFS solution, ethylene glycol, which can cross cell membranes, was responsible for the toxicity. The results show that the optimum time for exposure of the embryos to the EFS solution before rapid cooling varies with the ambient temperature, i.e., 0.5 min at 25 degrees C, 0.5-5 min at 20 degrees C, 2-5 min at 10 degrees C, and 2-10 min at 5 degrees C. If they are exposed for an optimum period, almost all mouse morulae can survive vitrification (94-100%).  相似文献   

14.
Mazur P  Pinn IL  Kleinhans FW 《Cryobiology》2007,55(2):158-166
The formation of ice crystals within cells (IIF) is lethal. The classical approach to avoiding it is to cool cells slowly enough so that nearly all their supercooled freezable water leaves the cell osmotically before they have cooled to a temperature that permits IIF. An alternative approach is to cool the cell rapidly to just above its ice nucleation temperature, and hold it there long enough to permit dehydration. Then, the cell is cooled rapidly to -70 degrees C or below. This approach, often called interrupted rapid cooling, is the subject of this paper. Mouse oocytes were suspended in 1.5M ethylene glycol (EG)/PBS, rapidly cooled (50 degrees C/min) to -25 degrees C and held for 5, 10, 20, 30, or 40 min before being rapidly cooled (50 degrees C/min) to -70 degrees C. In cells held for 5 min, IIF (flashing) occurred abruptly during the second rapid cool. As the holding period was increased to 10 and 20 min, fewer cells flashed during the cooling and more turned black during warming. Finally, when the oocytes were held 30 or 40 min, relatively few flashed during either cooling or warming. Immediately upon thawing, these oocytes were highly shrunken and crenated. However, upon warming to 20 degrees C, they regained most of their normal volume, shape, and appearance. These oocytes have intact cell membranes, and we refer to them as survivors. We conclude that 30 min at -25 degrees C removes nearly all intracellular freezable water, the consequence of which is that IIF occurs neither during the subsequent rapid cooling to -70 degrees C nor during warming.  相似文献   

15.
The effect of the rate of rewarming on the survival of 8-cell mouse embryos and blastocysts was examined. The samples were slowly cooled (0.3--0.6 degrees C/min) in 1.5 M-DMSO to temperatures between -10 and -80 degrees C before direct transfer to liquid nitrogen (-196 degrees C). Embryos survived rapid thawing (275--500 degrees C/min) only when slow cooling was terminated at relatively high subzero temperatures (-10 to -50 degrees C). The highest levels of survival in vitro of rapidly thawed 8-cell embryos were obtained after transfer to -196 degrees C from -35 and -40 degrees C (72 to 88%) and of rapidly thawed blastocysts after transfer from -25 to -50 degrees C (69 to 74%). By contrast, for embryos to survive slow thawing (8 to 20 degrees C/min) slow cooling to lower subzero temperatures (-60 degrees C and below) was required before transfer to -196 degrees C. The results indicate that embryos transferred to -196 degrees C from high subzero temperatures contain sufficient intracellular ice to damage them during slow warming but to permit survival after rapid warming. Survival of embryos after rapid dilution of DMSO at room temperature was similar to that after slow (stepwise) dilution at 0 degrees C. There was no difference between the viability of rapidly and slowly thawed embryos after transfer to pseudopregnant foster mothers. It is concluded that the behaviour of mammalian embryos subjected to the stresses of freezing and thawing is similar to that of other mammalian cells. A simpler and quicker method for the preservation of mouse embryos is described.  相似文献   

16.
Freezing and melting transitions of cellular water in embryonic axes and cotyledonary tissues of recalcitrantQuercus rubra(red oak) seeds were compared under slow and rapid cooling conditions. The relevance of desiccation sensitivity (critical water content) and state/phase transition behaviors to cryopreservation was examined. Under a slow to intermediate cooling condition (≤10°C min−1), unfrozen water content in the tissues decreased to less than the critical water content, resulting in a dehydration damage. Under a rapid cooling condition (>100°C min−1) using liquid nitrogen (LN2), freeze-induced dehydration damage could be avoided if the initial water content was >0.50 g g−1dry wt. However, at water content >0.50 g g−1dry wt, the vitrified cellular matrix was highly unstable upon warming at 10°C min−1. These results offered a theoretical explanation on the difficulty for successful cryopreservation of recalcitrant red oak embryonic axes. A complete state/phase transition diagram for red oak axes was constructed, and a vitrification-based cryopreservation protocol that employed predehydration and rapid cooling was examined. State/phase transition behaviors of cellular water are important parameters for cryopreservation; however, vitrification alone was not sufficient for seed tissues to survive the cryopreservation condition.  相似文献   

