共查询到20条相似文献,搜索用时 0 毫秒
1.
Mouse models are often used to study human genes because it is believed that the expression and function are similar for the majority of orthologous genes between the two species. However, recent comparisons of microarray data from thousands of orthologous human and mouse genes suggested rapid evolution of gene expression profiles under minimal or no selective constraint. These findings appear to contradict non-array-based observations from many individual genes and imply the uselessness of mouse models for studying human genes. Because absolute levels of gene expression are not comparable between species when the data are generated by species-specific microarrays, use of relative mRNA abundance among tissues (RA) is preferred to that of absolute expression signals. We thus reanalyze human and mouse genome-wide gene expression data generated by oligonucleotide microarrays. We show that the mean correlation coefficient among expression profiles detected by different probe sets of the same gene is only 0.38 for humans and 0.28 for mice, indicating that current measures of expression divergence are flawed because the large estimation error (discrepancy in expression signal detected by different probe sets of the same gene) is mistakenly included in the between-species divergence. When this error is subtracted, 84% of human-mouse orthologous gene pairs show significantly lower expression divergence than that of random gene pairs. In contrast to a previous finding, but consistent with the common sense, expression profiles of orthologous tissues between species are more similar to each other than to those of nonorthologous tissues. Furthermore, the evolutionary rate of expression divergence and that of coding sequence divergence are found to be weakly, but significantly positively correlated, when RA and the Euclidean distance are used to measure expression-profile divergence. These results highlight the importance of proper consideration of various estimation errors in comparing the microarray data between species. 相似文献
2.
Kamalika Sen 《FEBS letters》2010,584(18):4015-4018
Pseudogenes, regarded as ‘genomic fossils’, are DNA sequences resembling functional genes in perspective of sequence homology but completely non-functional. In this study, we explored the unique characteristic features of human genes, configuring classical duplicated pseudogenes. We found that progenitors of duplicated pseudogenes are characterized by a high expressivity, and ability to encode hub-proteins in association with a high evolutionary rate. Such unusual features are endorsed by longer protein length, elevated CpG content, and a high recombination rate. The non-functionalization of their duplicated copies can be attributed to the overabundance of gene paralog number in concert with functional redundancy. 相似文献
3.
Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes 总被引:2,自引:1,他引:2
Huang H Winter EE Wang H Weinstock KG Xing H Goodstadt L Stenson PD Cooper DN Smith D Albà MM Ponting CP Fechtel K 《Genome biology》2004,5(7):R47-15
Background
Model organisms have contributed substantially to our understanding of the etiology of human disease as well as having assisted with the development of new treatment modalities. The availability of the human, mouse and, most recently, the rat genome sequences now permit the comprehensive investigation of the rodent orthologs of genes associated with human disease. Here, we investigate whether human disease genes differ significantly from their rodent orthologs with respect to their overall levels of conservation and their rates of evolutionary change.Results
Human disease genes are unevenly distributed among human chromosomes and are highly represented (99.5%) among human-rodent ortholog sets. Differences are revealed in evolutionary conservation and selection between different categories of human disease genes. Although selection appears not to have greatly discriminated between disease and non-disease genes, synonymous substitution rates are significantly higher for disease genes. In neurological and malformation syndrome disease systems, associated genes have evolved slowly whereas genes of the immune, hematological and pulmonary disease systems have changed more rapidly. Amino-acid substitutions associated with human inherited disease occur at sites that are more highly conserved than the average; nevertheless, 15 substituting amino acids associated with human disease were identified as wild-type amino acids in the rat. Rodent orthologs of human trinucleotide repeat-expansion disease genes were found to contain substantially fewer of such repeats. Six human genes that share the same characteristics as triplet repeat-expansion disease-associated genes were identified; although four of these genes are expressed in the brain, none is currently known to be associated with disease.Conclusions
Most human disease genes have been retained in rodent genomes. Synonymous nucleotide substitutions occur at a higher rate in disease genes, a finding that may reflect increased mutation rates in the chromosomal regions in which disease genes are found. Rodent orthologs associated with neurological function exhibit the greatest evolutionary conservation; this suggests that rodent models of human neurological disease are likely to most faithfully represent human disease processes. However, with regard to neurological triplet repeat expansion-associated human disease genes, the contraction, relative to human, of rodent trinucleotide repeats suggests that rodent loci may not achieve a 'critical repeat threshold' necessary to undergo spontaneous pathological repeat expansions. The identification of six genes in this study that have multiple characteristics associated with repeat expansion-disease genes raises the possibility that not all human loci capable of facilitating neurological disease by repeat expansion have as yet been identified. 相似文献4.
The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment 总被引:20,自引:0,他引:20
The size distributions of deletions, insertions, and indels (i.e., insertions or deletions) were studied, using 78 human processed pseudogenes and other published data sets. The following results were obtained: (1) Deletions occur more frequently than do insertions in sequence evolution; none of the pseudogenes studied shows significantly more insertions than deletions. (2) Empirically, the size distributions of deletions, insertions, and indels can be described well by a power law, i.e., f
k
= Ck
–b
, where f
k
is the frequency of deletion, insertion, or indel with gap length k, b is the power parameter, and C is the normalization factor. (3) The estimates of b for deletions and insertions from the same data set are approximately equal to each other, indicating that the size distributions for deletions and insertions are approximately identical. (4) The variation in the estimates of b among various data sets is small, indicating that the effect of local structure exists but only plays a secondary role in the size distribution of deletions and insertions. (5) The linear gap penalty, which is most commonly used in sequence alignment, is not supported by our analysis; rather, the power law for the size distribution of indels suggests that an appropriate gap penalty is w
k
= a + b ln k, where a is the gap creation cost and blnk is the gap extension cost. (6) The higher frequency of deletion over insertion suggests that the gap creation cost of insertion (a
i
) should be larger than that of deletion (a
d
); that is, a
i
– a
d
= In R, where R is the frequency ratio of deletions to insertions.
Correspondence to: W.-H. Li 相似文献
5.
Jerzy Jurka 《Journal of molecular evolution》1989,29(6):496-503
Summary Comparative analysis of the available 3′-portions of the human L1 (LINE-1) family of repeated sequences indicates that all
the sequences can be classified in two major subfamilies. The division is based on patterns of diagnostic bases shared within
L1 subfamilies of sequences but differing between them. The overall ratio of replacement to synonymous positions, occupied
by the diagnostic bases in the large open reading frame of the L1 sequence, is 1.15. This indicates that both subfamilies
were obtained from genes coding for functional proteins. The L1 subfamilies appear to be of different ages and may represent
a “fossil record” of the same active gene at different times in the history of primates. The younger subfamily can be split
further into at least two closely related branches of sequences. The above facts combined with the recent data for the Alu
subfamily structure show that LINE and SINE families of interspersed repeats share discontinuous patterns in their evolution.
These data are consistent with the model that both Alu and L1 families, as well as other pseudogene families, contain active
genes producing discrete layers of pseudogenes throughout the history of primates. Models of evolutionary processes that could
generate these discontinuities are discussed together with the possible biological role of Alu and L1 genes. 相似文献
6.
The characteristics of human disease genes were investigated through a comparative analysis with mouse mutant phenotype data. Mouse orthologs with mutations that resulted in discernible phenotypes were separated from mutations with no phenotypic defect, listing ‘phenotype’ and ‘no phenotype’ genes. First, we showed that phenotype genes are more likely to be disease genes compared to no phenotype genes. Phenotype genes were further divided into ‘embryonic lethal’, ‘postnatal lethal’, and ‘non-lethal phenotype’ groups. Interestingly, embryonic lethal genes, the most essential genes in mouse, were less likely to be disease genes than postnatal lethal genes. These findings indicate that some extremely essential genes are less likely to be disease genes, although human disease genes tend to display characteristics of essential genes. We also showed that, in lethal groups, non-disease genes tend to evolve slower than disease genes indicating a strong purifying selection on non-disease genes in this group. In addition, phenotype and no phenotype groups showed differing types of disease mutations. Disease genes in the no phenotype group displayed a higher frequency of regulatory mutations while those in the phenotype group had more frequent coding mutations, indicating that the types of disease mutations vary depending on gene essentiality. Furthermore, missense disease mutations in no phenotype genes were found to be more radical amino acid substitutions than those in phenotype genes. 相似文献
7.