17.
In Study 1 over 2000 4- to 8-cell mouse embryos were randomly pooled and assigned to 1 of 12 treatment groups. A 2 X 2 X 3 factorial design was used to analyze two types of cryoprotectant/post-thaw (PT) dilutions (dimethyl sulfoxide [Me2SO]/stepwise dilution versus glycerol/sucrose dilution), two storage containers (glass ampoules versus plastic straws), and three cooling treatments. Two commercial, controlled-rate freezing machines were examined, employing either nitrogen gas (Planer) or thermoelectric (Glacier) cooling. Embryos were cooled slowly (0.5 degrees C/min) to -35 or -80 degrees C and then cooled rapidly by transfer into liquid nitrogen (LN2). Thawed embryos were cultured for 24 hr after which developmental stage, post-thaw survival (PTS), embryo degeneration rate (EDR), quality grade (QG), and fluorescein diacetate viability grade (VG) were assessed. Overall, PTS and EDR were similar (P greater than 0.05) among the three freezing unit/plunge temperature treatments. Cumulative results of container and cryoprotectant/PT dilution treatments consistently demonstrated greater PTS, QG, and VG ratings and lower EDR values when embryos were frozen in ampoules using glycerol/sucrose dilution. Embryos treated with Me2SO/stepwise dilution were particularly sensitive to freezing damage when stored in plastic straws and plunged into LN2 at -35 degrees C. Study 2 was directed at determining whether Study 1 methods for diluting Me2SO-protected embryos markedly affected PTS rates. Post-thaw culture percentages were no different (P greater than 0.05) for four- to eight-cell Me2SO-treated embryos frozen in ampoules (using the forced-LN2 device), thawed, and diluted either conventionally in reduced concentrations of Me2SO or in the sucrose treatment normally accorded glycerolated embryos.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Freeze-thawing cat sperm in cryoprotectant results in extensive membrane damage. To determine whether cooling alone influences sperm structure and viability, we compared the effect of cooling rate on sperm from normospermic (N; > 60% normal sperm per ejaculate) and teratospermic (T; < 40% normal sperm per ejaculate) domestic cats. Electroejaculates were divided into raw or washed (Ham's F-10 + 5% fetal calf serum) aliquots, with the latter resuspended in Ham's F-10 medium or Platz Diluent Variant Filtered without glycerol (20% egg yolk, 11% lactose). Aliquots were 1) maintained at 25 degrees C (no cooling; control), 2) cooled to 5 degrees C in a commercial refrigerator for 30 min (rapid cooling; approximately 4 degrees C/min), 3) placed in an ice slush at 0 degrees C for 10 min (ultrarapid cooling; approximately 14 degrees C/min), or 4) cooled to 0 degrees C at 0.5 degrees C/min in a programmable alcohol bath (slow cooling); and aliquots were removed every 4 degrees C. All samples then were warmed to 25 degrees C and evaluated for percentage sperm motility and the proportion of intact acrosomes using a fluorescein-conjugated peanut agglutinin stain. In both cat populations, sperm percentage motility remained unaffected (p > 0.05) immediately after exposure to low temperatures and after warming to 25 degrees C. However, the proportion of spermatozoa with intact acrosomes declined (p < 0.05) after rapid cooling ( approximately 4 degrees C/min) to 5 degrees C (N, 65.6%; T, 27.5%) or ultrarapid cooling ( approximately 14 degrees C/min) to 0 degrees C (N, 62.1%; T, 23.0%) in comparison to the control value (N, 81.5%; T, 77.5%). Transmission electron microscopy of cooled sperm revealed extensive damage to acrosomal membranes. In contrast, slow cooling (0.5 degrees C/min) to 5 degrees C maintained (p > 0.05) a high proportion of spermatozoa with intact acrosomes (N, 75.5%; T, 68.3%), which also remained similar (p > 0.05) between cat populations (N, 64.7%; T, 56.8%) through continued cooling to 0 degrees C. Results demonstrate that 1) rapid cooling of domestic cat sperm induces significant acrosomal damage without altering sperm motility, 2) spermatozoa from teratospermic males are more susceptible to cold-induced acrosomal damage than normospermic counterparts, and 3) reducing the rate of initial cooling markedly decreases sperm structural damage.  相似文献   