Genome-wide investigation on the genetic variations of rice disease resistance genes 总被引:4,自引:0,他引:4
Yang S Feng Z Zhang X Jiang K Jin X Hang Y Chen JQ Tian D 《Plant molecular biology》2006,62(1-2):181-193
Exploitation of plant disease resistance (R) gene in breeding programs has been proven to be the most efficient strategy for coping with the threat of pathogens. An understanding of R-gene variation is the basis for this strategy. Here we report a genome-wide investigation on the variation of NBS-LRR-encoding genes, the common type of R genes, between two sequenced rice genomes, Oryza sativa L. var. Nipponbare and 93–11. We show that the allelic nucleotide diversity in 65.0% of 397 least-divergent pairs is not high (0.344% on average), while the remaining 35% display a greater diversity (5.4% on average). The majority of conserved R genes is single-copy and/or located as a singleton. The clustered, particularly the complex-clustered, R-genes contribute greatly to the rich genetic variation. Surprisingly only 11.2% of R-genes have remarkably high ratios of non-synonymous to synonymous rates, which is much less than the 17.4% observed between Arabidopsis genomes. Noticeable “artificially selective sweeping” could be detected in a large proportion of the conserved R-genes, a scenario described in the “arms race” co-evolutionary model. Based on our study, a variation pattern of R-genes is proposed and confirmed by the analysis of R-genes from other rice lines, indicating that the observed variation pattern may be common in all rice lines.Electronic Supplementary Material Supplementary material is available for this article at 相似文献
8.
Different mechanisms regulate the expression level of tissue specific genes in human. Here we report some compositional features such as codon usage bias, amino acid usage bias, codon frequency, and base composition which may be potentially related to mRNA amount of tissue specific tumor suppressor genes. Our findings support the possibility that structural elements in gene and protein may play an important role in the regulation of tumor suppressor genes, development, and tumorigenesis. The data presented here can open broad vistas in the understanding and treatment of a variety of human malignancies. 相似文献
9.
Mochizuki K Sano H Kobayashi S Nishimiya-Fujisawa C Fujisawa T 《Development genes and evolution》2000,210(12):591-602
The Drosophila gene nanos encodes two particular zinc finger motifs which are also found in germline-associated factors from nematodes to vertebrates.
We cloned two nanos (nos)-related genes, Cnnos1 and Cnnos2 from Hydra magnipapillata. Using whole-mount in situ hybridization, the expression of Cnnos1 and Cnnos2 was examined. Cnnos1 was specifically expressed in multipotent stem cells and germline cells, but not in somatic cells. Cnnos2 was weakly expressed in germline cells and more specifically in the endoderm of the hypostome where it appears to be involved
in head morphogenesis. In addition to structural conservation in the zinc finger domain of nanos-related genes, functional conservation of Cnnos1 was also demonstrated by the finding that a Cnnos1 transgene can partially rescue the nos
RC phenotype that is defective in the egg production of Drosophila. Thus, the function of nanos-related genes in the germline appears to be well conserved from primitive to highly evolved metazoans.
Received: 28 April 2000 / Accepted: 1 July 2000 相似文献
10.
M. Gniadkowski J. Fiett P. Borsuk D. Hoffman-Zacharska P. P. Stępień E. Bartnik 《Journal of molecular evolution》1991,33(2):175-178
Summary We have cloned and determined the nucleotide sequence of 18 DNA fragments hybridizing to 5S rRNA from twoAspergillus species-A. wentii andA. awamori. Four of the analyzed sequences were pseudogenes. The gene sequences of these two species were very similar and differed fromAspergillus nidulans at both constant and microheterogeneous sites. 相似文献
11.
Grapevine downy mildew caused by the Oomycete Plasmopara viticola is one of the most important diseases affecting Vitis spp. The current strategy of control relies on chemical fungicides. An alternative to the use of fungicides is using downy mildew resistant varieties, which is cost-effective and environmentally friendly. Knowledge about the genetic basis of the resistance to P. viticola has progressed in the recent years, but little data are available about P. viticola genetics, in particular concerning the nature of its avirulence genes. Identifying pathogen effectors as putative avirulence genes is a necessary step in order to understand the biology of the interaction. It is also important in order to select the most efficient combination of resistance genes in a strategy of pyramiding. On the basis of knowledge from other Oomycetes, P. viticola effectors can be identified by using a candidate gene strategy based on data mining of genomic resources. In this paper we describe the development of Expressed Sequence Tags (ESTs) from P. viticola by creating a cDNA library from in vitro germinated zoospores and the sequencing of 1543 clones. We present 563 putative nuclear P. viticola unigenes. Sequence analysis reveals 54 ESTs from putative secreted hydrolytic enzymes and effectors, showing the suitability of this material for the analysis of the P. viticola secretome and identification of effector genes. Next generation sequencing of cDNA from in vitro germinated zoospores should result in the identification of numerous candidate avirulence genes in the grapevine/downy mildew interaction. 相似文献
12.
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. 相似文献
13.
Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes. 总被引:48,自引:17,他引:48 下载免费PDF全文
S Y Ng P Gunning R Eddy P Ponte J Leavitt T Shows L Kedes 《Molecular and cellular biology》1985,5(10):2720-2732
We have assigned six members of the human beta-actin multigene family to specific human chromosomes. The functional gene, ACTB, is located on human chromosome 7, and the other assigned beta-actin-related sequences are dispersed over at least four different chromosomes including one locus assigned to the X chromosome. Using intervening sequence probes, we showed that the functional gene is single copy and that all of the other beta-actin related sequences are recently generated in evolution and are probably processed pseudogenes. The entire nucleotide sequence of the functional gene has been determined and is identical to cDNA clones in the coding and 5' untranslated regions. We have previously reported that the 3' untranslated region is well conserved between humans and rats (Ponte et al., Nucleic Acids Res. 12:1687-1696, 1984). Now we report that four additional noncoding regions are evolutionarily conserved, including segments of the 5' flanking region, 5' untranslated region, and, surprisingly, intervening sequences I and III. These conserved sequences, especially those found in the introns, suggest a role for internal sequences in the regulation of beta-actin gene expression. 相似文献
14.
Gene duplication plays an important role in the evolution of organisms by allowing functional innovation and the divergence of duplicate genes. Previous studies found two PI-like genes in grass species, suggesting functional divergence between the paralogous copies. Here, we reconstructed the evolutionary history of two PI genes from major lineages of grasses and other monocot species, and demonstrated that two PI genes (PI1 and PI2) arose from a whole genome duplication that occurred in a common ancestor of extant grasses. Molecular evolutionary analyses at the family and tribal levels found strong purifying selection acting on two genes in grasses, consistent with the conserved class B function of the PI genes. Importantly, we detected different patterns of selective relaxation between the duplicated PI genes although no signature of positive selection was found. Likelihood ratio tests revealed that the ω ratio for M domain is significantly higher in PI1 than in PI2 but that for K domain is significantly higher in PI2 than in PI1. These findings imply that complementary selective relaxation occurs in two PI genes after duplication, and provide additional molecular evidence for the subfunctionalization of the duplicated PI genes in grasses. 相似文献
15.
16.
C. S. Sheela Rani Alexandra Soto‐Pina Lorraine Iacovitti Randy Strong 《Journal of neurochemistry》2013,126(1):19-28
The human tyrosine hydroxylase (hTH) gene has a 42 bp evolutionarily conserved region designated (CR) II at ?7.24 kb, which bears 93% homology to the region we earlier identified as containing the glucocorticoid response element, a 7 bp activator protein‐1 (AP‐1)‐like motif in the rat TH gene. We cloned this hTH‐CRII region upstream of minimal basal hTH promoter in luciferase (Luc) reporter vector, and tested glucocorticoid responsiveness in human cell lines. Dexamethasone (Dex) stimulated Luc activity of hTH‐CRII in HeLa cells, while mifepristone, a glucocorticoid receptor (GR) antagonist, prevented Dex stimulation. Deletion of the 7 bp 5′‐TGACTAA at ?7243 bp completely abolished the Dex‐stimulated Luc activity of hTH‐CRII construct. The AP‐1 agonist, tetradeconoyl‐12,13‐phorbol acetate (TPA), also stimulated hTH promoter activity, and Dex and TPA together further accentuated this response. Chromatin immunoprecipitation assays revealed the presence of both GR and AP‐1 proteins, especially Jun family members, at this hTH promoter site. Dex did not stimulate hTH promoter activity in a catecholaminergic cell line, which had low endogenous GR levels, but did activate the response when GR was expressed exogenously. Thus, our studies have clearly identified a glucocorticoid‐responsive element in a 7 bp AP‐1‐like motif in the promoter region at ?7.24 kb of the human TH gene. 相似文献
17.
18.
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DMA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both n 相似文献
19.
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments with a binding size of ~ 6.6 base pairs and an apparent dissociation constant of (0.7—1.0)×10-7 mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled DNA than to linear or relaxed DNA. : 相似文献
20.
The thermoacidophilic archaeonSulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two
Ssh7-encoding genes existed in the genome of S.shibatae. These two genes, designatedssh7a andssh7b, have been cloned, sequenced and expressed inEscherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, thecis-regulatory sequences of thessh7a andssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence
but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein inSulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation
ofSulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility
shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that
the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or
by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments
with a binding size of ∼ 6.6 base pairs and an apparent dissociation constant of (0.7–1.0) × 10-7 mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled
DNA than to linear or relaxed DNA. 相似文献