19.
Experiments were conducted to determine temperatures between 24 and 4 degrees C at which stallion spermatozoa are most susceptible to cold shock damage. Semen was diluted to 25 x 10(6) spermatozoa/ml in a milk-based extender. Aliquots of extended semen were then cooled in programmable semen coolers. Semen was evaluated by computerized semen analysis initially and after 6, 12, 24, 36 and 48 hours of cooling. In Experiment 1A, semen was cooled rapidly (-0.7 degrees C/minute) from 24 degrees C to either 22, 20, 18 or 16 degrees C; then it was cooled slowly (-0.05 degrees C/minute) to a storage temperature of 4 degrees C. In Experiment 1B, rapid cooling proceeded from 24 degrees C to either 22, 19, 16, or 13 degrees C, and then slow cooling occurred to 4 degrees C. Initiating slow cooling at 22 or 20 degrees C resulted in higher (P<0.05) total and progressive motility over the first 24 hours of cooling than initiating slow cooling at 16 degrees C. Initiation of slow cooling at 22 or 19 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of cooled storage than initiation of slow cooling at 16 or 13 degrees C. In Experiment 2A, semen was cooled rapidly from 24 to 19 degrees C, and then cooled slowly to either 13, 10, 7 or 4 degrees C, at which point rapid cooling was resumed to 4 degrees C. Resuming the fast rate of cooling at 7 degrees C resulted in higher (P<0.05) total and progressive motility at 36 and 48 hours of cooled storage than resuming fast cooling at 10 or 13 degrees C. In Experiment 2B, slow cooling proceeded to either 10, 8, 6 or 4 degrees C before fast cooling resumed to 4 degrees C. There was no significant difference (P>0.05) at most storage times in total or progressive motility for spermatozoa when fast cooling was resumed at 8, 6 or 4 degrees C. In Experiment 3, cooling units were programmed to cool rapidly from 24 to 19 degrees C, then cool slowly from 19 to 8 degrees C, and then resume rapid cooling to storage temperatures of either 6, 4, 2 or 0 degrees C. Storage at 6 or 4 degrees C resulted in higher (P<0.05) total and progressive motility over 48 hours of storage than 0 or 2 degrees C.  相似文献   

20.
A total of 228 embryos was nonsurgically collected from superovulated cows and dehydrated in dimethyl sulfoxide (DMSO) or glycerol by a three-step procedure or a (T.I.T.) timed interval titration procedure. Embryos were loaded in straws, frozen by cooling to -6.0 degrees C at 1.0 degrees C/min, and seeded, followed by cooling to -30 degrees C at 0.3 degrees C/min and to -38 degrees C at 0.1 degrees C/min. At this time the straws were plunged into liquid nitrogen at -195 degrees C. Embryos were thawed in a 27 degrees C or 37 degrees C water bath and rehydrated by a six-step, three-step (sucrose) or one-step (sucrose) procedure. This yielded a 2 x 2 x 2 x 3 factorial treatment structure. Survival was based on development after 12 h in in vitro culture. The only significant single factor affecting survival was the initial quality grade of the embryo. Grades 1 and 2 embryos survived more often than Grade 3 embryos (P < 0.05). Using DMSO as the cryoprotectant resulted in better scores for the post dehydration to post thawing interval (P = 0.02). For both intervals, post dehydration to post thawing and post thawing to post rehydration, the previous quality grade was significant in determining the subsequent quality grade (P < 0.01). At each step of the freeze-thaw process, the embryos became progressively less morphologically intact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号